
Machine learning methods for mean field games
and mean field control problems

Mathieu LAURIÈRE

August 11, 2022
CIRM, Marseille CEMRACS 2022

Main questions for this talk

Q1: How can we solve large games with complex structures?

Part 1: Solving mean-field problems with deep learning

Q2: How can large populations learn to coordinate?

Part 2: Reinforcement learning with mean-field interactions

1 / 32

Outline

Introduction

Part 1: Solving Mean Field Problems with Deep Learning

Part 2: Reinforcement Learning with Mean-Field Interactions

Conclusion

Outline

Introduction

Part 1: Solving Mean Field Problems with Deep Learning

Part 2: Reinforcement Learning with Mean-Field Interactions

Conclusion

Mean Field Paradigm: number of agents N →∞

Main question: How do global outcomes emerge from individual decisions?

Large population⇒ individual interactions are intractable
Assumption: perfect homogeneity & symmetry of the agents
Mean Field in statistical mechanics: particles (micro)→ density function (macro)

Mix with optimization:
• mean field control: infinitely many cooperating agents
• mean field game: infinitely many competing players

2 / 32

Mean Field Paradigm: number of agents N →∞

Main question: How do global outcomes emerge from individual decisions?
Large population⇒ individual interactions are intractable

Assumption: perfect homogeneity & symmetry of the agents
Mean Field in statistical mechanics: particles (micro)→ density function (macro)

Mix with optimization:
• mean field control: infinitely many cooperating agents
• mean field game: infinitely many competing players

2 / 32

Mean Field Paradigm: number of agents N →∞

Main question: How do global outcomes emerge from individual decisions?
Large population⇒ individual interactions are intractable
Assumption: perfect homogeneity & symmetry of the agents

Mean Field in statistical mechanics: particles (micro)→ density function (macro)

∂tµ(t, x) = 1
2 ∂xxµ(t, x)︸ ︷︷ ︸

diffusion
Mix with optimization:
• mean field control: infinitely many cooperating agents
• mean field game: infinitely many competing players

2 / 32

Mean Field Paradigm: number of agents N →∞

Main question: How do global outcomes emerge from individual decisions?
Large population⇒ individual interactions are intractable
Assumption: perfect homogeneity & symmetry of the agents
Mean Field in statistical mechanics: particles (micro)→ density function (macro)

Mix with optimization:
• mean field control: infinitely many cooperating agents
• mean field game: infinitely many competing players

2 / 32

Mean Field Paradigm: number of agents N →∞

Main question: How do global outcomes emerge from individual decisions?
Large population⇒ individual interactions are intractable
Assumption: perfect homogeneity & symmetry of the agents
Mean Field in statistical mechanics: particles (micro)→ density function (macro)

Mix with optimization:
• mean field control: infinitely many cooperating agents
• mean field game: infinitely many competing players

2 / 32

Mean Field Paradigm: number of agents N →∞

Main question: How do global outcomes emerge from individual decisions?
Large population⇒ individual interactions are intractable
Assumption: perfect homogeneity & symmetry of the agents
Mean Field in statistical mechanics: particles (micro)→ density function (macro)

Mix with optimization:
• mean field control: infinitely many cooperating agents
• mean field game: infinitely many competing players

2 / 32

Landscape of Research on MFG

Initiated by Lasry and Lions, and Huang et al. around 2006

Main research directions:

• Modeling: crowd motion, econ./finance, flocking, risk management, smart grid, energy
production, distributed robotics, epidemic, . . .

• Mean field approach justification:
� N -agent problem→ mean field: convergence

� N -agent problem← mean field: ε-optimality

• Characterization of the mean field problem solutions (optimality conditions):
� partial differential equations (PDE system)

� stochastic differential equations (SDE system)

� Master equation (PDE on Wasserstein space)

• Computation of solutions
� “solving” numerically = What is the optimal behavior? (control rule & density flow)

� crucial for applications

� challenge: coupling between optimization & mean-field

3 / 32

Landscape of Research on MFG

Initiated by Lasry and Lions, and Huang et al. around 2006

Main research directions:

• Modeling: crowd motion, econ./finance, flocking, risk management, smart grid, energy
production, distributed robotics, epidemic, . . .

