Mathématiorsas
 universitė PARIS-SACLAY

On Optimal Transport, variational Mean Field Games and beyond

Luca Nenna
Cemracs, 23/08/2022, CIRM
(LMO) Université Paris-Saclay

Overview

1. Optimal Transport

The three formulations of quadratic Optimal Transport
On geodesics
2. The Schrödinger problem

The three formulations of Schrödinger
3. Variational Mean Field Games

Eulerian and Lagrangian formulation for MFG with quadratic Hamiltonian
4. Towards a numerical method:

Optimal Transport

Optimal Transportation Theory

Let $\mu, \nu \in \mathcal{P}(\Omega), \Omega$ compact subset of R^{n}, the Optimal Transport (OT) problem is defined as follows

$$
\begin{equation*}
(\mathcal{M K}) \quad E_{c}(\mu, \nu)=\inf \left\{\mathcal{E}_{c}(\gamma) \mid \gamma \in \Pi(\mu, \nu)\right\} \tag{1}
\end{equation*}
$$

where $\Pi(\mu, \nu):=\left\{\gamma \in \mathcal{P}\left(\Omega^{2}\right) \mid \quad \pi_{1, \sharp} \gamma=\mu, \pi_{2, \sharp} \gamma=\nu\right\}$ and

$$
\mathcal{E}_{c}(\gamma):=\int c(x, y) d \gamma(x, y)
$$

Solution à la Monge: the transport plan γ is deterministic (or à la Monge) if $\gamma=(I d, T)_{\sharp} \mu$ where $T_{\sharp} \mu=\nu$.

Optimal Transportation Theory

Let $\mu, \nu \in \mathcal{P}(\Omega), \Omega$ compact subset of R^{n}, the Optimal Transport (OT) problem is defined as follows

$$
\begin{equation*}
(\mathcal{M K}) \quad E_{c}(\mu, \nu)=\inf \left\{\mathcal{E}_{c}(\gamma) \mid \gamma \in \Pi(\mu, \nu)\right\} \tag{1}
\end{equation*}
$$

where $\Pi(\mu, \nu):=\left\{\gamma \in \mathcal{P}\left(\Omega^{2}\right) \mid \quad \pi_{1, \sharp} \gamma=\mu, \pi_{2, \sharp} \gamma=\nu\right\}$ and

$$
\mathcal{E}_{c}(\gamma):=\int c(x, y) d \gamma(x, y) .
$$

Solution à la Monge: the transport plan γ is deterministic (or à la Monge) if $\gamma=(I d, T)_{\sharp} \mu$ where $T_{\sharp \mu}=\nu$.

The $(\mathcal{M} \mathcal{K})$ problem admits a dual formulation:

$$
\begin{equation*}
\sup \{\mathcal{J}(\phi, \psi) \mid(\phi, \psi) \in \mathcal{K}\} \tag{2}
\end{equation*}
$$

where

$$
\mathcal{J}(\phi, \psi):=\int_{\Omega} \phi d \mu(x)+\int_{\Omega} \psi d \nu(y)
$$

and \mathcal{K} is the set of bounded and continuous functions ϕ, ψ such that $\phi(x)+\psi(y) \leq c(x, y)$.

The three formulations of quadratic Optimal Transport

The static: $\inf \left\{\left.\int_{X \times Y} \frac{1}{2}|x-y|^{2} d \gamma \right\rvert\, \gamma \in \Pi(\mu, \nu)\right\}$

The three formulations of quadratic Optimal Transport

The static: $\inf \left\{\left.\int_{X \times Y} \frac{1}{2}|x-y|^{2} d \gamma \right\rvert\, \gamma \in \Pi(\mu, \nu)\right\}$
The dynamic (Eulerian), aka the Benamou-Brenier formulation

$$
\begin{array}{r}
\inf \int_{0}^{1} \int_{\Omega} \frac{1}{2}\left|v_{t}\right|^{2} \rho_{t} d x d t \quad \text { s.t. } \partial_{t} \rho_{t}+\operatorname{div}\left(\rho_{t} v_{t}\right)=0 \\
\rho(0, \cdot)=\mu, \rho(1, \cdot)=\nu
\end{array}
$$

And its "dual"

$$
\sup \left\{\int_{\Omega} \varphi(1, x) d \nu-\left.\int \varphi(0, x) d \mu\left|\partial_{t} \varphi+\frac{1}{2}\right| \nabla \varphi\right|^{2} \leq 0\right\}
$$

The three formulations of quadratic Optimal Transport

The static: $\inf \left\{\left.\int_{X \times Y} \frac{1}{2}|x-y|^{2} d \gamma \right\rvert\, \gamma \in \Pi(\mu, \nu)\right\}$
The dynamic (Eulerian), aka the Benamou-Brenier formulation

$$
\begin{array}{r}
\inf \int_{0}^{1} \int_{\Omega} \frac{1}{2}\left|v_{t}\right|^{2} \rho_{t} d x d t \quad \text { s.t. } \partial_{t} \rho_{t}+\operatorname{div}\left(\rho_{t} v_{t}\right)=0 \\
\rho(0, \cdot)=\mu, \rho(1, \cdot)=\nu
\end{array}
$$

And its "dual"

$$
\sup \left\{\int_{\Omega} \varphi(1, x) d \nu-\left.\int \varphi(0, x) d \mu\left|\partial_{t} \varphi+\frac{1}{2}\right| \nabla \varphi\right|^{2} \leq 0\right\}
$$

The dynamic (Lagrangian) $\left(C=H^{1}([0,1] ; \Omega)\right.$ and $\left.e_{t}:[0,1] \rightarrow \Omega\right)$

$$
\inf \left\{\left.\int_{C} \int_{0}^{1} \frac{1}{2}|\dot{\omega}|^{2} d t d Q(\omega) \right\rvert\, Q \in \mathcal{P}(C),\left(e_{0}\right)_{\sharp} Q=\mu,\left(e_{1}\right)_{\sharp} Q=\nu\right\}
$$

On geodesics

- Quadratic optimal transport is indeed a distance between probability measures, aka the \mathcal{W}_{2}^{2} Wasserstein distance, and $\left(\mathcal{P}(\Omega), \mathcal{W}_{2}\right)$ is a metric space;
- Gives a way to compare and interpolate between probability measures.
- Consider the optimal solutions for the three formulations $\gamma^{\star}, Q^{\star}, \rho_{t}^{\star}$ then

$$
\pi_{t}(x, y)_{\sharp \gamma^{\star}}=\left(e_{t}\right)_{\sharp} Q^{\star}=\rho_{t}^{\star},
$$

where $\pi_{t}(x, y)=(1-t) x+t y$ and ρ_{t} is the geodesic between μ and ν, the so called McCann's interpolant.

- Hidden convexity: look at convexity along the Wasserstein geodesics.

