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Optimal Transport



Optimal Transportation Theory

Let µ, ν ∈ P(Ω), Ω compact subset ofRn, the Optimal Transport (OT)
problem is defined as follows

(MK) Ec(µ, ν) = inf {Ec(γ) | γ ∈ Π(µ,ν)} (1)

where Π(µ, ν) := {γ ∈ P(Ω2)| π1,]γ = µ, π2,]γ = ν} and

Ec(γ) :=

∫
c(x , y)dγ(x , y).

Solution à la Monge: the transport plan γ is deterministic (or à la Monge) if
γ = (Id ,T )]µ where T]µ = ν.

The (MK) problem admits a dual formulation:

sup {J (φ, ψ) | (φ, ψ) ∈ K} . (2)

where

J (φ, ψ) :=

∫
Ω
φdµ(x) +

∫
Ω
ψdν(y)

and K is the set of bounded and continuous functions
φ, ψ such that φ(x) + ψ(y) ≤ c(x , y).
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The three formulations of quadratic Optimal Transport

The static: inf
{∫

X×Y
1
2 |x − y |2dγ | γ ∈ Π(µ, ν)

}

The dynamic (Eulerian), aka the Benamou-Brenier formulation

inf

∫ 1

0

∫
Ω

1
2
|vt |2ρtdxdt s.t. ∂tρt + div(ρtvt) = 0

ρ(0, ·) = µ, ρ(1, ·) = ν

And its "dual"

sup
{∫

Ω

ϕ(1, x)dν −
∫
ϕ(0, x)dµ |∂tϕ+

1
2
|∇ϕ|2 ≤ 0

}
The dynamic (Lagrangian) (C = H1([0, 1]; Ω) and et : [0, 1]→ Ω)

inf

{∫
C

∫ 1

0

1
2
|ω̇|2dtdQ(ω) | Q ∈ P(C), (e0)]Q = µ, (e1)]Q = ν

}
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On geodesics

• Quadratic optimal transport is indeed a distance between probability
measures, aka the W2

2 Wasserstein distance, and (P(Ω),W2) is a metric space;

• Gives a way to compare and
interpolate between probability
measures.
• Consider the optimal solutions for
the three formulations γ?,Q?, ρ?t
then

πt(x , y)]γ
? = (et)]Q

? = ρ?t ,

where πt(x , y) = (1− t)x + ty and
ρt is the geodesic between µ and ν,
the so called McCann’s interpolant.

• Hidden convexity: look at convexity along the Wasserstein geodesics.
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The Schrödinger problem



Regularizing optimal transport

Some (un)related questions:

• Regularization: is there a way to regularize optimal transport (with a generic
cost function) and make it easy to solve ?
• Transporting particles at positive temperature: quadratic optimal transport
gives a way to transport clouds of particles at zero temperature, what happens
if the temperature is positive?
⇒ The Schrödinger problem

Definition (Relative entropy)
Let ρ and π probability measures on Ω then the relative entropy is defined as

H(ρ|π) =


∫

Ω×Ω

(
log
( dρ(x , y)

dπ(x , y)

)
− 1
)
dρ(x , y), if ρ� π

+∞, otherwise,

4
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The three formulations of Schrödinger

The static: inf
{∫

Ω×Ω
1
2 |x − y |2dγ + εH(γ|µ⊗ ν) | γ ∈ Π(µ, ν)

}

The dynamic (Eulerian)

inf

∫ 1

0

∫
Ω

1
2
|vt |2ρtdxdt s.t. ∂tρt − ε∆ρt + div(ρtvt) = 0

ρ(0, ·) = µ, ρ(1, ·) = ν

And its "dual"

sup
{∫

Ω

ϕ(1, x)dν −
∫
ϕ(0, x)dµ |∂tϕ− ε∆ϕ+

1
2
|∇ϕ|2 ≤ 0

}
The dynamic (Lagrangian)

inf {H(Q|Rε) | Q ∈ P(C), (e0)]Q = µ, (e1)]Q = ν}

where Rε is the Wiener measure Rε :=
∫
δx+Bεdx of variance ε.