• Mean field approach justification:
� N -agent problem→ mean field: convergence

� N -agent problem← mean field: ε-optimality

• Characterization of the mean field problem solutions (optimality conditions):
� partial differential equations (PDE system)

� stochastic differential equations (SDE system)

� Master equation (PDE on Wasserstein space)

• Computation of solutions
� “solving” numerically = What is the optimal behavior? (control rule & density flow)

� crucial for applications

� challenge: coupling between optimization & mean-field

3 / 32

Landscape of Research on MFG

Initiated by Lasry and Lions, and Huang et al. around 2006

Main research directions:

• Modeling: crowd motion, econ./finance, flocking, risk management, smart grid, energy
production, distributed robotics, epidemic, . . .

• Mean field approach justification:
� N -agent problem→ mean field: convergence

� N -agent problem← mean field: ε-optimality

• Characterization of the mean field problem solutions (optimality conditions):
� partial differential equations (PDE system)

� stochastic differential equations (SDE system)

� Master equation (PDE on Wasserstein space)

• Computation of solutions
� “solving” numerically = What is the optimal behavior? (control rule & density flow)

� crucial for applications

� challenge: coupling between optimization & mean-field

3 / 32

Landscape of Research on MFG

Initiated by Lasry and Lions, and Huang et al. around 2006

Main research directions:

• Modeling: crowd motion, econ./finance, flocking, risk management, smart grid, energy
production, distributed robotics, epidemic, . . .

• Mean field approach justification:
� N -agent problem→ mean field: convergence

� N -agent problem← mean field: ε-optimality

• Characterization of the mean field problem solutions (optimality conditions):
� partial differential equations (PDE system)

� stochastic differential equations (SDE system)

� Master equation (PDE on Wasserstein space)

• Computation of solutions
� “solving” numerically = What is the optimal behavior? (control rule & density flow)

� crucial for applications

� challenge: coupling between optimization & mean-field
3 / 32

Multi-Agent Control Problem

Assume there are N identical agents (homogeneity)

Agent i uses control vi(t,X1
t , . . . , X

N
t) ∈ Rd and has state Xi

t ∈ Rd at time t, with

• initial position: Xi
0 ∼ m0

• and dynamics: dXi
t︸︷︷︸

variation
of position

= vi(t,

Xt︷ ︸︸ ︷
X1
t , . . . , X

N
t)︸ ︷︷ ︸

velocity

dt + dW i
t︸︷︷︸

noise

(
+ dBt︸︷︷︸

(common noise)

)

Agent i pays running cost f
(
Xi
t , µ

N
t , v

i(t,Xt)
)

typically increasing w.r.t.
(
µNt , v

i
t

)
where the interaction is of mean-field type (symmetry) since it occurs only through

µNt = 1
N

N∑
j=1

δ
X
j
t

which is the empirical distribution of the agents’ states (δx = Dirac mass at x)

The social cost is the average of all the individual costs:

JN (v1, . . . , vN) = 1
N

N∑
i=1

E
[∫ T

0
f
(
Xi
t , µ

N
t , v

i(t,Xt)
)︸ ︷︷ ︸

running cost

dt + g
(
Xi
T

)︸ ︷︷ ︸
terminal cost

]
Goal: Find an optimal v̂ = (v̂1, . . . , v̂N) minimizing JN

Rem.: Terminal cost and drift could involve µNt too

4 / 32

Multi-Agent Control Problem

Assume there are N identical agents (homogeneity)