On geodesics

- Quadratic optimal transport is indeed a distance between probability measures, aka the \mathcal{W}_{2}^{2} Wasserstein distance, and $\left(\mathcal{P}(\Omega), \mathcal{W}_{2}\right)$ is a metric space;
- Gives a way to compare and interpolate between probability measures.
- Consider the optimal solutions for the three formulations $\gamma^{\star}, Q^{\star}, \rho_{t}^{\star}$ then

$$
\pi_{t}(x, y)_{\sharp \gamma^{\star}}=\left(e_{t}\right)_{\sharp} Q^{\star}=\rho_{t}^{\star},
$$

where $\pi_{t}(x, y)=(1-t) x+t y$ and ρ_{t} is the geodesic between μ and ν,
 the so called McCann's interpolant.

- Hidden convexity: look at convexity along the Wasserstein geodesics.

On geodesics

- Quadratic optimal transport is indeed a distance between probability measures, aka the \mathcal{W}_{2}^{2} Wasserstein distance, and $\left(\mathcal{P}(\Omega), \mathcal{W}_{2}\right)$ is a metric space;
- Gives a way to compare and interpolate between probability measures.
- Consider the optimal solutions for the three formulations $\gamma^{\star}, Q^{\star}, \rho_{t}^{\star}$ then

$$
\pi_{t}(x, y)_{\sharp \gamma^{\star}}=\left(e_{t}\right)_{\sharp} Q^{\star}=\rho_{t}^{\star},
$$

where $\pi_{t}(x, y)=(1-t) x+t y$ and ρ_{t} is the geodesic between μ and ν,
 the so called McCann's interpolant.

- Hidden convexity: look at convexity along the Wasserstein geodesics.

On geodesics

- Quadratic optimal transport is indeed a distance between probability measures, aka the \mathcal{W}_{2}^{2} Wasserstein distance, and $\left(\mathcal{P}(\Omega), \mathcal{W}_{2}\right)$ is a metric space;
- Gives a way to compare and interpolate between probability measures.
- Consider the optimal solutions for the three formulations $\gamma^{\star}, Q^{\star}, \rho_{t}^{\star}$ then

$$
\pi_{t}(x, y)_{\sharp \gamma^{\star}}=\left(e_{t}\right)_{\sharp} Q^{\star}=\rho_{t}^{\star},
$$

where $\pi_{t}(x, y)=(1-t) x+t y$ and ρ_{t} is the geodesic between μ and ν,
 the so called McCann's interpolant.

- Hidden convexity: look at convexity along the Wasserstein geodesics.

On geodesics

- Quadratic optimal transport is indeed a distance between probability measures, aka the \mathcal{W}_{2}^{2} Wasserstein distance, and $\left(\mathcal{P}(\Omega), \mathcal{W}_{2}\right)$ is a metric space;
- Gives a way to compare and interpolate between probability measures.
- Consider the optimal solutions for the three formulations $\gamma^{\star}, Q^{\star}, \rho_{t}^{\star}$ then

$$
\pi_{t}(x, y)_{\sharp \gamma^{\star}}=\left(e_{t}\right)_{\sharp} Q^{\star}=\rho_{t}^{\star},
$$

where $\pi_{t}(x, y)=(1-t) x+t y$ and ρ_{t} is the geodesic between μ and ν, the so called McCann's interpolant.

- Hidden convexity: look at convexity along the Wasserstein geodesics.

On geodesics

- Quadratic optimal transport is indeed a distance between probability measures, aka the \mathcal{W}_{2}^{2} Wasserstein distance, and $\left(\mathcal{P}(\Omega), \mathcal{W}_{2}\right)$ is a metric space;
- Gives a way to compare and interpolate between probability measures.
- Consider the optimal solutions for the three formulations $\gamma^{\star}, Q^{\star}, \rho_{t}^{\star}$ then

$$
\pi_{t}(x, y)_{\sharp \gamma^{\star}}=\left(e_{t}\right)_{\sharp} Q^{\star}=\rho_{t}^{\star},
$$

where $\pi_{t}(x, y)=(1-t) x+t y$ and ρ_{t} is the geodesic between μ and ν,
 the so called McCann's interpolant.

- Hidden convexity: look at convexity along the Wasserstein geodesics.

On geodesics

- Quadratic optimal transport is indeed a distance between probability measures, aka the \mathcal{W}_{2}^{2} Wasserstein distance, and $\left(\mathcal{P}(\Omega), \mathcal{W}_{2}\right)$ is a metric space;
- Gives a way to compare and interpolate between probability measures.
- Consider the optimal solutions for the three formulations $\gamma^{\star}, Q^{\star}, \rho_{t}^{\star}$ then

$$
\pi_{t}(x, y)_{\sharp \gamma^{\star}}=\left(e_{t}\right)_{\sharp} Q^{\star}=\rho_{t}^{\star},
$$

where $\pi_{t}(x, y)=(1-t) x+t y$ and ρ_{t} is the geodesic between μ and ν,
 the so called McCann's interpolant.

- Hidden convexity: look at convexity along the Wasserstein geodesics.

On geodesics

- Quadratic optimal transport is indeed a distance between probability measures, aka the \mathcal{W}_{2}^{2} Wasserstein distance, and $\left(\mathcal{P}(\Omega), \mathcal{W}_{2}\right)$ is a metric space;
- Gives a way to compare and interpolate between probability measures.
- Consider the optimal solutions for the three formulations $\gamma^{\star}, Q^{\star}, \rho_{t}^{\star}$ then

$$
\pi_{t}(x, y)_{\sharp \gamma^{\star}}=\left(e_{t}\right)_{\sharp} Q^{\star}=\rho_{t}^{\star},
$$

where $\pi_{t}(x, y)=(1-t) x+t y$ and ρ_{t} is the geodesic between μ and ν,
 the so called McCann's interpolant.

- Hidden convexity: look at convexity along the Wasserstein geodesics.

On geodesics

- Quadratic optimal transport is indeed a distance between probability measures, aka the \mathcal{W}_{2}^{2} Wasserstein distance, and $\left(\mathcal{P}(\Omega), \mathcal{W}_{2}\right)$ is a metric space;
- Gives a way to compare and interpolate between probability measures.
- Consider the optimal solutions for the three formulations $\gamma^{\star}, Q^{\star}, \rho_{t}^{\star}$ then

$$
\pi_{t}(x, y)_{\sharp \gamma^{\star}}=\left(e_{t}\right)_{\sharp} Q^{\star}=\rho_{t}^{\star},
$$

where $\pi_{t}(x, y)=(1-t) x+t y$ and ρ_{t} is the geodesic between μ and ν,
 the so called McCann's interpolant.

- Hidden convexity: look at convexity along the Wasserstein geodesics.

On geodesics

- Quadratic optimal transport is indeed a distance between probability measures, aka the \mathcal{W}_{2}^{2} Wasserstein distance, and $\left(\mathcal{P}(\Omega), \mathcal{W}_{2}\right)$ is a metric space;
- Gives a way to compare and interpolate between probability measures.
- Consider the optimal solutions for the three formulations $\gamma^{\star}, Q^{\star}, \rho_{t}^{\star}$ then

$$
\pi_{t}(x, y)_{\sharp \gamma^{\star}}=\left(e_{t}\right)_{\sharp} Q^{\star}=\rho_{t}^{\star},
$$

where $\pi_{t}(x, y)=(1-t) x+t y$ and ρ_{t} is the geodesic between μ and ν,
 the so called McCann's interpolant.

