
Title: Towards data-driven high fidelity CFD

Abstract: 

In this  talk,  I  will  give an overview of  recent  successes (and some failures) of  combining
modern, high order discretization schemes of Discontinuous Galerkin (DG) type with machine
learning submodels and their applications for large scale computations. This approach can
thus  for  example  be  employed  in  cases  where  current  submodels  in  the  discretization
schemes currently rely on heuristic data. The primary focus will be on supervised learning
strategies,  where  a  multivariate,  non-linear  function  approximation  of  given  data  sets  is
found through a high-dimensional, non-convex optimization problem that is efficiently solved
on modern GPUs. I will introduce the basic concepts of machine learning strategies and their
mathematical  backgrounds and discuss  the role the machine learning models  can play  in
conjunction with established PDE solvers. 

A prime of example of this is shock detection and shock capturing for high order methods,
where  essentially  all  known approaches  require  some expert  user  knowledge  as  guiding
input.  As  an  illustrative  example,  I  will  show  how  modern,  multiscale  neural  network
architectures originally designed for image segmentation can ameliorate this problem and
provide parameter free and grid independent shock front detection on a subelement level.
With this information, we can then inform a high order artificial viscosity operator for inner-
element shock capturing.

In the second part  of  my talk,  I  will  present  data-driven approaches to LES modeling for
implicitly  filtered high  order  discretizations.  Whereas supervised learning  of  the Reynolds
force tensor based on non-local data can provide highly accurate results that provide higher a
priori correlation than any existing closures, a posteriori stability remains an issue. I will give
reasons  for  this  and introduce reinforcement  learning  (RL)  as  an alternative optimization
approach. 

Reinforcement  learning  (RL)  is  considered  as  the  third  learning  paradigm,  besides
unsupervised and supervised learning.  In RL, the learning task is framed as a Markov Decision
Process  (MDP),  which  is  solved  by  an  optimal  policy.  This  policy  is  either  approximated
directly  or through the evaluation of  a  learned value  action function.  The learned policy
represents  the current  control  strategy  for  solving  the  MDP.  Its  parameters  are  updated
through repeated sampling of the policy’s proposed action space through interaction with
the environment of the MDP, which emits reward signals intermittently and estimating the
gradient of the objective w.r.t these parameters. This optimization within the context of a
dynamical system makes the RL approach somewhat orthogonal to supervised learning (SL) in
that no training samples need to be known a priori, only a definition of a meaningful reward
(which could be a single scalar value) is necessary. This more indirect guidance of the learning
process  makes  RL  methods  relatively  sample-inefficient  and  training  stability  is  less  well
understood than for SL methods, however, its possible benefits have been demonstrated in a
range of applications from autonomous driving, strategic games and flow control. 



Our initial experiments with this method suggest that is it much better suited to account for
the uncertainties introduced by the numerical  scheme and its  induced filter  form on the
modeling task. For this coupled RL-DG framework, I will present discretization-aware model
approaches for the LES equations (c.f. Fig. 1) and discuss the future potential of these solver-
in-the-loop optimizations. 

Figure 1: Left: Finding an eddy viscosity closure for LES formulated as an RL-problem. Right: Spectra of turbulent kinetic 
energy of homogeneous isotropic turbulence: DNS and LES results with different closure models.

In the practical sessions, we will investigate model training for canonical turbulent flows 
through supervised learning and explore methods to incorporate physical constraints into the
ML-based models.
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