Agent i uses control vi(t,X1
t , . . . , X

N
t) ∈ Rd and has state Xi

t ∈ Rd at time t, with

• initial position: Xi
0 ∼ m0

• and dynamics: dXi
t︸︷︷︸

variation
of position

= vi(t,

Xt︷ ︸︸ ︷
X1
t , . . . , X

N
t)︸ ︷︷ ︸

velocity

dt + dW i
t︸︷︷︸

noise

(
+ dBt︸︷︷︸

(common noise)

)

Agent i pays running cost f
(
Xi
t , µ

N
t , v

i(t,Xt)
)

typically increasing w.r.t.
(
µNt , v

i
t

)
where the interaction is of mean-field type (symmetry) since it occurs only through

µNt = 1
N

N∑
j=1

δ
X
j
t

which is the empirical distribution of the agents’ states (δx = Dirac mass at x)

The social cost is the average of all the individual costs:

JN (v1, . . . , vN) = 1
N

N∑
i=1

E
[∫ T

0
f
(
Xi
t , µ

N
t , v

i(t,Xt)
)︸ ︷︷ ︸

running cost

dt + g
(
Xi
T

)︸ ︷︷ ︸
terminal cost

]
Goal: Find an optimal v̂ = (v̂1, . . . , v̂N) minimizing JN

Rem.: Terminal cost and drift could involve µNt too

4 / 32

Multi-Agent Control Problem

Assume there are N identical agents (homogeneity)

Agent i uses control vi(t,X1
t , . . . , X

N
t) ∈ Rd and has state Xi

t ∈ Rd at time t, with

• initial position: Xi
0 ∼ m0

• and dynamics: dXi
t︸︷︷︸

variation
of position

= vi(t,

Xt︷ ︸︸ ︷
X1
t , . . . , X

N
t)︸ ︷︷ ︸

velocity

dt + dW i
t︸︷︷︸

noise

(
+ dBt︸︷︷︸

(common noise)

)

Agent i pays running cost f
(
Xi
t , µ

N
t , v

i(t,Xt)
)

typically increasing w.r.t.
(
µNt , v

i
t

)
where the interaction is of mean-field type (symmetry) since it occurs only through

µNt = 1
N

N∑
j=1

δ
X
j
t

which is the empirical distribution of the agents’ states (δx = Dirac mass at x)

The social cost is the average of all the individual costs:

JN (v1, . . . , vN) = 1
N

N∑
i=1

E
[∫ T

0
f
(
Xi
t , µ

N
t , v

i(t,Xt)
)︸ ︷︷ ︸

running cost

dt + g
(
Xi
T

)︸ ︷︷ ︸
terminal cost

]
Goal: Find an optimal v̂ = (v̂1, . . . , v̂N) minimizing JN

Rem.: Terminal cost and drift could involve µNt too

4 / 32

Multi-Agent Control Problem

Assume there are N identical agents (homogeneity)

Agent i uses control vi(t,X1
t , . . . , X

N
t) ∈ Rd and has state Xi

t ∈ Rd at time t, with

• initial position: Xi
0 ∼ m0

• and dynamics: dXi
t︸︷︷︸

variation
of position

= vi(t,

Xt︷ ︸︸ ︷
X1
t , . . . , X

N
t)︸ ︷︷ ︸

velocity

dt + dW i
t︸︷︷︸

noise

(
+ dBt︸︷︷︸

(common noise)

)

Agent i pays running cost f
(
Xi
t , µ

N
t , v

i(t,Xt)
)

typically increasing w.r.t.
(
µNt , v

i
t

)
where the interaction is of mean-field type (symmetry) since it occurs only through

µNt = 1
N

N∑
j=1

δ
X
j
t

which is the empirical distribution of the agents’ states (δx = Dirac mass at x)

The social cost is the average of all the individual costs:

JN (v1, . . . , vN) = 1
N

N∑
i=1

E
[∫ T

0
f
(
Xi
t , µ

N
t , v

i(t,Xt)
)︸ ︷︷ ︸

running cost

dt + g
(
Xi
T

)︸ ︷︷ ︸
terminal cost

]
Goal: Find an optimal v̂ = (v̂1, . . . , v̂N) minimizing JN

Rem.: Terminal cost and drift could involve µNt too

4 / 32

Multi-Agent Control Problem

Assume there are N identical agents (homogeneity)