- Hidden convexity: look at convexity along the Wasserstein geodesics.

On geodesics

- Quadratic optimal transport is indeed a distance between probability measures, aka the \mathcal{W}_{2}^{2} Wasserstein distance, and $\left(\mathcal{P}(\Omega), \mathcal{W}_{2}\right)$ is a metric space;
- Gives a way to compare and interpolate between probability measures.
- Consider the optimal solutions for the three formulations $\gamma^{\star}, Q^{\star}, \rho_{t}^{\star}$ then

$$
\pi_{t}(x, y)_{\sharp} \gamma^{\star}=\left(e_{t}\right)_{\sharp} Q^{\star}=\rho_{t}^{\star},
$$

where $\pi_{t}(x, y)=(1-t) x+t y$ and ρ_{t} is the geodesic between μ and ν,
 the so called McCann's interpolant.

- Hidden convexity: look at convexity along the Wasserstein geodesics.

On geodesics

- Quadratic optimal transport is indeed a distance between probability measures, aka the \mathcal{W}_{2}^{2} Wasserstein distance, and $\left(\mathcal{P}(\Omega), \mathcal{W}_{2}\right)$ is a metric space;
- Gives a way to compare and interpolate between probability measures.
- Consider the optimal solutions for the three formulations $\gamma^{\star}, Q^{\star}, \rho_{t}^{\star}$ then

$$
\pi_{t}(x, y)_{\sharp \gamma^{\star}}=\left(e_{t}\right)_{\sharp} Q^{\star}=\rho_{t}^{\star},
$$

where $\pi_{t}(x, y)=(1-t) x+t y$ and ρ_{t} is the geodesic between μ and ν,
 the so called McCann's interpolant.

- Hidden convexity: look at convexity along the Wasserstein geodesics.

On geodesics

- Quadratic optimal transport is indeed a distance between probability measures, aka the \mathcal{W}_{2}^{2} Wasserstein distance, and $\left(\mathcal{P}(\Omega), \mathcal{W}_{2}\right)$ is a metric space;
- Gives a way to compare and interpolate between probability measures.
- Consider the optimal solutions for the three formulations $\gamma^{\star}, Q^{\star}, \rho_{t}^{\star}$ then

$$
\pi_{t}(x, y)_{\sharp \gamma^{\star}}=\left(e_{t}\right)_{\sharp} Q^{\star}=\rho_{t}^{\star},
$$

where $\pi_{t}(x, y)=(1-t) x+t y$ and ρ_{t} is the geodesic between μ and ν,
 the so called McCann's interpolant.

- Hidden convexity: look at convexity along the Wasserstein geodesics.

On geodesics

- Quadratic optimal transport is indeed a distance between probability measures, aka the \mathcal{W}_{2}^{2} Wasserstein distance, and $\left(\mathcal{P}(\Omega), \mathcal{W}_{2}\right)$ is a metric space;
- Gives a way to compare and interpolate between probability measures.
- Consider the optimal solutions for the three formulations $\gamma^{\star}, Q^{\star}, \rho_{t}^{\star}$ then

$$
\pi_{t}(x, y)_{\sharp \gamma^{\star}}=\left(e_{t}\right)_{\sharp} Q^{\star}=\rho_{t}^{\star},
$$

where $\pi_{t}(x, y)=(1-t) x+t y$ and ρ_{t} is the geodesic between μ and ν,
 the so called McCann's interpolant.

- Hidden convexity: look at convexity along the Wasserstein geodesics.

On geodesics

- Quadratic optimal transport is indeed a distance between probability measures, aka the \mathcal{W}_{2}^{2} Wasserstein distance, and $\left(\mathcal{P}(\Omega), \mathcal{W}_{2}\right)$ is a metric space;
- Gives a way to compare and interpolate between probability measures.
- Consider the optimal solutions for the three formulations $\gamma^{\star}, Q^{\star}, \rho_{t}^{\star}$ then

$$
\pi_{t}(x, y)_{\sharp \gamma^{\star}}=\left(e_{t}\right)_{\sharp} Q^{\star}=\rho_{t}^{\star},
$$

where $\pi_{t}(x, y)=(1-t) x+t y$ and ρ_{t} is the geodesic between μ and ν,
 the so called McCann's interpolant.

- Hidden convexity: look at convexity along the Wasserstein geodesics.

The Schrödinger problem

Regularizing optimal transport

Some (un)related questions:

Regularizing optimal transport

Some (un)related questions:

- Regularization: is there a way to regularize optimal transport (with a generic cost function) and make it easy to solve ?

Regularizing optimal transport

Some (un)related questions:

- Regularization: is there a way to regularize optimal transport (with a generic cost function) and make it easy to solve ?
- Transporting particles at positive temperature: quadratic optimal transport gives a way to transport clouds of particles at zero temperature, what happens if the temperature is positive?

Regularizing optimal transport

Some (un)related questions:

- Regularization: is there a way to regularize optimal transport (with a generic cost function) and make it easy to solve ?
- Transporting particles at positive temperature: quadratic optimal transport gives a way to transport clouds of particles at zero temperature, what happens if the temperature is positive?
\Rightarrow The Schrödinger problem

Regularizing optimal transport

Some (un)related questions:

- Regularization: is there a way to regularize optimal transport (with a generic cost function) and make it easy to solve ?
- Transporting particles at positive temperature: quadratic optimal transport gives a way to transport clouds of particles at zero temperature, what happens if the temperature is positive?
\Rightarrow The Schrödinger problem
Definition (Relative entropy)
Let ρ and π probability measures on Ω then the relative entropy is defined as

$$
\mathcal{H}(\rho \mid \pi)= \begin{cases}\int_{\Omega \times \Omega}\left(\log \left(\frac{d \rho(x, y)}{d \pi(x, y)}\right)-1\right) d \rho(x, y), & \text { if } \rho \ll \pi \\ +\infty, & \text { otherwise }\end{cases}
$$

The three formulations of Schrödinger
The static: $\inf \left\{\left.\int_{\Omega \times \Omega} \frac{1}{2}|x-y|^{2} d \gamma+\varepsilon \mathcal{H}(\gamma \mid \mu \otimes \nu) \right\rvert\, \gamma \in \Pi(\mu, \nu)\right\}$

The three formulations of Schrödinger

The static: $\inf \left\{\left.\int_{\Omega \times \Omega} \frac{1}{2}|x-y|^{2} d \gamma+\varepsilon \mathcal{H}(\gamma \mid \mu \otimes \nu) \right\rvert\, \gamma \in \Pi(\mu, \nu)\right\}$
The dynamic (Eulerian)

$$
\begin{gathered}
\inf \int_{0}^{1} \int_{\Omega} \frac{1}{2}\left|v_{t}\right|^{2} \rho_{t} d x d t \text { s.t. } \partial_{t} \rho_{t}-\varepsilon \Delta \rho_{t}+\operatorname{div}\left(\rho_{t} v_{t}\right)=0 \\
\rho(0, \cdot)=\mu, \rho(1, \cdot)=\nu
\end{gathered}
$$

