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Integro-differential models of evolutionary adaptation in changing environments

Introduction

Motivating example 1:
Earth’s temperature changes (increase and oscillations)
• Under which conditions can species adapt to (and survive) an
environmental shift ?
• How the oscillations of an environment impact the adaptation to
a gradual change?
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Introduction

Motivating example 2:
The influence of fluctuating temperature on bacteria

Bacteria Serratia marcesens evolved
in fluctuating temperature (daily
variation between 24◦C and 38◦C,
mean 31◦C), outperforms the strain
that evolved in constant environ-
ments (31◦C).

Figure from: Ketola et al. 2013

• What is the impact of an oscillating environment on the
phenotypic distribution of a population ?
• Is it possible that evolving in a periodic environment would lead
to a more performant population?
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Introduction

How to model the evolutionary dynamics of quantitative
traits?

Different mechanisms contribute to the evolution of quantitative
traits. Here, we consider:

asexual reproduction: offspring arise from a single organism
heredity: transmission of the ancestral trait to the offspring
mutation: generates variability in the trait values
selection: individuals with better ability will spread through the
population over time
competition for limited resources, leading to a bounded
population size

Main question: predict evolutionary and demographic outcomes
depending on the trade-offs between these mechanisms.
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A classical model considering a homogeneous evironment
Continuum of alleles model (Kimura 1965, Champagnat, Ferrière and
Méléard 2008):

∂tm(t, z) =

∫
b(y)G (y − z)m(t, y)dy︸ ︷︷ ︸

mutation

+ m(t, z)R(z , I (t))︸ ︷︷ ︸
selection & competition

,

I (t) =

∫
Rd

ψ(y)m(t, y)dy︸ ︷︷ ︸
Environment feedback

, (t, z) ∈ R+ × Rd .

Competition modeled through I (t): R(z , I ) decreasing w.r.t. I

Positive contribution of all traits to the competition:

0 < C1 ≤ ψ(z) ≤ C2.
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Examples of growth rate R

Example 1: logistic growth

R(z , I ) = r(z)− κI , I (t) =

∫
Rd

m(t, y)dy , ψ(z) ≡ 1.

Example 2: chemostat
(considering fast dynamics for the nutrient)

R(z , I ) =
Sinψ(z)

d + I (t)
− d .

d : renewing rate in the chemostat Sin : fresh nutrient income rate

ψ(z): nutrient uptake rate for individuals of trait z
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An alternative model: diffusive approximation

When the mutations are rather frequent but with small
effects, the mutation term can be approximated by a Laplace term
(Kimura 1965, Burger 2000, Champagnat, Ferrière and Méléard 2008)

∂tm(t, z) = σ∆m + m(t, z)R(z , I (t))

I (t) =
∫
Rd ψ(x)m(t, y)dy , (t, z) ∈ R+ × Rd .

(considering constant birth rate with mutations )
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Introduction

Let’s focus on a simple model including the important
features



∂
∂tm − σ

∂2

∂z2m︸ ︷︷ ︸
mutations

= m
(
R(e, z)︸ ︷︷ ︸

growth rate
(selection)

− κM︸︷︷︸
competition

)
,

M(t) =
∫
R m(t, y) dy , m(t = 0, ·) = m0(·).

z : phenotypic trait (∈ R)
m(t, z): density of trait z
R(e, z): growth rate
e: environment state

M(t): size of the population
κ: intensity of the competition
σ: mutation effective size
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Example of growth rate

R(e, z) = r(e)︸︷︷︸
maximal growth rate

− s(e)︸︷︷︸
selection pressure

(z − θ(e)︸︷︷︸
optimal trait

)2

Examples of time varying environment:
Shifting environment: R(e(t), z) = R(z − ct) (in the
example above : θ(e(t)) = θ0 + ct.

Oscillating environment: R(e, z), with e(t) a periodic
function.

Shifting and oscillating: R(e(t), z) = R(e(t), z − ct), with
e(t) a periodic function.

Piecewise constant environment: e(t) = ei , for
ti ≤ t ≤ ti+1.
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Some references
My lectures are based on: Figueroa Iglesias–M. (2018-2021),
Costa–Etchegaray–M. (2021)

• The Hamilton-Jacobi approach:
Diekmann et al. (2005), Perthame–Barles (2008), Lorz–M.–Perthame
(2011),...

• Related works on time-varying environments:
Lynch et al. (1991), Lynch–Lande (1993), Burger–Lynch (1995),
Lande–Shannon (1996), Kopp–Matuszewski (2014)
(assumptions: quadratic stabilizing selection:
R(e, z) = rmax − s(z − θ(e))2, Gaussian phenotypic distribution, the
environment change acts only on the optimum)
M.–Perthame–Souganidis (2015), Roques et al. (2020), Garnier et al.
(preprint 2022)
Cancer therapy optimisation: Lorenzi et al. (2015), Almeida et al.
(2019) Carrère and Nadin (2020)
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A shifting environment


∂
∂tm − σ

∂2

∂z2m︸ ︷︷ ︸
mutations

= m
(
R(z − ct)︸ ︷︷ ︸
growth rate

− κM︸︷︷︸
competition

)
,

M(t) =
∫
R m(t, y) dy , m(t = 0, ·) = m0(·), z ∈ R.

Density in the moving framework: n(t, z) = m(t, z + ct):
∂
∂t n − c ∂

∂z n − σ
∂2

∂z2
n = n

(
R(z)− κN

)
,

N(t) =
∫
R n(t, y) dy .
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A shifting environment

Assumptions

R(z) is smooth.

R(z)→ −∞ as |z | → +∞.

There exists a unique zm ∈ R such that

max
z∈R

R(z) = R(zm) > 0.

There exists a unique z < zm such that

R(z) +
c2

4σ
= R(zm).
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A shifting environment

The long time behavior

An eigenvalue problem with c = 0

An eigenvalue problem, by linearization and taking c = 0:{
−σ ∂2

∂z2
pσ,0 − R(z)pσ,0 = λσ,0pσ,0, pσ,0 ∈ L2(R).