Agent i uses control vi(t,X1
t , . . . , X

N
t) ∈ Rd and has state Xi

t ∈ Rd at time t, with

• initial position: Xi
0 ∼ m0

• and dynamics: dXi
t︸︷︷︸

variation
of position

= vi(t,

Xt︷ ︸︸ ︷
X1
t , . . . , X

N
t)︸ ︷︷ ︸

velocity

dt + dW i
t︸︷︷︸

noise

(
+ dBt︸︷︷︸

(common noise)

)

Agent i pays running cost f
(
Xi
t , µ

N
t , v

i(t,Xt)
)

typically increasing w.r.t.
(
µNt , v

i
t

)
where the interaction is of mean-field type (symmetry) since it occurs only through

µNt = 1
N

N∑
j=1

δ
X
j
t

which is the empirical distribution of the agents’ states (δx = Dirac mass at x)

The social cost is the average of all the individual costs:

JN (v1, . . . , vN) = 1
N

N∑
i=1

E
[∫ T

0
f
(
Xi
t , µ

N
t , v

i(t,Xt)
)︸ ︷︷ ︸

running cost

dt + g
(
Xi
T

)︸ ︷︷ ︸
terminal cost

]
Goal: Find an optimal v̂ = (v̂1, . . . , v̂N) minimizing JN

Rem.: Terminal cost and drift could involve µNt too
4 / 32

Control with Mean Field Interactions: N -Agent & Asymptotic Versions

Optimal control of N agents: Find (v̂1, . . . , v̂N) minimizing the social cost

JN (v1, . . . , vN) = 1
N

N∑
i=1

E
[∫ T

0
f
(
Xi
t , µ

N
t , v

i(t,Xt)
)
dt+ g

(
Xi
T

)]
,

where µNt := 1
N

∑N

j=1 δXj
t

and

dXj
t = vj(t,Xt) dt+ dW j

t , Xj
0 i.i.d ∼ m0 .

As N −→ +∞, µNt −−→ µt = deterministic distribution. Asymptotic problem:

Mean field control (MFC): Find a control v̂ minimizing

J(v) = E
[∫ T

0
f(Xv

t ,L(Xv
t), v(t,Xt)) dt+ g(Xv

T)
]
,

where µt = L(Xv
t) is the law of Xv

t = state of a representative player with
dXv

t = v(t,Xv
t) dt+ dWt, Xv

0 ∼ m0 .

Motivations:
• “N →∞”: a large number of cooperative agents; McKean-Vlasov dynamics:

dXt = b
(
Xt, µ

v
t , v(t,Xt)

)
dt+ dWt

• Non-linear dependence on the law: e.g. risk measures:
E[g(XT , µT)] = Var(XT)− E[XT]

5 / 32

Control with Mean Field Interactions: N -Agent & Asymptotic Versions

Optimal control of N agents: Find (v̂1, . . . , v̂N) minimizing the social cost

JN (v1, . . . , vN) = 1
N

N∑
i=1

E
[∫ T

0
f
(
Xi
t , µ

N
t , v

i(t,Xt)
)
dt+ g

(
Xi
T

)]
,

where µNt := 1
N

∑N

j=1 δXj
t

and

dXj
t = vj(t,Xt) dt+ dW j

t , Xj
0 i.i.d ∼ m0 .

As N −→ +∞, µNt −−→ µt = deterministic distribution. Asymptotic problem:

Mean field control (MFC): Find a control v̂ minimizing

J(v) = E
[∫ T

0
f(Xv

t ,L(Xv
t), v(t,Xt)) dt+ g(Xv

T)
]
,

where µt = L(Xv
t) is the law of Xv

t = state of a representative player with
dXv

t = v(t,Xv
t) dt+ dWt, Xv

0 ∼ m0 .