And its "dual"

$$
\sup \left\{\int_{\Omega} \varphi(1, x) d \nu-\left.\int \varphi(0, x) d \mu\left|\partial_{t} \varphi-\varepsilon \Delta \varphi+\frac{1}{2}\right| \nabla \varphi\right|^{2} \leq 0\right\}
$$

The three formulations of Schrödinger

The static: $\inf \left\{\left.\int_{\Omega \times \Omega} \frac{1}{2}|x-y|^{2} d \gamma+\varepsilon \mathcal{H}(\gamma \mid \mu \otimes \nu) \right\rvert\, \gamma \in \Pi(\mu, \nu)\right\}$
The dynamic (Eulerian)

$$
\begin{gathered}
\inf \int_{0}^{1} \int_{\Omega} \frac{1}{2}\left|v_{t}\right|^{2} \rho_{t} d x d t \text { s.t. } \partial_{t} \rho_{t}-\varepsilon \Delta \rho_{t}+\operatorname{div}\left(\rho_{t} v_{t}\right)=0 \\
\rho(0, \cdot)=\mu, \rho(1, \cdot)=\nu
\end{gathered}
$$

And its "dual"

$$
\sup \left\{\int_{\Omega} \varphi(1, x) d \nu-\left.\int \varphi(0, x) d \mu\left|\partial_{t} \varphi-\varepsilon \Delta \varphi+\frac{1}{2}\right| \nabla \varphi\right|^{2} \leq 0\right\}
$$

The dynamic (Lagrangian)

$$
\inf \left\{\mathcal{H}\left(Q \mid R^{\varepsilon}\right) \mid Q \in \mathcal{P}(C),\left(e_{0}\right)_{\sharp} Q=\mu,\left(e_{1}\right)_{\sharp} Q=\nu\right\}
$$

where R^{ε} is the Wiener measure $R^{\varepsilon}:=\int \delta_{x+B^{\varepsilon}} d x$ of variance ε.

The three formulations of Schrödinger

The static: $\inf \left\{\left.\int_{\Omega \times \Omega} \frac{1}{2}|x-y|^{2} d \gamma+\varepsilon \mathcal{H}(\gamma \mid \mu \otimes \nu) \right\rvert\, \gamma \in \Pi(\mu, \nu)\right\}$
The dynamic (Eulerian)

$$
\begin{gathered}
\inf \int_{0}^{1} \int_{\Omega} \frac{1}{2}\left|v_{t}\right|^{2} \rho_{t} d x d t \text { s.t. } \partial_{t} \rho_{t}-\varepsilon \Delta \rho_{t}+\operatorname{div}\left(\rho_{t} v_{t}\right)=0 \\
\rho(0, \cdot)=\mu, \rho(1, \cdot)=\nu
\end{gathered}
$$

And its "dual"

$$
\sup \left\{\int_{\Omega} \varphi(1, x) d \nu-\left.\int \varphi(0, x) d \mu\left|\partial_{t} \varphi-\varepsilon \Delta \varphi+\frac{1}{2}\right| \nabla \varphi\right|^{2} \leq 0\right\}
$$

The dynamic (Lagrangian)

$$
\inf \left\{\mathcal{H}\left(Q \mid R^{\varepsilon}\right) \mid Q \in \mathcal{P}(C),\left(e_{0}\right)_{\sharp} Q=\mu,\left(e_{1}\right)_{\sharp} Q=\nu\right\}
$$

where R^{ε} is the Wiener measure $R^{\varepsilon}:=\int \delta_{x+B^{\varepsilon}} d x$ of variance ε.
Remark: static formulation can be defined for a general cost function $c(x, y)$.

The "bridge" between quadratic Monge-Kantorovich and Schrödinger

- Schrödinger pb is a strictly convex pb and it admits a unique almost explicit solution $\gamma^{\star}=a(x) b(y) e^{-c / \varepsilon}$.

The "bridge" between quadratic Monge-Kantorovich and Schrödinger

- Schrödinger pb is a strictly convex pb and it admits a unique almost explicit solution $\gamma^{\star}=a(x) b(y) e^{-c / \varepsilon}$.
- As for OT the solutions of the three formulation are related. In particular

$$
Q^{\star}=R^{\star, y, \varepsilon} \otimes \gamma^{\star}
$$

where $R^{x, y, \varepsilon}$ is the Schrödinger bridge.

The "bridge" between quadratic Monge-Kantorovich and Schrödinger

- Schrödinger pb is a strictly convex pb and it admits a unique almost explicit solution $\gamma^{\star}=a(x) b(y) e^{-c / \varepsilon}$.
- As for OT the solutions of the three formulation are related. In particular

$$
Q^{\star}=R^{\star, y, \varepsilon} \otimes \gamma^{\star}
$$

where $R^{x, y, \varepsilon}$ is the Schrödinger bridge.

- As $\varepsilon \rightarrow 0$ Schrödinger Γ-converges to optimal transport (Léonard 2012;
Guillaume Carlier, Duval, Peyré, and Bernhard Schmitzer 2017). This implies that minimizers converge too!

The "bridge" between quadratic Monge-Kantorovich and Schrödinger

- Schrödinger pb is a strictly convex pb and it admits a unique almost explicit solution $\gamma^{\star}=a(x) b(y) e^{-c / \varepsilon}$.
- As for OT the solutions of the three formulation are related. In particular

$$
Q^{\star}=R^{\star, y, \varepsilon} \otimes \gamma^{\star},
$$

where $R^{x, y, \varepsilon}$ is the Schrödinger bridge.

- As $\varepsilon \rightarrow 0$ Schrödinger Γ-converges to optimal transport (Léonard 2012;
Guillaume Carlier, Duval, Peyré, and Bernhard Schmitzer 2017). This implies that minimizers converge too!
- It is easy to solve numerically:

Convergence to optimal transport solution for quadratic cost as $\varepsilon \rightarrow 0$

$$
\varepsilon=1
$$

Sinkhorn algorithm (we will see it in 15 minutes...if I do not talk too much).

The "bridge" between quadratic Monge-Kantorovich and Schrödinger

- Schrödinger pb is a strictly convex pb and it admits a unique almost explicit solution $\gamma^{\star}=a(x) b(y) e^{-c / \varepsilon}$.
- As for OT the solutions of the three formulation are related. In particular

$$
Q^{\star}=R^{\star, y, \varepsilon} \otimes \gamma^{\star},
$$

where $R^{x, y, \varepsilon}$ is the Schrödinger bridge.

- As $\varepsilon \rightarrow 0$ Schrödinger Γ-converges to optimal transport (Léonard 2012;
Guillaume Carlier, Duval, Peyré, and Bernhard Schmitzer 2017). This implies that minimizers converge too!
- It is easy to solve numerically:

Convergence to optimal transport solution for quadratic cost as $\varepsilon \rightarrow 0$

$\varepsilon=0.2$

Sinkhorn algorithm (we will see it in 15 minutes...if I do not talk too much).