Remark: static formulation can be defined for a general cost function c(x , y).
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The “bridge” between quadratic Monge-Kantorovich and Schrödinger

• Schrödinger pb is a strictly convex pb
and it admits a unique almost explicit
solution γ? = a(x)b(y)e−c/ε.

• As for OT the solutions of the three
formulation are related. In particular

Q? = Rx,y,ε ⊗ γ?,

where Rx,y,ε is the Schrödinger bridge.
• As ε→ 0 Schrödinger Γ−converges to
optimal transport (Léonard 2012;
Guillaume Carlier, Duval, Peyré, and
Bernhard Schmitzer 2017). This
implies that minimizers converge too!
• It is easy to solve numerically:
Sinkhorn algorithm (we will see it in 15
minutes...if I do not talk too much).

Convergence to optimal
transport solution for
quadratic cost as ε→ 0
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Variational Mean Field Games



Lagrangian formulation for 1st order MFG

Consider a first order MFG system then we have the following “equivalence” (see
(Lasry and Lions 2007))

A MFG system  −∂tϕ+ 1
2 |∇ϕ|

2 = g(x , ρ), ϕ(1, x) = Ψ(x)

∂tρ− div(ρ∇ϕ) = 0, ρ(0, ·) = ρ0.

The (Eulerian) Variational Formulation

inf

∫ 1

0

∫
Ω

(1
2
|vt |2ρt + G(x , ρt)

)
dxdt + F (ρ1) s.t. ∂tρt + div(ρtvt) = 0

ρ(0, ·) = ρ0.

where G is the anti-derivative of g w.r.t its second variable and F (ρ1) =
∫

Ω
Ψdρ1

is a final cost.

The (Lagrangian) Variational Formulation (J.-D. Benamou, G. Carlier, and San-
tambrogio 2017)

inf
Q∈P(C)

{∫
C

∫ 1

0

1
2
|ω̇|2dtdQ +

∫ 1

0
G(et,]Q)dt + F (e1,]Q) | (e0)]Q = ρ0

}
,

where G(ρ) =
∫
G(x , ρ)dx if ρ� L and +∞ otherwise.
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A Lagrangian formulation via Entropy minimization

A MFG system −∂tϕ− ε
2 ∆φ+ 1

2 |∇ϕ|
2 = g(x , ρ), ϕ(1, x) = Ψ(x)

∂tρ− ε
2 ∆ρ− div(ρ∇ϕ) = 0, ρ(0, ·) = ρ0.

The (Eulerian) Variational Formulation (Cardaliaguet, Graber, Porretta, and
Tonon 2015)

inf

∫ 1

0

∫
Ω

(1
2
|vt |2ρt + G(x , ρt)

)
dxdt + F (ρ1) s.t. ∂tρt + div(ρtvt)−

ε

2
∆ρ = 0

ρ(0, ·) = ρ0.

where G is the anti-derivative of g w.r.t its second variable and F (ρ1) =
∫

Ω Ψdρ1
is a final cost.

The (Lagrangian) Variational Formulation (J.-D. Benamou, G. Carlier, S.
Di Marino, and L. Nenna 2018)

inf
Q∈P(C)

{
H(Q|Rε) +

∫ 1

0
G(et,]Q)dt + F (e1,]Q) | (e0)]Q = ρ0

}
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Towards a numerical method:



The discretised (in time) problems

We can solve the Lagrangian problems by firstly discretising them in time as follows

Regularized 1st order MFG

inf

∫
ΩN+1

KNdQN(x0, · · · , xN) + εH(QN |L) +
N−1∑
i=1

∫
Ω

G(x , πi,]QN)dxi + F (πN,]QN)

s.t. QN ∈ P(ΩN+1), π0,]QN = ρ0,

where KN = 1
2N

∑N−1
i=0 |xi+1 − xi |2 and πi : ΩN+1 → Ω is the canonical projection.

2nd order MFG

inf

{
H(QN |RεN) +

T−1∑
i=1

∫
Ω

G(x , πi,]QN)dxi + F (πN,]QN) | π0,]QN = ρ0

}
,

where RεN
def
=
∏N

n=0 ξn,n+1 and ξij = exp
−
|xi − xj |2

2Nε .