Motivations:
• “N →∞”: a large number of cooperative agents; McKean-Vlasov dynamics:

dXt = b
(
Xt, µ

v
t , v(t,Xt)

)
dt+ dWt

• Non-linear dependence on the law: e.g. risk measures:
E[g(XT , µT)] = Var(XT)− E[XT]

5 / 32

Control with Mean Field Interactions: N -Agent & Asymptotic Versions

Optimal control of N agents: Find (v̂1, . . . , v̂N) minimizing the social cost

JN (v1, . . . , vN) = 1
N

N∑
i=1

E
[∫ T

0
f
(
Xi
t , µ

N
t , v

i(t,Xt)
)
dt+ g

(
Xi
T

)]
,

where µNt := 1
N

∑N

j=1 δXj
t

and

dXj
t = vj(t,Xt) dt+ dW j

t , Xj
0 i.i.d ∼ m0 .

As N −→ +∞, µNt −−→ µt = deterministic distribution. Asymptotic problem:

Mean field control (MFC): Find a control v̂ minimizing

J(v) = E
[∫ T

0
f(Xv

t ,L(Xv
t), v(t,Xt)) dt+ g(Xv

T)
]
,

where µt = L(Xv
t) is the law of Xv

t = state of a representative player with
dXv

t = v(t,Xv
t) dt+ dWt, Xv

0 ∼ m0 .

Motivations:
• “N →∞”: a large number of cooperative agents; McKean-Vlasov dynamics:

dXt = b
(
Xt, µ

v
t , v(t,Xt)

)
dt+ dWt

• Non-linear dependence on the law: e.g. risk measures:
E[g(XT , µT)] = Var(XT)− E[XT]

5 / 32

Control with Mean Field Interactions: N -Agent & Asymptotic Versions

Optimal control of N agents: Find (v̂1, . . . , v̂N) minimizing the social cost

JN (v1, . . . , vN) = 1
N

N∑
i=1

E
[∫ T

0
f
(
Xi
t , µ

N
t , v

i(t,Xt)
)
dt+ g

(
Xi
T

)]
,

where µNt := 1
N

∑N

j=1 δXj
t

and

dXj
t = vj(t,Xt) dt+ dW j

t , Xj
0 i.i.d ∼ m0 .

As N −→ +∞, µNt −−→ µt = deterministic distribution. Asymptotic problem:

Mean field control (MFC): Find a control v̂ minimizing

J(v) = E
[∫ T

0
f(Xv

t ,L(Xv
t), v(t,Xt)) dt+ g(Xv

T)
]
,

where µt = L(Xv
t) is the law of Xv

t = state of a representative player with
dXv

t = v(t,Xv
t) dt+ dWt, Xv

0 ∼ m0 .

Motivations:
• “N →∞”: a large number of cooperative agents; McKean-Vlasov dynamics:

dXt = b
(
Xt, µ

v
t , v(t,Xt)

)
dt+ dWt

• Non-linear dependence on the law: e.g. risk measures:
E[g(XT , µT)] = Var(XT)− E[XT]

5 / 32

Games with Mean Field Interactions: N -Agent & Asymptotic Versions

Nash Equilibrium: When a player optimizes, the other players’ controls are fixed

Nash equilibrium between N players: Find v̂ = (v̂1, . . . , v̂N) such that

For each i = 1, . . . , N , given v̂−i = (v̂1, . . . , v̂i−1, v̂i+1, . . . , v̂N), v̂i minimizes

vi 7→ J(vi; v̂−i) = E
[∫ T

0
f
(
Xi
t , µ

N
t , v

i(t,Xt)
)
dt+ g

(
Xi
T

)]
where µNt = 1

N

∑
j 6=i δXj

t
+ 1

N
δXi

t
and

dXi
t = vi(t,Xt) dt+ dW i

t , dXj
t = v̂j(t,Xt) dt+ dW j

t , j 6= i

As N −→ +∞, µNt −−→ µt which is not influenced by vi. Asymptotic problem:

Mean field game (MFG): Find (v̂, µ̂) = (control, flow of distributions) such that

(1) Given µ̂ = (µ̂t)t∈[0,T], the control v̂ minimizes

v 7→ J(v; µ̂) = E
[∫ T

0
f(Xv

t , µ̂t, v(t,Xv
t)) dt+ g(Xv

T)
]
,

where dXv
t = v(t,Xv

t) dt+ dWt, X
v
0 ∼ m0

(2) µ̂t = L(X v̂
t) for all t.

(1) = standard optimal control problem for a representative player vs the population
(2) = consistency condition (fixed point): “all the agents think in the same way”

6 / 32

Games with Mean Field Interactions: N -Agent & Asymptotic Versions

Nash Equilibrium: When a player optimizes, the other players’ controls are fixed

Nash equilibrium between N players: Find v̂ = (v̂1, . . . , v̂N) such that

For each i = 1, . . . , N , given v̂−i = (v̂1, . . . , v̂i−1, v̂i+1, . . . , v̂N), v̂i minimizes

vi 7→ J(vi; v̂−i) = E
[∫ T

0
f
(
Xi
t , µ

N
t , v

i(t,Xt)
)
dt+ g

(
Xi
T

)]
where µNt = 1

N

∑
j 6=i δXj

t
+ 1

N
δXi

t
and

dXi
t = vi(t,Xt) dt+ dW i

t , dXj
t = v̂j(t,Xt) dt+ dW j

t , j 6= i

As N −→ +∞, µNt −−→ µt which is not influenced by vi. Asymptotic problem:

Mean field game (MFG): Find (v̂, µ̂) = (control, flow of distributions) such that

(1) Given µ̂ = (µ̂t)t∈[0,T], the control v̂ minimizes

v 7→ J(v; µ̂) = E
[∫ T

0
f(Xv

t , µ̂t, v(t,Xv
t)) dt+ g(Xv

T)
]
,

where dXv
t = v(t,Xv

t) dt+ dWt, X
v
0 ∼ m0

(2) µ̂t = L(X v̂
t) for all t.

(1) = standard optimal control problem for a representative player vs the population
(2) = consistency condition (fixed point): “all the agents think in the same way”

6 / 32

Games with Mean Field Interactions: N -Agent & Asymptotic Versions

Nash Equilibrium: When a player optimizes, the other players’ controls are fixed

Nash equilibrium between N players: Find v̂ = (v̂1, . . . , v̂N) such that

For each i = 1, . . . , N , given v̂−i = (v̂1, . . . , v̂i−1, v̂i+1, . . . , v̂N), v̂i minimizes

vi 7→ J(vi; v̂−i) = E
[∫ T

0
f
(
Xi
t , µ

N
t , v

i(t,Xt)
)
dt+ g

(
Xi
T

)]
where µNt = 1

N

∑
j 6=i δXj

t
+ 1

N
δXi

t
and

dXi
t = vi(t,Xt) dt+ dW i

t , dXj
t = v̂j(t,Xt) dt+ dW j

t , j 6= i

As N −→ +∞, µNt −−→ µt which is not influenced by vi. Asymptotic problem:

Mean field game (MFG): Find (v̂, µ̂) = (control, flow of distributions) such that

(1) Given µ̂ = (µ̂t)t∈[0,T], the control v̂ minimizes

v 7→ J(v; µ̂) = E
[∫ T

0
f(Xv

t , µ̂t, v(t,Xv
t)) dt+ g(Xv

T)
]
,

where dXv
t = v(t,Xv

t) dt+ dWt, X
v
0 ∼ m0

(2) µ̂t = L(X v̂
t) for all t.