‖pσ,0‖L2 = 1.

Recall: R(z) bounded from above and R(z)→ −∞ as |z | → +∞

⇒ operator with compact resolvent

⇒ Krein-Rutman Theorem implies the existence of a unique
principal eigenpair (λσ,0, pσ,0) with pσ,0 > 0.
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A shifting environment

The long time behavior

An eigenvalue problem with c > 0 −c
∂
∂z pσ,c − σ

∂2

∂z2
pσ,c − R(z)pσ,c = pσ,cλσ,c ,

pσ,c > 0, ‖pσ,c‖L2 = 1.

Equivalence between the eigenpairs of this operator with the one
with no drift term:

Liouville transformation:

q(z) = pσ,c(z)e
c
2σ z .

−σ ∂2

∂z2 q − R(z)q = q
(
− c2

4σ
+ λσ,c

)
,

λσ,c = λσ,0 +
c2

4σ
.
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A shifting environment

The long time behavior

Critical speed for survival
Define the critical speed :

cσ =

{
2
√
−σλσ,0, if λσ,0 < 0

0, otherwise.

Theorem

(i) c ≥ cσ: N(t)→ 0 as t →∞.

(ii) c < cσ: n(t, ·) converges to nσ(z) = Nσ
pσ,c (z)∫
pσ,c (y)dy

with
(pσ,c , λσ,c) the principal eigenpair:{

−c ∂
∂z pσ,c − σ

∂2

∂z2
pσ,c = pσ,c

(
R(z) + λσ,c

)
,

pσ,c > 0,

and

Nσ = −λσ,c/κ = −(λσ,0 +
c2

4σ
)/κ.
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The long time behavior

The main elements of the proof

Main elements: we prove separately convergence of N and n
N

convergence of n
N to pσ,c (z)∫

pσ,c (y)dy

if λσ,c > 0: N → 0 (extinction)

if λσ,c < 0 convergence of N to N =
−λσ,c
κ

Notation: In what follows we replace nσ and Nσ by nσ and Nσ.
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A shifting environment

Qualitative study of the steady state

How to characterize cσ and nσ ?

Assumption: mutations with small effects

σ = ε2, ε << 1.

With this scaling one can show that

λε,0 = O(1) ⇒ cε = O(ε).

⇒ small genetic variance of order ε induced by mutations
⇒ slow evolutionary dynamics of order εt
⇒ adaptation only to environments that vary slowly
We rescale the problem (c → εc , cε → εcε):

−εc ∂
∂z nε − ε

2 ∂2

∂z2
nε = nε[R(z)− κNε],

Nε =

∫
R
nε(y)dy .
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A shifting environment

Qualitative study of the steady state

Concentration around a trait behind the optimum

The population follows the optimum with a constant lag:

Theorem

Let c < c := 2
√
R(zm). Then, as ε→ 0,

nε(z)−−⇀ R(z)

κ
δ(z − z).

In the original problem before the translation (and in long time)

mε(t, z) ≈ R(z)

κ
δ(z − z − ε ct).
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A shifting environment

Qualitative study of the steady state

Recall: z the unique point such that R(z) + c2

4 = R(zm) and
z < zm.
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A shifting environment

Qualitative study of the steady state

Main ingredient: a logarithmic transformation

Hopf-Cole transformation :

nε(z) =
1√
2πε

exp
(uε(z)

ε

)
.

We expect that

uε(z) = u(z) + εv(z) + o(ε).

Idea: to unfold the singularity of the phenotypic density.
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Qualitative study of the steady state

Replacing the Hopf-Cole transformation in the equation on nε:

−c ∂
∂z

uε − ε
∂2

∂z2 uε − |
∂

∂z
uε|2 = R(z)− κNε.

⇓

−ε ∂
2

∂z2 uε −
∣∣∣∣ ∂∂z uε +

c

2

∣∣∣∣2 = R(z)− κNε −
c2

4
.
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Qualitative study of the steady state

Asymptotic behavior of uε
Proposition

(i) Assume that c < c . Then, as ε→ 0 and along subsequences,
Nε → N0 and uε(z) converges locally uniformly to a function
u(z) ∈ C (R), a viscosity solution to

−
∣∣∣∣ ∂∂z u +

c

2

∣∣∣∣2 = R(z)− κN0 − c2

4 , z ∈ R,

maxz∈R u(z) = 0.

(Pu)

(ii) nε converges in the weak sense of measures to a measure n with

supp n(z) ⊂ {z |u(z) = 0}.
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Qualitative study of the steady state

The inclusion property

By integrating the equation on nε we obtain

‖nε‖L1(R) = Nε ≤ max
z∈R

R(z),

⇒ nε converges, along subsequences and in the weak sense of
measures to a measure n with

supp n(z) ⊂ {z |u(z) = 0}.

Elements of the proof on the board.
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Qualitative study of the steady state

Uniqueness and identification of u

Proposition

The viscosity solution of (Pu) is unique and it is indeed a classical
solution given by

u(z) =
c

2
(z−z)+

∫ zm

z

√
R(zm)− R(y)dy−

∣∣∣∣∫ z

zm

√
R(zm)− R(y)dy

∣∣∣∣ .
Moreover, N0 = R(z)/κ.

Recall: zm the maximum point of R and z the unique point such
that R(z) + c2

4 = R(zm) and z < zm.

Remark: maxz u(z) = u(z) = 0 ⇒ supp n = {z}.
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Qualitative study of the steady state

Main ingredients
Define

ψ(z) = u(z) +
c

2
z .

Then,

− |∂zψ|2 = R(z)− κN0 −
c2

4
=: f (z).

We have

f (z) ≤ 0, and f attains a strict maximum at zm.