Remarks: (i) for small ε the regularized 1st MFG approximate the unreg pb (ii) both
problems can be re-written in the same way.
IDEA: an alternate coordinate ascent algorithm (equivalent to a generalised Sinkhorn)
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Dual formulation

The dual problem
The Lagrangian problem can be re-written as the following dual optimization
problem:

sup
(φ0,··· ,φN )

−F̃ ?(−φ0)− 1
N

N−1∑
k=1

G?(−φk)−F ?(−φN)−
∫ (

exp(⊕N
k=0φk)− 1

)
RεN ,

where F̃ ?, G? and F ? are the Legendre transforms of iρ0 , G and G .

Proposition ((ibid.))
Strong duality holds, namely sup = inf.
Moreover, denoting by φ?k and Q?

N the optimal solutions to the dual and
primal problem respectively, it follows that the unique solution to the primal
has the form

Q?
N(x0, · · · , xN) :=

(
⊗N

k=0e
φ?
k (xk )

)
RεN(x0, · · · , xN). (3)
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A coordinate ascent algorithm (or generalised Sinkhorn)

Generalizing a result of (Peyré 2015; Chizat, Peyré, B. Schmitzer, and Vialard
2016), we get the iterative method computing a sequence of potentials
(denoted with the superscripts .(n)) :

φ
(n)
0 := argmaxφ − F̃ ?(−φ)−

∫
exp(φ)Iφk dx1 · · · dxN ,

φ
(n)
k := argmaxφ −

1
N
G?(−φ)−

∫
exp(φ)Iφk dx0 · · · dxk−1dxk+1 · · · dxN for k 6= 0,N,

φ
(n)
N := argmaxφ − F ?(−φ)−

∫
exp(φ)I uk dx0 · · · dxN−1,

where
Iφk := exp(⊕k−1

i=0 φ
(n)
i ) exp(⊕N

i=k+1φ
(n−1)
i )RN .

Remarks:
• For many interesting energies F and G , the relaxed maximizations can be
computed point-wise in space and analytically;
• with the same method one can compute dynamic optimal transport by
imposing G = 0 and F = iρ1
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Sinkhornizing the world!!

• Wasserstein Barycenter (Jean-David Benamou, Guillaume Carlier, Cuturi,
Luca Nenna, and Peyré 2015);

• Matching for teams (Luca Nenna 2016);
• Optimal transport with capacity constraint (Jean-David Benamou,
Guillaume Carlier, Cuturi, Luca Nenna, and Peyré 2015);

• Partial Optimal Transport (Jean-David Benamou, Guillaume Carlier, Cuturi,
Luca Nenna, and Peyré 2015; Chizat, Peyré, B. Schmitzer, and Vialard
2016);

• Multi-Marginal Optimal Transport (Luca Nenna 2016; J.-D. Benamou,
G. Carlier, and L. Nenna 2016; Jean-David Benamou, Guillaume Carlier, and
Luca Nenna 2018; Jean-David Benamou, Guillaume Carlier, Cuturi,
Luca Nenna, and Peyré 2015);

• Wasserstein Gradient Flows (JKO) (Peyré 2015);
• Unbalanced Optimal Transport (Chizat, Peyré, B. Schmitzer, and Vialard
2016);

• Cournot-Nash equilibria (Blanchet, Guillaume Carlier, and Luca Nenna 2017)
• Mean Field Games (J.-D. Benamou, G. Carlier, S. Di Marino, and L. Nenna
2018);

• Grand Canonical Optimal transport (Simone Di Marino, Lewin, and
Luca Nenna 2022);

• and more...
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Dynamic OT

Data:
• T = 32 time steps;
• grid: uniform discretization of [0, 1]2 with N × N points N = 250;
• Given final density;

ε = 1 ε = 0.0005
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Planning MFG with obstacles on the torus, behaviour as ε → 0

Data:
• T = 32 time steps;
• grid: uniform discretization of [0, 1]2 with N × N points N = 250;
• Given final density + obstacles;

ε = 1 ε = 0.01

Thank you!
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