The "bridge" between quadratic Monge-Kantorovich and Schrödinger

- Schrödinger pb is a strictly convex pb and it admits a unique almost explicit solution $\gamma^{\star}=a(x) b(y) e^{-c / \varepsilon}$.
- As for OT the solutions of the three formulation are related. In particular

$$
Q^{\star}=R^{\star, y, \varepsilon} \otimes \gamma^{\star},
$$

where $R^{x, y, \varepsilon}$ is the Schrödinger bridge.

- As $\varepsilon \rightarrow 0$ Schrödinger Γ-converges to optimal transport (Léonard 2012;
Guillaume Carlier, Duval, Peyré, and Bernhard Schmitzer 2017). This implies that minimizers converge too!
- It is easy to solve numerically:

Convergence to optimal transport solution for quadratic cost as $\varepsilon \rightarrow 0$

$\varepsilon=.05$

Sinkhorn algorithm (we will see it in 15 minutes...if I do not talk too much).

The "bridge" between quadratic Monge-Kantorovich and Schrödinger

- Schrödinger pb is a strictly convex pb and it admits a unique almost explicit solution $\gamma^{\star}=a(x) b(y) e^{-c / \varepsilon}$.
- As for OT the solutions of the three formulation are related. In particular

$$
Q^{\star}=R^{\star, y, \varepsilon} \otimes \gamma^{\star},
$$

where $R^{x, y, \varepsilon}$ is the Schrödinger bridge.

- As $\varepsilon \rightarrow 0$ Schrödinger Γ-converges to optimal transport (Léonard 2012;
Guillaume Carlier, Duval, Peyré, and Bernhard Schmitzer 2017). This implies that minimizers converge too!
- It is easy to solve numerically:

Sinkhorn algorithm (we will see it in 15 minutes...if I do not talk too much).

Convergence to optimal transport solution for quadratic cost as $\varepsilon \rightarrow 0$

$\varepsilon=0$

Variational Mean Field Games

Lagrangian formulation for 1st order MFG

Consider a first order MFG system then we have the following "equivalence" (see (Lasry and Lions 2007))

A MFG system

$$
\left\{\begin{array}{l}
-\partial_{t} \varphi+\frac{1}{2}|\nabla \varphi|^{2}=g(x, \rho), \varphi(1, x)=\Psi(x) \\
\partial_{t} \rho-\operatorname{div}(\rho \nabla \varphi)=0, \rho(0, \cdot)=\rho_{0}
\end{array}\right.
$$

Lagrangian formulation for 1st order MFG

Consider a first order MFG system then we have the following "equivalence" (see (Lasry and Lions 2007))

A MFG system

$$
\left\{\begin{array}{l}
-\partial_{t} \varphi+\frac{1}{2}|\nabla \varphi|^{2}=g(x, \rho), \varphi(1, x)=\Psi(x) \\
\partial_{t} \rho-\operatorname{div}(\rho \nabla \varphi)=0, \rho(0, \cdot)=\rho_{0} .
\end{array}\right.
$$

The (Eulerian) Variational Formulation

$$
\begin{gathered}
\inf \int_{0}^{1} \int_{\Omega}\left(\frac{1}{2}\left|v_{t}\right|^{2} \rho_{t}+G\left(x, \rho_{t}\right)\right) d x d t+F\left(\rho_{1}\right) \quad \text { s.t. } \partial_{t} \rho_{t}+\operatorname{div}\left(\rho_{t} v_{t}\right)=0 \\
\rho(0, \cdot)=\rho_{0}
\end{gathered}
$$

where G is the anti-derivative of g w.r.t its second variable and $F\left(\rho_{1}\right)=\int_{\Omega} \Psi d \rho_{1}$ is a final cost.

Lagrangian formulation for 1st order MFG

Consider a first order MFG system then we have the following "equivalence" (see (Lasry and Lions 2007))

A MFG system

$$
\left\{\begin{array}{l}
-\partial_{t} \varphi+\frac{1}{2}|\nabla \varphi|^{2}=g(x, \rho), \varphi(1, x)=\Psi(x) \\
\partial_{t} \rho-\operatorname{div}(\rho \nabla \varphi)=0, \rho(0, \cdot)=\rho_{0} .
\end{array}\right.
$$

The (Eulerian) Variational Formulation

$$
\begin{gathered}
\inf \int_{0}^{1} \int_{\Omega}\left(\frac{1}{2}\left|v_{t}\right|^{2} \rho_{t}+G\left(x, \rho_{t}\right)\right) d x d t+F\left(\rho_{1}\right) \quad \text { s.t. } \partial_{t} \rho_{t}+\operatorname{div}\left(\rho_{t} v_{t}\right)=0 \\
\rho(0, \cdot)=\rho_{0}
\end{gathered}
$$

where G is the anti-derivative of g w.r.t its second variable and $F\left(\rho_{1}\right)=\int_{\Omega} \Psi d \rho_{1}$ is a final cost.

The (Lagrangian) Variational Formulation (J.-D. Benamou, G. Carlier, and Santambrogio 2017)

$$
\inf _{Q \in \mathcal{P}(C)}\left\{\left.\int_{C} \int_{0}^{1} \frac{1}{2}|\dot{\omega}|^{2} d t d Q+\int_{0}^{1} \mathcal{G}\left(e_{t, \sharp} Q\right) d t+F\left(e_{1, \sharp} Q\right) \right\rvert\,\left(e_{0}\right)_{\sharp} Q=\rho_{0}\right\},
$$

where $\mathcal{G}(\rho)=\int G(x, \rho) d x$ if $\rho \ll \mathcal{L}$ and $+\infty$ otherwise.

A Lagrangian formulation via Entropy minimization

A MFG system

$$
\left\{\begin{array}{l}
-\partial_{t} \varphi-\frac{\varepsilon}{2} \Delta \phi+\frac{1}{2}|\nabla \varphi|^{2}=g(x, \rho), \varphi(1, x)=\Psi(x) \\
\partial_{t} \rho-\frac{\varepsilon}{2} \Delta \rho-\operatorname{div}(\rho \nabla \varphi)=0, \rho(0, \cdot)=\rho_{0}
\end{array}\right.
$$

A Lagrangian formulation via Entropy minimization

A MFG system

$$
\left\{\begin{array}{l}
-\partial_{t} \varphi-\frac{\varepsilon}{2} \Delta \phi+\frac{1}{2}|\nabla \varphi|^{2}=g(x, \rho), \varphi(1, x)=\Psi(x) \\
\partial_{t} \rho-\frac{\varepsilon}{2} \Delta \rho-\operatorname{div}(\rho \nabla \varphi)=0, \rho(0, \cdot)=\rho_{0} .
\end{array}\right.
$$

The (Eulerian) Variational Formulation (Cardaliaguet, Graber, Porretta, and Tonon 2015)

$$
\begin{gathered}
\inf \int_{0}^{1} \int_{\Omega}\left(\frac{1}{2}\left|v_{t}\right|^{2} \rho_{t}+G\left(x, \rho_{t}\right)\right) d x d t+F\left(\rho_{1}\right) \text { s.t. } \partial_{t} \rho_{t}+\operatorname{div}\left(\rho_{t} v_{t}\right)-\frac{\varepsilon}{2} \Delta \rho=0 \\
\rho(0, \cdot)=\rho_{0}
\end{gathered}
$$

where G is the anti-derivative of g w.r.t its second variable and $F\left(\rho_{1}\right)=\int_{\Omega} \psi d \rho_{1}$ is a final cost.