The viscosity solution to{
− |∂zψ|2 = f (z), z ∈ (a, b)

f (z) < 0, z ∈ (a, b)

can be explicitly identified by its values at the boundary.
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Qualitative study of the steady state

Let A >> |zm|.
For all z ∈ (−A, zm):

ψ(z) = max

{
ψ(−A)−

∣∣∣∣∫ z

−A

√
−f (y)dy

∣∣∣∣ ;ψ(zm)−
∣∣∣∣∫ z

zm

√
−f (y)dy

∣∣∣∣} ,
and for all z ∈ (zm,A):

ψ(z) = max

{
ψ(A)−

∣∣∣∣∫ z

A

√
−f (y)dy

∣∣∣∣ ;ψ(zm)−
∣∣∣∣∫ z

zm

√
−f (y)dy

∣∣∣∣} .
Note that

−f (z) = −R(z)− κN0 −
c2

4
→ +∞, as |z | → ∞,

ψ(±A) = u(±A)± c

2
A ≤ c

2
A.

Therefore, the first terms in the maximum operators tend to −∞
as A→ +∞.
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Qualitative study of the steady state

We deduce that

ψ(z) = ψ(zm)−
∣∣∣∣∫ z

zm

√
−f (y)dy

∣∣∣∣ .
or equivalently

u(z) = u(zm) +
c

2
(zm − z)−

∣∣∣∣∫ z

zm

√
R(zm)− R(y)dy

∣∣∣∣ .

This also implies that

f (zm) = R(zm)− κN0 −
c2

4
= 0, ⇒ κN0 = R(zm)− c2

4
.

u(zm) =?
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Qualitative study of the steady state

Identification of the maximum point of u
Note that

max
z

u(z) = u(z∗) = 0.

From the equation on u we obtain that

R(z∗) = R(zm)− c2

4
.

Moreover, from the expression of u(z):

max
z

u(z) = u(z∗) = u(zm) +
c

2
(zm − z∗)−

∣∣∣∣∣
∫ z∗

zm

√
−f (y)dy

∣∣∣∣∣ ≥ u(zm).

and hence
z∗ ≤ zm.

These two properties lead to

z∗ = z .
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A shifting environment

Qualitative study of the steady state

Identification of u

We deduce that

u(z) = u(zm) +
c

2
(zm − z∗)−

∣∣∣∣∣
∫ z∗

zm

√
−f (y)dy

∣∣∣∣∣ = 0.

and hence

u(zm) = −c

2
(zm − z) +

∣∣∣∣∫ z

zm

√
−f (y)dy

∣∣∣∣ .
This leads to the formula on u(z) and completes the proof.
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More precise approximation of the population size and the
survival threshold

Theorem

Nε = −λc,ε/κ =
(
R(zm)− c2

4
)
/κ− ε

√
−R ′′(zm)/2

κ
+ o(ε),

cε = 2
√
R(zm)− ε

√
− R ′′(zm)

2R(zm)
+ o(ε).

These approximations come from the harmonic approximation of
the ground state energy of the Schrodinger operator.
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Qualitative study of the steady state

Going to the next order approximation of uε

We expect that

uε(z) = u(z) + εv(z) + o(ε),

which leads to a more precise approximation of the phenotypic
density for nonzero ε

nε ≈
1√
2πε

exp
(u(z) + εv(z) + o(1)

ε

)
.
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Moments of the population distribution: notations
Size of the population at equilibrium:

Nε =

∫
R
nε(z)dz .

Mean phenotypic trait:

µε =
1
Nε

∫
R
z nε(z)dz .

Variance of the phenotypic distribution:

vε =
1
Nε

∫
R

(z − µε)2nε(z)dz

Third order central moment of the phenotypic distribution:

ψε,0 =
1

Nε,0

∫
(z − µε)3 nε(z)dz).
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Analytic approximation of the moments

We can approximate the moments of the phenotypic distribution
using the Laplace’s method of integration:

Assume that f has a single maximum point at the point z0 and
that f ′′(z0) < 0. Then,

limε→0

∫ b
a e

f (z)
ε dz√

2πε
|f ′′(z0)| e

f (z0)
ε

= 1.
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Biological applications

Analytic approximation of the moments
Taylor expansions for u and v :

u(z) = −A

2
(z − z)2 + B(z − z)3 + O(z − z)4,

v(z) = C + D(z − z) + O(z − z)2.

Then 

µε = 1
Nε

∫
znε(z)dz = z + ε(3B

A2 + D
A ) + o(ε),

vε = 1
Nε

∫
(z − µε)2 nε(z)dz = ε

A + o(ε),

ψε = 1
Nε

∫
(z − µε)3 nε(z)dz = 6B

A3 ε
2 + o(ε2).
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Analytic approximation of the moments

Main ingredient:∫
(z − z0)knε(z)dz

= ε
k
2
√
AN0√
2π

∫
R(yke−

A
2 y

2(
1 +
√
ε(By3 + Dy) + O(ε)

)
dy

= ε
k
2N0

(
ωk( 1

A) +
√
ε
(
Bωk+3( 1

A) + Dωk+1( 1
A)
))

+ O(ε
k+2
2 ).

ωk(v): k-th order central moment of a Gaussian distribution with
variance v .
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The example of quadratic growth rate

R(z) = r − s(z − θ)2.



Nε = r − c2/4︸︷︷︸
load due to

environmental shift

− ε
√
s︸︷︷︸

mutation load

+ o(ε),

µε = θ − c/(2
√
s)︸ ︷︷ ︸

phenotypic lag due to environmental shift

+ o(ε),

vε = ε√
s

+ o(ε), ψε = o(ε2),

cε = 2
√
r −

√
s
r ε+ o(ε).

A strong selection pressure reduces the phenotypic lag but also
leads to a lower threshold of speed of environmental change above
which the population goes extinct.
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Non-confining growth rates R
We have made the assumption:

R(z)→ −∞, as |z | → ∞.
This assumption was made to guarantee the existence of a
principal eigenpair.

This assumption may be relaxed to consider bounded growth rates:

∃ L >> 1, δ > 0, such that

R(z) + δ ≤ R(zm)− c2

4
, for all |z | ≥ L.

Then, for ε small enough, there exists a principal eigenpair and all
the theory above applies (Figueroa Iglesias–M. 2021).
Question: what happens as c approaches the threshold ccrit such
that

minR(z) = R(zm)− c2
crit
4

?

36 / 90



Integro-differential models of evolutionary adaptation in changing environments

A shifting environment

Biological applications

Non-confining growth rates R
We have made the assumption:

R(z)→ −∞, as |z | → ∞.
This assumption was made to guarantee the existence of a
principal eigenpair.
This assumption may be relaxed to consider bounded growth rates:

∃ L >> 1, δ > 0, such that

R(z) + δ ≤ R(zm)− c2

4
, for all |z | ≥ L.

Then, for ε small enough, there exists a principal eigenpair and all
the theory above applies (Figueroa Iglesias–M. 2021).

Question: what happens as c approaches the threshold ccrit such
that

minR(z) = R(zm)− c2
crit
4

?

36 / 90



Integro-differential models of evolutionary adaptation in changing environments

A shifting environment

Biological applications

Non-confining growth rates R
We have made the assumption:

R(z)→ −∞, as |z | → ∞.
This assumption was made to guarantee the existence of a
principal eigenpair.
This assumption may be relaxed to consider bounded growth rates:

∃ L >> 1, δ > 0, such that

R(z) + δ ≤ R(zm)− c2

4
, for all |z | ≥ L.

Then, for ε small enough, there exists a principal eigenpair and all
the theory above applies (Figueroa Iglesias–M. 2021).
Question: what happens as c approaches the threshold ccrit such
that

minR(z) = R(zm)− c2
crit
4

?
36 / 90



Integro-differential models of evolutionary adaptation in changing environments

A shifting environment

Biological applications

Example of non-confining growth rate and
evolutionary tipping points

R(z) =
r

2
(1 + e−s(z−zm)

2
).

R(zm) = r , min
z

R(z) = r/2.

ccrit =
√
2r .

How the moments of the phenotypic distribution behave as
c → ccrit?

z → −∞, A→ 0,
3B
A2 +

D

A
→ −∞, 6B

A3 → −∞.
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Example of non-confining growth rate and evolutionary
tipping points

As c → ccrit: 
Nε → r/2
µε → −∞
vε → +∞
ψε → −∞

With environment change speed c < ccrit positive population size.

At the speed ccrit the phenotypic lag diverges and the population
collapses suddenly.

This is called an evolutionary tipping point.

(Discussed in Garnier et al. 2022)
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The influence of fluctuating temperature on bacteria

Bacteria Serratia marcesens evolved
in fluctuating temperature (daily
variation between 24◦C and 38◦C,
mean 31◦C), outperforms the strain
that evolved in constant environ-
ments (31◦C).

Figure from: Ketola et al. 2013

• What is the impact of an oscillating environment on the
phenotypic distribution of a population ?
• Is it possible that evolving in a periodic environment would lead
to a more performant population?
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A periodic environment


∂
∂t n − σ

∂2

∂z2 n︸ ︷︷ ︸
mutations

= n
(
R(e(t), z)︸ ︷︷ ︸
growth rate

− κN︸︷︷︸
competition

)
,

N(t) =
∫
R n(t, y) dy , n(t = 0, ·) = n0(·), z ∈ R.

e : R+ → R, T -periodic.

Example:

R(e, z) = r(e)︸︷︷︸
maximal growth rate

− s(e)︸︷︷︸
selection pressure

(z − θ(e)︸︷︷︸
optimal trait

)2
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Assumptions

R is smooth and bounded from above

R takes small values for large z .

Notation:

R(z) =
1
T

∫ T

0
R(e(t), z)dt.

There exists a unique zm ∈ R such that

max
z∈R

R(z) = R(zm) > 0.
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The long time behavior

An eigenvalue problem

There exists a unique pair (λσ, pσ):
∂
∂t pσ(t, z)− σ ∂2

∂z2
pσ(t, z)− R(e(t), z)pσ(t, z) = λσpσ(t, z),

pσ(t, z) = pσ(t + T , z), pσ > 0, .

(λσ, pσ): the principal eigenpair.

If R(z)→ −∞ as |z | → +∞, the operator is with compact
resolvent and one can apply the Krein-Rutman theorem.

One can relax this assumption as before to consider finite
growth rates.
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The long time behavior

Proposition (Figueroa Iglesias and M. 2018 )

(i) If λσ ≥ 0: N(t)→ 0 as t →∞.

(ii) If λσ < 0: n(t, ·) converges to the unique positive solution to
∂
∂t np,σ − σ

∂2

∂z2
np,σ = np,σ

(
R(e, z)− κNp,σ

)
,

Np,σ(t) =
∫
R np,σ(t, y) dy , np,σ(t + T , z) = np,σ(t, z).
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The long time behavior

Main elements

Qσ(t) =

∫
Rd R(e(t), z)pσ(t, z)dz∫

Rd pσ(t, z)dz
, Pσ(t, z) =

pσ(t, z)∫
Rd pσ(t, y)dy

.

(i)
∥∥∥∥n(t, x)

N(t)
− P(t, x)

∥∥∥∥
L∞
−→ 0, as t →∞ .

(ii) If λσ ≥ 0, N(t)→ 0, as t →∞.

(iii) If λσ < 0, |N(t)−Np,σ(t)| → 0, with Np,σ the unique solution
to 

N ′p,σ(t) = Np,σ(t) [Qσ(t)− κNp,σ(t)] , t ∈ (0,T ),

Np,σ(0) = Np,σ(T ).
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A periodic environment

Qualitative study of the periodic solution

How to characterize the periodic solution np,σ ?

Assumption: mutations with small effects

σ = ε2, ε << 1.