A Lagrangian formulation via Entropy minimization

A MFG system

$$
\left\{\begin{array}{l}
-\partial_{t} \varphi-\frac{\varepsilon}{2} \Delta \phi+\frac{1}{2}|\nabla \varphi|^{2}=g(x, \rho), \varphi(1, x)=\Psi(x) \\
\partial_{t} \rho-\frac{\varepsilon}{2} \Delta \rho-\operatorname{div}(\rho \nabla \varphi)=0, \rho(0, \cdot)=\rho_{0} .
\end{array}\right.
$$

The (Eulerian) Variational Formulation (Cardaliaguet, Graber, Porretta, and Tonon 2015)

$$
\begin{gathered}
\inf \int_{0}^{1} \int_{\Omega}\left(\frac{1}{2}\left|v_{t}\right|^{2} \rho_{t}+G\left(x, \rho_{t}\right)\right) d x d t+F\left(\rho_{1}\right) \text { s.t. } \partial_{t} \rho_{t}+\operatorname{div}\left(\rho_{t} v_{t}\right)-\frac{\varepsilon}{2} \Delta \rho=0 \\
\rho(0, \cdot)=\rho_{0}
\end{gathered}
$$

where G is the anti-derivative of g w.r.t its second variable and $F\left(\rho_{1}\right)=\int_{\Omega} \Psi d \rho_{1}$ is a final cost.

The (Lagrangian) Variational Formulation (J.-D. Benamou, G. Carlier, S. Di Marino, and L. Nenna 2018)

$$
\inf _{Q \in \mathcal{P}(C)}\left\{\mathcal{H}\left(Q \mid R^{\varepsilon}\right)+\int_{0}^{1} \mathcal{G}\left(e_{t, \sharp} Q\right) d t+F\left(e_{1, \sharp} Q\right) \mid\left(e_{0}\right)_{\sharp} Q=\rho_{0}\right\}
$$

Towards a numerical method:

The discretised (in time) problems

We can solve the Lagrangian problems by firstly discretising them in time as follows

$$
\begin{aligned}
& \text { Regularized 1st order MFG } \\
& \begin{aligned}
& \inf \int_{\Omega^{N+1}} K_{N} d Q_{N}\left(x_{0}, \cdots, x_{N}\right)+\varepsilon \mathcal{H}\left(Q_{N} \mid \mathcal{L}\right)+\sum_{i=1}^{N-1} \int_{\Omega} G\left(x, \pi_{i, \sharp} Q_{N}\right) d x_{i}+F\left(\pi_{N, \sharp} Q_{N}\right) \\
& \text { s.t. } Q_{N} \in \mathcal{P}\left(\Omega^{N+1}\right), \pi_{0, \sharp} Q_{N}=\rho_{0},
\end{aligned}
\end{aligned}
$$

where $K_{N}=\frac{1}{2 N} \sum_{i=0}^{N-1}\left|x_{i+1}-x_{i}\right|^{2}$ and $\pi_{i}: \Omega^{N+1} \rightarrow \Omega$ is the canonical projection.

The discretised (in time) problems

We can solve the Lagrangian problems by firstly discretising them in time as follows
Regularized 1st order MFG

$$
\begin{array}{r}
\inf \int_{\Omega^{N+1}} K_{N} d Q_{N}\left(x_{0}, \cdots, x_{N}\right)+\varepsilon \mathcal{H}\left(Q_{N} \mid \mathcal{L}\right)+\sum_{i=1}^{N-1} \int_{\Omega} G\left(x, \pi_{i, \sharp} Q_{N}\right) d x_{i}+F\left(\pi_{N, \sharp} Q_{N}\right) \\
\text { s.t. } Q_{N} \in \mathcal{P}\left(\Omega^{N+1}\right), \pi_{0, \sharp} Q_{N}=\rho_{0},
\end{array}
$$

where $K_{N}=\frac{1}{2 N} \sum_{i=0}^{N-1}\left|x_{i+1}-x_{i}\right|^{2}$ and $\pi_{i}: \Omega^{N+1} \rightarrow \Omega$ is the canonical projection.
2nd order MFG

$$
\inf \left\{\mathcal{H}\left(Q_{N} \mid R_{N}^{\varepsilon}\right)+\sum_{i=1}^{T-1} \int_{\Omega} G\left(x, \pi_{i, \sharp} Q_{N}\right) d x_{i}+F\left(\pi_{N, \sharp} Q_{N}\right) \mid \pi_{0, \sharp} Q_{N}=\rho_{0}\right\},
$$

where $R_{N}^{\varepsilon} \stackrel{\text { def }}{=} \prod_{n=0}^{N} \xi_{n, n+1}$ and $\xi_{i j}=\exp ^{-\frac{\left|x_{i}-x_{j}\right|^{2}}{2 N \varepsilon}}$.

The discretised (in time) problems

We can solve the Lagrangian problems by firstly discretising them in time as follows
Regularized 1st order MFG

$$
\begin{array}{r}
\inf \int_{\Omega^{N+1}} K_{N} d Q_{N}\left(x_{0}, \cdots, x_{N}\right)+\varepsilon \mathcal{H}\left(Q_{N} \mid \mathcal{L}\right)+\sum_{i=1}^{N-1} \int_{\Omega} G\left(x, \pi_{i, \sharp} Q_{N}\right) d x_{i}+F\left(\pi_{N, \sharp} Q_{N}\right) \\
\text { s.t. } Q_{N} \in \mathcal{P}\left(\Omega^{N+1}\right), \pi_{0, \sharp} Q_{N}=\rho_{0},
\end{array}
$$

where $K_{N}=\frac{1}{2 N} \sum_{i=0}^{N-1}\left|x_{i+1}-x_{i}\right|^{2}$ and $\pi_{i}: \Omega^{N+1} \rightarrow \Omega$ is the canonical projection.
2nd order MFG

$$
\inf \left\{\mathcal{H}\left(Q_{N} \mid R_{N}^{\varepsilon}\right)+\sum_{i=1}^{T-1} \int_{\Omega} G\left(x, \pi_{i, \sharp} Q_{N}\right) d x_{i}+F\left(\pi_{N, \sharp} Q_{N}\right) \mid \pi_{0, \sharp} Q_{N}=\rho_{0}\right\},
$$

where $R_{N}^{\varepsilon} \stackrel{\text { def }}{=} \prod_{n=0}^{N} \xi_{n, n+1}$ and $\xi_{i j}=\exp ^{-\frac{\left|x_{i}-x_{j}\right|^{2}}{2 N \varepsilon}}$.

Remarks: (i) for small ε the regularized 1st MFG approximate the unreg pb (ii) both problems can be re-written in the same way.