Objective: to characterize the solution to
∂
∂t np,ε − ε

2 ∂2

∂z2
np,ε = np,ε

(
R(e, z)− κNp,ε

)
,

Np,ε(t) =
∫
R np,ε(t, y) dy , np,ε(t + T , z) = np,ε(t, z).
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A periodic environment

Qualitative study of the periodic solution

Asymptotic behavior of the population density
Let Np(t) be the unique solution to

N ′p(t) = Np(t) [R(e(t), zm)− κNp(t)] , t ∈ (0,T ),

Np(0) = Np(T ).

Theorem (Figueroa Iglesias and M. 2018)

As ε→ 0,
‖Np,ε(t)− Np(t)‖L∞ → 0,

and
np,ε(t, z)− Np(t)δ(z − zm) ⇀ 0,

weakly in the sense of measures.
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A periodic environment

Qualitative study of the periodic solution

Main ingredients

Hopf-Cole transformation:

np,ε(t, z) =
1√
2πε

exp
(up,ε(t, z)

ε

)
.

Replacing the Hopf-Cole transformation in the equation on np,ε:

1
ε
∂tup,ε − ε∂zzup,ε = |∂zup,ε|2 + R(e(t), z)− κNp,ε(t).

Expected asymptotic expansions, with T -periodic coefficients:

up,ε(t, z) = u(t, z) + εv(t, z) + o(ε), Np,ε(t) = N(t) + εK (t) + o(ε).
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A periodic environment

Qualitative study of the periodic solution

Heuristic computations

Substituting the expansions into the equation and regrouping by
powers of ε:
Terms of order ε−1:

∂tu(t, z) = 0, u(t, z) = u(z).

Terms of order ε0:

∂tv(t, z) = |∂zu|2 + R(e(t), z)− κN(t).

Computing the time average of the equation in [0,T ]:

0 = |∂zu|2 + R(z)− κN.
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A periodic environment

Qualitative study of the periodic solution

Asymptotic behavior of u
Let

N =
1
T

∫ T

0
Np(s)ds.

Proposition

(i) up,ε(t, z) converges locally uniformly to u(z) the unique
viscosity solution to{

−
∣∣ ∂
∂z u(z)

∣∣2 = R(z)− κN,
max u(z) = 0.

(HJ)

(ii) Moreover, np,ε
Np,ε

converges in the sense of measures to fp, with fp
such that

supp fp(t, ·) ⊂ {u(z) = 0}.
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A periodic environment

Qualitative study of the periodic solution

Uniqueness and identification of u

Proposition (Figueroa Iglesias, M. 2018)

The viscosity solution of (HJ) is unique and it is indeed a classical
solution given by

u(z) = −
∣∣∣∣∫ z

zm

√
R(zm)− R(y)dy

∣∣∣∣ .
Recall: zm the maximum point of R

Remark: zm the unique maximum point of u ⇒ supp n = {zm}.
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Qualitative study of the periodic solution

Going to the next order approximation of uε

We expect that

uε(z) = u(z) + εv(z) + o(ε),

which leads to a more precise approximation of the phenotypic
density for nonzero ε

nε ≈
1√
2πε

exp
(u(z) + εv(z) + o(1)

ε

)
.
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Biological applications

Moments of the phenotypic distribution
Average size of the population over a period of time:

Np,ε =
1
T

∫ T

0
Np,ε(t)dt

Mean phenotypic trait:

µp,ε(t) =
1

Np,ε(t)

∫
R
z np,ε(t, z)dz , µp,ε =

1
T

∫ T

0
µp,ε(t)dt.

Variance of the phenotypic distribution:

vp,ε(t) =
1

Np,ε

∫
R

(z − µp,ε)2np,ε(t, z)dz

Mean fitness in an environment with constant state e:

Fp,ε(e) =

∫
R
R(e, z)

1
T

∫ T

0

np,ε(t, z)

Np,ε(t)
dtdz
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Biological case study 1: Fluctuating optimal trait

R(e, z) = rmax − s(z − θ(e))2, θ(e) = e, e(t): periodic,

κ = 1.
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z
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-2

-1

0

1

2

3

4

5

6
R

Define

θ̄ =
1
T

∫ T

0
θ(e(s))ds, Vθ =

1
T

(∫ T

0
θ2(e(t))dt − θ̄2

)
.
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The effect of a fluctuating optimal trait

Np,ε = rmax − sVθ︸︷︷︸
load due to
fluctuations

− ε
√
s︸︷︷︸

mutation load

+ o(ε),

The fluctuations of the optimal trait reduce the population size.

Next order moments:

µp,ε(t) = θ̄ + εD(t) + o(ε), vp,ε(t) =
ε√
s

+ o(ε2),

D: periodic and of average 0

Example: Let e(t) = d sin
(
2πt/b

)
, then

µp,ε(t) =
εdb
√
s

π
sin
(2π
b

(t − b/4)
)

+ o(ε).
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Biological applications

The mean phenotypic trait follows the oscillations of the
optimal trait with a delay and a small amplitude

R(e, x) = 2− (x − θ(e))2, θ(e) = e, e(t) = sin(2πt), ε = 0.01.
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Left: comparison between the analytical and the numerical
approximations of the moments of the phenotypic density.
Right: comparison between the mean phenotypic trait and the (rescaled)
optimal trait.
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The effect of a fluctuating optimal trait on the mean fitness

Mean fitness of the population when placed at environment ē:

Fp,ε(ē) = r − ε
√
s − s

T

∫ T

0
(µp,ε(t)− θ(ē))2dt︸ ︷︷ ︸

load due to maldaptation

+ o(ε).

Recall: mean fitness of a population evolved in the constant
environment ē:

F0,ε(ē) = r − ε
√
s + o(ε).

The fluctuations of the optimal trait are not beneficial for
the mean fitness of the population.
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Biological applications

Biological case study 2: Fluctuating selection pressure

R(e, z) = rmax − s(e)z2 + O(z4), s(e) = e, e(t) > 0: periodic,

κ = 1.
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Define

s =
1
T

∫ T

0
s
(
e(τ)

)
dτ.
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Biological applications

The effect of a fluctuating selection pressure
The size of a population evolved in the changing environment :

Np,ε = rmax − ε
√
s︸︷︷︸

mutation load

+ o(e).

The size of a population evolved in a constant environment ē:

N0,ε = rmax − ε
√
s(e)︸ ︷︷ ︸

mutation load

+ o(e).

Depending on whether s < s(ē) or s > s(ē), the fluctuations
of the selection pressure may increase or decrease the
population size.
Next order moments:

µp,ε(t) = o(ε), vp,ε(t) =
ε√
s

+ o(ε).
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N0,ε = rmax − ε
√
s(e)︸ ︷︷ ︸

mutation load

+ o(e).
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The fluctuations of the selection pressure may increase or
decrease the phenotypic variance

R(e, z) = 2− s(e)z2, s(e) = e, ε = 0.01.

Dynamics of the phenotypic
density over 2 periods of e.
e(t) = 1.5 + cos(2πt)
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Black curve: constant env. s = 1.5
Blue curve: periodic env. s = 1
Red curve: periodic env. s = 2
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The effect of a fluctuating selection pressure on the mean
fitness (c̃ = 0)

Mean fitness of the population when placed at environment ē:

Fp,ε(ē) = r−ε
s
(
ē
)

√
s

+ o(ε).

Mean fitness of a population evolved in the constant environment ē:

Fε,0(ē) = r−ε
√

s(ē) + o(ε).

Depending on whether s > s(ē) or s < s(ē), the fluctuations
of the selection pressure may increase or decrease the mean
fitness of the population
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Earth’s temperature changes (increase and oscillations)

How the oscillations of an environment impact the adaptation to a
gradual change?
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A shifting and oscillating environment


∂
∂t n − σ

∂2

∂z2 n︸ ︷︷ ︸
mutations

= n
(
R(e(t), z − ct)︸ ︷︷ ︸

growth rate

− κN︸︷︷︸
competition

)
,

N(t) =
∫
R n(t, y) dy , n(t = 0, ·) = n0(·), z ∈ R.

e : R+ → R, T -periodic.

Example: R(e, z) = r(e)− s(e)(z − θ(e))2.

Density in the moving framework: n(t, z) = m(t, z + ct):
∂
∂tm − c ∂

∂zm − σ
∂2

∂z2
m = m

(
R(e(t), z)− κM

)
,

M(t) =
∫
R m(t, y) dy .
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Assumptions
R is smooth and bounded from above

R takes small values for large z .

Notation:

R(z) =
1
T

∫ T

0
R(e(t), z)dt.

There exists a unique zm ∈ R such that

max
z∈R

R(z) = R(zm) > 0.

There exists a unique z < zm such that

R(z) +
c2

4σ2 = R(zm).
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The long time behavior

An eigenvalue problem


∂
∂t pσ,c − c ∂

∂z pσ,c − σ
∂2

∂z2
pσ,c − R(e(t), z)pσ,c = λpσ,cpσ,c ,

pσ,c > 0, pσ,z(t + T , z) = pσ,z(t, z).

Equivalence between the eigenpairs of this operator with the one
with no drift term:

Liouville transformation:

q(z) = pσ,c(z)e
c
2σ z .

∂

∂t
q − σ ∂2

∂z2 q − R(e(t), z)q = q
(
− c2

4σ
+ λpσ,c

)
,

λpσ,c = λpσ,0 +
c2

4σ
.
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The long time behavior

Critical speed for survival
Define the critical speed :

cσ =

{
2
√
−σλpσ,0, if λpσ,0 < 0

0, otherwise.

Proposition (Figueroa Iglesias and M. 2021 )

(i) c ≥ cσ: N(t)→ 0 as t →∞.

(ii) c < cσ: n(t, ·) converges to the unique positive solution to
∂
∂t np,σ − c ∂

∂z np,σ − σ
∂2

∂z2
np,σ = np,σ

(
R(e, z)− κNp,σ

)
,

Np,σ(t) =
∫
R np,σ(t, y) dy , np,σ(t + T , z) = np,σ(t, z).
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The long time behavior

Main elements

Q(t) =

∫
Rd R(e(t), z)pσ,c(t, z)dz∫

Rd p(t, z)dz
, Pσ,c(t, z) =

pσ,c(t, z)∫
Rd pσ,c(t, y)dy

.

(i)
∥∥∥∥n(t, x)

N(t)
− P(t, x)

∥∥∥∥
L∞
−→ 0, as t →∞ .

(ii) If λσ ≥ 0, N(t)→ 0, as t →∞.

(iii) If λσ < 0, |N(t)−Np,σ(t)| → 0, with Np,σ the unique solution
to 

N ′p,σ(t) = Np,σ(t) [Q(t)− κNp,σ(t)] , t ∈ (0,T ),

Np,σ(0) = Np,σ(T ).
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Qualitative study of the periodic solution

How to characterize the periodic solution np,σ ?

Assumption: mutations with small effects

σ = ε2, ε << 1.

With this scaling one can show that

λpε,0 = O(1) ⇒ cε = O(ε).

⇒ small genetic variance of order ε induced by mutations
⇒ slow evolutionary dynamics of order εt
⇒ adaptation only to environments that vary slowly
We rescale the problem (c → εc , cε → εcε):

∂
∂t np,ε − εc

∂
∂z np,ε − ε

2 ∂2

∂z2
np,ε = np,ε

(
R(e, z)− κNp,ε

)
,

Np,ε(t) =
∫
R np,ε(t, y) dy , np,ε(t + T , z) = np,ε(t, z).
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Qualitative study of the periodic solution

Asymptotic behavior of the population density
Let Np(t) be the unique solution to

N ′p(t) = Np(t) [R(e(t), z)− Np(t)] , t ∈ (0,T ),

Np(0) = Np(T ).