The discretised (in time) problems

We can solve the Lagrangian problems by firstly discretising them in time as follows
Regularized 1st order MFG

$$
\begin{array}{r}
\inf \int_{\Omega^{N+1}} K_{N} d Q_{N}\left(x_{0}, \cdots, x_{N}\right)+\varepsilon \mathcal{H}\left(Q_{N} \mid \mathcal{L}\right)+\sum_{i=1}^{N-1} \int_{\Omega} G\left(x, \pi_{i, \sharp} Q_{N}\right) d x_{i}+F\left(\pi_{N, \sharp} Q_{N}\right) \\
\text { s.t. } Q_{N} \in \mathcal{P}\left(\Omega^{N+1}\right), \pi_{0, \sharp} Q_{N}=\rho_{0},
\end{array}
$$

where $K_{N}=\frac{1}{2 N} \sum_{i=0}^{N-1}\left|x_{i+1}-x_{i}\right|^{2}$ and $\pi_{i}: \Omega^{N+1} \rightarrow \Omega$ is the canonical projection.
2nd order MFG

$$
\inf \left\{\mathcal{H}\left(Q_{N} \mid R_{N}^{\varepsilon}\right)+\sum_{i=1}^{T-1} \int_{\Omega} G\left(x, \pi_{i, \sharp} Q_{N}\right) d x_{i}+F\left(\pi_{N, \sharp} Q_{N}\right) \mid \pi_{0, \sharp} Q_{N}=\rho_{0}\right\},
$$

where $R_{N}^{\varepsilon} \stackrel{\text { def }}{=} \prod_{n=0}^{N} \xi_{n, n+1}$ and $\xi_{i j}=\exp ^{-\frac{\left|x_{i}-x_{j}\right|^{2}}{2 N \varepsilon}}$.

Remarks: (i) for small ε the regularized 1st MFG approximate the unreg pb (ii) both problems can be re-written in the same way.
IDEA: an alternate coordinate ascent algorithm (equivalent to a generalised Sinkhorn)

Dual formulation

The dual problem

The Lagrangian problem can be re-written as the following dual optimization problem:
$\sup _{\left(\phi_{0}, \cdots, \phi_{N}\right)}-\tilde{F}^{\star}\left(-\phi_{0}\right)-\frac{1}{N} \sum_{k=1}^{N-1} G^{\star}\left(-\phi_{k}\right)-F^{\star}\left(-\phi_{N}\right)-\int\left(\exp \left(\oplus_{k=0}^{N} \phi_{k}\right)-1\right) R_{N}^{\epsilon}$,
where $\tilde{F}^{\star}, G^{\star}$ and F^{\star} are the Legendre transforms of $i_{\rho 0}, G$ and G.

Dual formulation

The dual problem

The Lagrangian problem can be re-written as the following dual optimization problem:
$\sup _{\left(\phi_{\mathbf{0}}, \cdots, \phi_{N}\right)}-\tilde{F}^{\star}\left(-\phi_{0}\right)-\frac{1}{N} \sum_{k=1}^{N-1} G^{\star}\left(-\phi_{k}\right)-F^{\star}\left(-\phi_{N}\right)-\int\left(\exp \left(\oplus_{k=0}^{N} \phi_{k}\right)-1\right) R_{N}^{\epsilon}$,
where $\tilde{F}^{\star}, G^{\star}$ and F^{\star} are the Legendre transforms of $i_{\rho_{0}}, G$ and G.

Proposition ((J.-D. Benamou, G. Carlier, S. Di Marino, and L. Nenna 2018))

Strong duality holds, namely sup $=$ inf.
Moreover, denoting by ϕ_{k}^{\star} and Q_{N}^{\star} the optimal solutions to the dual and primal problem respectively, it follows that the unique solution to the primal has the form

$$
\begin{equation*}
Q_{N}^{\star}\left(x_{0}, \cdots, x_{N}\right):=\left(\otimes_{k=0}^{N} e^{\phi_{k}^{\star}\left(x_{k}\right)}\right) R_{N}^{\varepsilon}\left(x_{0}, \cdots, x_{N}\right) . \tag{3}
\end{equation*}
$$

A coordinate ascent algorithm (or generalised Sinkhorn)

Generalizing a result of (Peyré 2015; Chizat, Peyré, B. Schmitzer, and Vialard 2016), we get the iterative method computing a sequence of potentials (denoted with the superscripts ${ }^{(n)}$) :

$$
\begin{aligned}
& \phi_{0}^{(n)}:=\operatorname{argmax}_{\phi}-\tilde{F}^{\star}(-\phi)-\int \exp (\phi) l_{k}^{\phi} \mathrm{d} x_{1} \cdots \mathrm{~d} x_{N}, \\
& \phi_{k}^{(n)}:=\operatorname{argmax}_{\phi}-\frac{1}{N} G^{\star}(-\phi)-\int \exp (\phi) l_{k}^{\phi} \mathrm{d} x_{0} \cdots \mathrm{~d} x_{k-1} \mathrm{~d} x_{k+1} \cdots \mathrm{~d} x_{N} \text { for } k \neq 0, N, \\
& \phi_{N}^{(n)}:=\operatorname{argmax}_{\phi}-F^{\star}(-\phi)-\int \exp (\phi) l_{k}^{u} \mathrm{~d} x_{0} \cdots \mathrm{~d} x_{N-1},
\end{aligned}
$$

where

$$
I_{k}^{\phi}:=\exp \left(\oplus_{i=0}^{k-1} \phi_{i}^{(n)}\right) \exp \left(\oplus_{i=k+1}^{N} \phi_{i}^{(n-1)}\right) R^{N} .
$$

A coordinate ascent algorithm (or generalised Sinkhorn)

Generalizing a result of (Peyré 2015; Chizat, Peyré, B. Schmitzer, and Vialard 2016), we get the iterative method computing a sequence of potentials (denoted with the superscripts.${ }^{(n)}$) :

$$
\begin{aligned}
& \phi_{0}^{(n)}:=\operatorname{argmax}_{\phi}-\tilde{F}^{\star}(-\phi)-\int \exp (\phi) l_{k}^{\phi} \mathrm{d} x_{1} \cdots \mathrm{~d} x_{N}, \\
& \phi_{k}^{(n)}:=\operatorname{argmax}_{\phi}-\frac{1}{N} G^{\star}(-\phi)-\int \exp (\phi) I_{k}^{\phi} \mathrm{d} x_{0} \cdots \mathrm{~d} x_{k-1} \mathrm{~d} x_{k+1} \cdots \mathrm{~d} x_{N} \text { for } k \neq 0, N, \\
& \phi_{N}^{(n)}:=\operatorname{argmax}_{\phi}-F^{\star}(-\phi)-\int \exp (\phi) l_{k}^{u} \mathrm{~d} x_{0} \cdots \mathrm{~d} x_{N-1},
\end{aligned}
$$

where

$$
I_{k}^{\phi}:=\exp \left(\oplus_{i=0}^{k-1} \phi_{i}^{(n)}\right) \exp \left(\oplus_{i=k+1}^{N} \phi_{i}^{(n-1)}\right) R^{N} .
$$

Remarks:

- For many interesting energies F and G, the relaxed maximizations can be computed point-wise in space and analytically;

A coordinate ascent algorithm (or generalised Sinkhorn)