Theorem (Figueroa Iglesias and M. 2021)

As ε→ 0,
‖Np,ε(t)− Np(t)‖L∞ → 0,

and
np,ε(t, z)− Np(t)δ(z − z) ⇀ 0,

weakly in the sense of measures.
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Qualitative study of the periodic solution

Recall: z the unique point such that R(z) + c2

4ε2 = R(zm) and
z < zm.
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A shifting and oscillating environment

Qualitative study of the periodic solution

Main ingredients

Hopf-Cole transformation:

np,ε(t, z) =
1√
2πε

exp
(up,ε(t, z)

ε

)
.

Replacing the Hopf-Cole transformation in the equation on np,ε:

1
ε
∂tup,ε − c∂zup,ε − ε∂zzup,ε = |∂zup,ε|2 + R(e(t), z)− κNp,ε(t).

Expected asymptotic expansions, with T -periodic coefficients:

up,ε(t, z) = u(t, z) + εv(t, z) + o(ε), Np,ε(t) = Np(t) + εK (t) + o(ε).
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Qualitative study of the periodic solution

Heuristic computations
Substituting the expansions into the equation and regrouping by
powers of ε:
Terms of order ε−1:

∂tu(t, z) = 0, u(t, z) = u(z).

Terms of order ε0:

∂tv(t, z)−
∣∣∣∂zu +

c

2

∣∣∣2 = R(e(t), z)− c2

4
− κNp(t).

Computing the time average of the equation in [0,T ]:

−
∣∣∣∂zu +

c

2

∣∣∣2 = R(z)− c2

4
− κN,

with N = 1
T

∫ T
0 Np(t)dt.
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Qualitative study of the periodic solution

Asymptotic behavior of uε
Let

N =
1
T

∫ T

0
Np(s)ds.

Proposition (Figueroa Iglesias, M. 2021)

(i) up,ε(t, z) converges locally uniformly to u(z) the unique
viscosity solution to{

−
∣∣ ∂
∂z u(z)

∣∣2 = R(z)− κN,
max u(z) = 0.

(HJ)

(ii) Moreover, np,ε
Np,ε

converges in the sense of measures to fp, with fp
such that

supp fp(t, ·) ⊂ {u(z) = 0}.
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Qualitative study of the periodic solution

Uniqueness and identification of u

Proposition (Figueroa Iglesias, M. 2021)

The viscosity solution of (HJ) is unique and it is indeed a classical
solution given by

u(z) =
c

2
(z−z)+

∫ zm

z

√
R(zm)− R(y)dy−

∣∣∣∣∫ z

zm

√
R(zm)− R(y)dy

∣∣∣∣ .
Recall: zm the maximum point of R and z the unique point such
that R(z) + c2

4 = R(zm) and z < zm.

Remark: maxz u(z) = u(z) = 0 ⇒ supp n = {z}.
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Qualitative study of the periodic solution

More precise approximation of the average population size
and the survival threshold

Note that

Np,ε :=
1
T

∫ T

0
Np,ε(t)dt =

1
T

∫ T

0
Q(t)dt = −λc,ε/κ.

Theorem (Figueroa Iglesias–M., 2021)

Np,ε = −λc,ε/κ =
(
R(zm)− c2

4
)
/κ− ε

√
−R ′′(zm)/2

κ
+ o(ε),

cε = 2
√

R(zm)− ε

√
− R

′′
(zm)

2R(zm)
+ o(ε).

These approximations come from the approximation of the Floquet
eigenvalue.
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Going to the next order approximation of uε

We expect that

uε(z) = u(z) + εv(z) + o(ε),

which leads to a more precise approximation of the phenotypic
density for nonzero ε

np,ε ≈
1√
2πε

exp
(u(z) + εv(z) + o(1)

ε

)
.
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Moments of the phenotypic distribution
Average size of the population over a period of time:

Np,ε =
1
T

∫ T

0
Np,ε(t)dt

Mean phenotypic trait:

µp,ε(t) =
1

Np,ε(t)

∫
R
z np,ε(t, z)dz , µp,ε =

1
T

∫ T

0
µp,ε(t)dt.

Variance of the phenotypic distribution:

vp,ε(t) =
1

Np,ε

∫
R

(z − µp,ε)2np,ε(t, z)dz

75 / 90



Integro-differential models of evolutionary adaptation in changing environments

A shifting and oscillating environment

Biological applications

Moments of the phenotypic distribution
Average size of the population over a period of time:

Np,ε =
1
T

∫ T

0
Np,ε(t)dt

Mean phenotypic trait:

µp,ε(t) =
1

Np,ε(t)

∫
R
z np,ε(t, z)dz , µp,ε =

1
T

∫ T

0
µp,ε(t)dt.

Variance of the phenotypic distribution:

vp,ε(t) =
1

Np,ε

∫
R

(z − µp,ε)2np,ε(t, z)dz

75 / 90



Integro-differential models of evolutionary adaptation in changing environments

A shifting and oscillating environment

Biological applications

Biological case study 1: Fluctuating optimal trait

R(e, z) = rmax − s(z − θ(e))2, θ(e) = e, e(t): periodic,

κ = 1.
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R

Define

θ̄ =
1
T

∫ T

0
θ(e(s))ds, Vθ =

1
T

(∫ T

0
θ2(e(t))dt − θ̄2

)
.
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The effect of a fluctuating optimal trait on the ability of
the population to follow a gradual change

Nε,p = rmax − sVθ︸︷︷︸
load due to
fluctuations

− c2/4︸︷︷︸
load due to

environmental shift

− ε
√
s︸︷︷︸

mutation load

+ o(ε),

µε,p = θ̄ − c/(2
√
s)︸ ︷︷ ︸

phenotypic lag due to environmental shift

+ o(ε),

vε,p(t) =
ε√
s

+ o(ε2), cε = 2
√
rmax − sVθ −

√
s

rmax − sVθ
ε+ o(ε).

The critical speed of linear change decreases with Vθ ⇒
The fluctuations on the optimal trait are disadvantageous for
the population’s ability to follow the environmental shift.
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Biological case study 2: Fluctuating selection pressure

R(e, z) = rmax − s(e)z2 + O(z4), s(e) = e, e(t) > 0: periodic,

κ = 1.
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Define

s =
1
T

∫ T

0
s
(
e(τ)

)
dτ.
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The effect of a fluctuating selection pressure on the ability
of the population to follow a gradual change

Np,ε = rmax − c2/(4ε2)︸ ︷︷ ︸
load due to

environmental shift

− ε
√
s︸︷︷︸

mutation load

+ o(ε),

µp,ε = − c/(2ε
√
s)︸ ︷︷ ︸

phenotypic lag due to environmental shift

+ o(ε),

vp,ε(t) =
ε√
s

+ o(ε2), cε = 2
√
rmax −

√
s

rmax
ε+ o(ε).

Depending on whether s < s(ē) or s > s(ē), the fluctuations
of the selection pressure may be beneficial or non-beneficial
for the population’s ability to follow the environmental shift.
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A piecewise constant environment

Let’s consider a periodic environment with two states e1 and e2:

e(t) =

{
e1, for t mod T ∈ [0, aT ),

e2, for t mod T ∈ [aT ,T ).

The dynamics of the population density:

∂
∂t n − σ∆n = n

(
R(e(t), z)− κN

)
,

N(t) =
∫
R n(t, z)dz ,

n(0, z) = n0(z).
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The outcome with the previous scaling

In the previous scalings, σ = ε2 << 1 and T = O(1).
⇒ the population does not have time to adapt to each
environment; we observe only adaptation to an average
environment with growth rate

R(z) = aR(e1, z) + (1− a)R(e2, z).

As ε→ 0,

nε,p(t, z)−−⇀Np(t) δ(z − zm), µε,p(t) = zm + O(ε).

with zm such that
max
z

R(z) = R(zm).
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Considering small mutation steps (ε) but large period (T )
for time variations

Let’s now assume that T = T̃
ε (the environment varies slowly).

In this case, the population has the time to adapt to a state of
environment before the switch to another state.

We define
ẽ(t) = e(εt),

such that ẽ is a T̃ -periodic function.
We make also a change of variable in time:

t → t

ε
,

which leads to

ε
∂

∂t
ñε − ε2∆ñε = ñε

(
R(ẽ(t), z)− κÑε

)
.

Initial condition: ñε(0, z) = ñε,0(z) = exp(
uε,0(z)
ε ).
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The Hopf-Cole transformation

Hopf-Cole transformation :

ñε(t, z) = exp
(uε(t, z)

ε

)
.

We replace this in the equation on ñε:

∂

∂t
uε − ε∆uε = |∇uε|2 + R(e(t), z)− κÑε(t).

Letting ε→ 0:

∂

∂t
u = |∇u|2 + R(e(t, z))− κN(t).
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The asymptotic behavior of uε
If N(t) > 0, then

max
z

u(t, z) = 0.

(u,N) determined by:
∂
∂t u = |∇u|2 + R(e(t), z))− κN(t),

maxz u(t, z) = 0,
u(0, z) = u0(z).

Moreover, supp n(t, ·) ⊂ {u(t, z) = 0}, a.e. in t.

Perthame, Barles 2008, Barles, M. Perthame 2009: derivation under
strong assumption avoiding extinction
The switch of the environment state may however lead to the
extinction of the population (N = 0).
Etchegaray, Costa, M. 2021: fine analysis to determine precise
conditions of survival.
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The concave framework

Assume that R(ẽ, ·) and uε,0(·) are strictly concave.
Then one can prove that u is a strictly concave function

⇒ {u(t, z) = max
y

u(t, y) = 0} = {z(t)}.

Moreover, the solution is smooth and one can derive a canonical
equation describing the dynamics of the dominant trait:

ż(t) = (−D2u(t, z(t))−1∇R(ẽ(t), z(t)).

(Lorz, M., Perthame 2011)
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The asymptotic behavior of the phenotypic density
Assume that R(ẽ, ·) and uε,0(·) are strictly concave.

Theorem (Costa, Etchegaray and M., 2021 )

(i) As long as the population persists, as ε→ 0,

ñε(t, z) −−⇀ ρ̃(t) δ(z − z(t)), with ż(t) · ∇R(ẽ(t), z(t)) ≥ 0.

which means that the dominant trait follows the gradient of the
environment.

(i) Let’s suppose that the environment switches from state e1 to
state e2 at time t0. Then, the population goes extinct,
asymptotically as ε→ 0, if

R(e2, z(t0)) ≤ 0.

Otherwise, the population persists until the next switch.
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An example with two different behaviors depending on the
scales

R(e1, z) = r − s(z + θ)2, R(e2, z) = r − s(z − θ)2,

with
r = .5, s = 1, θ = .5, a = .5, ε = .001.
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An example with two different behaviors depending on the
scales

T = O(1): the population persists and remains concentrated on
the trait z = 0 with small oscillations around this trait.

T = O(1/ε) (period= T̃
ε ): for T̃ small, the population persists,

and the dominant trait z(t) moves successively to the left and to
the right. Here : T̃ = .2:

Phenotypic density
3.2 3.3 3.4 3.5 3.6

Time t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

(t)

 = 0.001; dt = 0.0001.

Total size of the population
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An example with two different behaviors depending on the
scales

For T̃ large, when the environment switches to state e2, the
population is well adapted to the first environment but maladapted
to the second one. As a consequence it goes extinct
asymptotically (as ε→ 0). Here: T̃ = 1.

Phenotypic density
0.0 0.1 0.2 0.3 0.4 0.5 0.6

Time t

0.0

0.1

0.2

0.3

0.4

(t)

 = 0.001; dt = 0.0001.

Total size of the population
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Thank you for your attention !
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