Generalizing a result of (Peyré 2015; Chizat, Peyré, B. Schmitzer, and Vialard 2016), we get the iterative method computing a sequence of potentials (denoted with the superscripts.${ }^{(n)}$) :

$$
\begin{aligned}
& \phi_{0}^{(n)}:=\operatorname{argmax}_{\phi}-\tilde{F}^{\star}(-\phi)-\int \exp (\phi) l_{k}^{\phi} \mathrm{d} x_{1} \cdots \mathrm{~d} x_{N}, \\
& \phi_{k}^{(n)}:=\operatorname{argmax}_{\phi}-\frac{1}{N} G^{\star}(-\phi)-\int \exp (\phi) I_{k}^{\phi} \mathrm{d} x_{0} \cdots \mathrm{~d} x_{k-1} \mathrm{~d} x_{k+1} \cdots \mathrm{~d} x_{N} \text { for } k \neq 0, N, \\
& \phi_{N}^{(n)}:=\operatorname{argmax}_{\phi}-F^{\star}(-\phi)-\int \exp (\phi) l_{k}^{u} \mathrm{~d} x_{0} \cdots \mathrm{~d} x_{N-1},
\end{aligned}
$$

where

$$
I_{k}^{\phi}:=\exp \left(\oplus_{i=0}^{k-1} \phi_{i}^{(n)}\right) \exp \left(\oplus_{i=k+1}^{N} \phi_{i}^{(n-1)}\right) R^{N} .
$$

Remarks:

- For many interesting energies F and G, the relaxed maximizations can be computed point-wise in space and analytically;
- with the same method one can compute dynamic optimal transport by imposing $G=0$ and $F=i_{\rho_{1}}$

Sinkhornizing the world!!

- Wasserstein Barycenter (Jean-David Benamou, Guillaume Carlier, Cuturi, Luca Nenna, and Peyré 2015);
- Matching for teams (Luca Nenna 2016);
- Optimal transport with capacity constraint (Jean-David Benamou, Guillaume Carlier, Cuturi, Luca Nenna, and Peyré 2015);
- Partial Optimal Transport (Jean-David Benamou, Guillaume Carlier, Cuturi, Luca Nenna, and Peyré 2015; Chizat, Peyré, B. Schmitzer, and Vialard 2016);
- Multi-Marginal Optimal Transport (Luca Nenna 2016; J.-D. Benamou, G. Carlier, and L. Nenna 2016; Jean-David Benamou, Guillaume Carlier, and Luca Nenna 2018; Jean-David Benamou, Guillaume Carlier, Cuturi, Luca Nenna, and Peyré 2015);
- Wasserstein Gradient Flows (JKO) (Peyré 2015);
- Unbalanced Optimal Transport (Chizat, Peyré, B. Schmitzer, and Vialard 2016);
- Cournot-Nash equilibria (Blanchet, Guillaume Carlier, and Luca Nenna 2017)
- Mean Field Games (J.-D. Benamou, G. Carlier, S. Di Marino, and L. Nenna 2018);
- Grand Canonical Optimal transport (Simone Di Marino, Lewin, and Luca Nenna 2022);
- and more...

Dynamic OT

Data:

- $T=32$ time steps;
- grid: uniform discretization of $[0,1]^{2}$ with $N \times N$ points $N=250$;
- Given final density;

Dynamic OT

Data:

- $T=32$ time steps;
- grid: uniform discretization of $[0,1]^{2}$ with $N \times N$ points $N=250$;
- Given final density;

$\varepsilon=1$

Dynamic OT

Data:

- $T=32$ time steps;
- grid: uniform discretization of $[0,1]^{2}$ with $N \times N$ points $N=250$;
- Given final density;

$\varepsilon=1$

Dynamic OT

Data:

- $T=32$ time steps;
- grid: uniform discretization of $[0,1]^{2}$ with $N \times N$ points $N=250$;
- Given final density;

$\varepsilon=1$

Dynamic OT

Data:

- $T=32$ time steps;
- grid: uniform discretization of $[0,1]^{2}$ with $N \times N$ points $N=250$;
- Given final density;

$\varepsilon=1$

Dynamic OT

Data:

- $T=32$ time steps;
- grid: uniform discretization of $[0,1]^{2}$ with $N \times N$ points $N=250$;
- Given final density;

$\varepsilon=1$

Dynamic OT

Data:

- $T=32$ time steps;
- grid: uniform discretization of $[0,1]^{2}$ with $N \times N$ points $N=250$;
- Given final density;

$\varepsilon=1$

Dynamic OT

Data:

- $T=32$ time steps;
- grid: uniform discretization of $[0,1]^{2}$ with $N \times N$ points $N=250$;
- Given final density;

$\varepsilon=1$

Dynamic OT

Data:

- $T=32$ time steps;
- grid: uniform discretization of $[0,1]^{2}$ with $N \times N$ points $N=250$;
- Given final density;

$\varepsilon=1$

Planning MFG with obstacles on the torus, behaviour as $\varepsilon \rightarrow 0$

Data:

- $T=32$ time steps;
- grid: uniform discretization of $[0,1]^{2}$ with $N \times N$ points $N=250$;
- Given final density + obstacles;

Planning MFG with obstacles on the torus, behaviour as $\varepsilon \rightarrow 0$

Data:

- $T=32$ time steps;
- grid: uniform discretization of $[0,1]^{2}$ with $N \times N$ points $N=250$;
- Given final density + obstacles;

Planning MFG with obstacles on the torus, behaviour as $\varepsilon \rightarrow 0$

Data:

- $T=32$ time steps;
- grid: uniform discretization of $[0,1]^{2}$ with $N \times N$ points $N=250$;
- Given final density + obstacles;

Planning MFG with obstacles on the torus, behaviour as $\varepsilon \rightarrow 0$

Data:

- $T=32$ time steps;
- grid: uniform discretization of $[0,1]^{2}$ with $N \times N$ points $N=250$;
- Given final density + obstacles;

Planning MFG with obstacles on the torus, behaviour as $\varepsilon \rightarrow 0$

Data:

- $T=32$ time steps;
- grid: uniform discretization of $[0,1]^{2}$ with $N \times N$ points $N=250$;
- Given final density + obstacles;

Planning MFG with obstacles on the torus, behaviour as $\varepsilon \rightarrow 0$

Data:

- $T=32$ time steps;
- grid: uniform discretization of $[0,1]^{2}$ with $N \times N$ points $N=250$;
- Given final density + obstacles;

Planning MFG with obstacles on the torus, behaviour as $\varepsilon \rightarrow 0$

Data:

- $T=32$ time steps;
- grid: uniform discretization of $[0,1]^{2}$ with $N \times N$ points $N=250$;
- Given final density + obstacles;

Planning MFG with obstacles on the torus, behaviour as $\varepsilon \rightarrow 0$

Data:

- $T=32$ time steps;
- grid: uniform discretization of $[0,1]^{2}$ with $N \times N$ points $N=250$;
- Given final density + obstacles;

Planning MFG with obstacles on the torus, behaviour as $\varepsilon \rightarrow 0$

Data:

- $T=32$ time steps;
- grid: uniform discretization of $[0,1]^{2}$ with $N \times N$ points $N=250$;
- Given final density + obstacles;

Thank you!