(1) = standard optimal control problem for a representative player vs the population
(2) = consistency condition (fixed point): “all the agents think in the same way”

6 / 32

Games with Mean Field Interactions: N -Agent & Asymptotic Versions

Nash Equilibrium: When a player optimizes, the other players’ controls are fixed

Nash equilibrium between N players: Find v̂ = (v̂1, . . . , v̂N) such that

For each i = 1, . . . , N , given v̂−i = (v̂1, . . . , v̂i−1, v̂i+1, . . . , v̂N), v̂i minimizes

vi 7→ J(vi; v̂−i) = E
[∫ T

0
f
(
Xi
t , µ

N
t , v

i(t,Xt)
)
dt+ g

(
Xi
T

)]
where µNt = 1

N

∑
j 6=i δXj

t
+ 1

N
δXi

t
and

dXi
t = vi(t,Xt) dt+ dW i

t , dXj
t = v̂j(t,Xt) dt+ dW j

t , j 6= i

As N −→ +∞, µNt −−→ µt which is not influenced by vi. Asymptotic problem:

Mean field game (MFG): Find (v̂, µ̂) = (control, flow of distributions) such that

(1) Given µ̂ = (µ̂t)t∈[0,T], the control v̂ minimizes

v 7→ J(v; µ̂) = E
[∫ T

0
f(Xv

t , µ̂t, v(t,Xv
t)) dt+ g(Xv

T)
]
,

where dXv
t = v(t,Xv

t) dt+ dWt, X
v
0 ∼ m0

(2) µ̂t = L(X v̂
t) for all t.

(1) = standard optimal control problem for a representative player vs the population
(2) = consistency condition (fixed point): “all the agents think in the same way”

6 / 32

Outline

Introduction

Part 1: Solving Mean Field Problems with Deep Learning
Direct approach for MFC
MKV FBSDE system
Mean Field PDE System

Part 2: Reinforcement Learning with Mean-Field Interactions

Conclusion

Numerical Methods for MFG

Methods based on a deterministic approach:
• Finite differences & Newton meth.: [Achdou, Capuzzo-Dolcetta’10; . . . ; Achdou, L.’15]
• Gradient descent: [L., Pironneau’14; Pfeiffer’16]
• Semi-Lagrangian scheme: [Carlini, Silva’14; Carlini, Silva’15]
• Augmented Lagrangian & ADMM: [Benamou, Carlier’14; Achdou, L.’16; Andreev’17]
• Primal-dual algo.: [Briceño-Arias, Kalise, Silva’18; BAKS + Kobeissi, L., Mateos González’18]
• Monotone operators: [Almulla et al.’17; Gomes, Saúde’18; Gomes, Yang’18]

Methods based on a probabilistic approach:
• Cubature: [Chaudru de Raynal, Garcia Trillos’15]
• Recursion: [Chassagneux et al.’17; Angiuli et al.’18]
• MC+Regression: [Balata, Huré, L., Pham, Pimentel’18]

Limitations:
• dimensionality (state in dimension ≤ 3)
• structure of the problem (simple costs, dynamics and noises)

Recent progress: extending the toolbox with tools from machine learning:
• approximation without a grid (mesh-free methods): opt. control & distribution
→ [Carmona, L.; Al-Aradi et al.; Fouque et al.; Germain et al.; Ruthotto et al.; Agram et al.; . . .]

• even when the dynamics / cost are not known (model-free methods)
→ [Guo et al.; Subramanian et al.; Elie et al.; Carmona et al.; Pham et al.; . . .]

7 / 32

Numerical Methods for MFG

Methods based on a deterministic approach:
• Finite differences & Newton meth.: [Achdou, Capuzzo-Dolcetta’10; . . . ; Achdou, L.’15]
• Gradient descent: [L., Pironneau’14; Pfeiffer’16]
• Semi-Lagrangian scheme: [Carlini, Silva’14; Carlini, Silva’15]
• Augmented Lagrangian & ADMM: [Benamou, Carlier’14; Achdou, L.’16; Andreev’17]
• Primal-dual algo.: [Briceño-Arias, Kalise, Silva’18; BAKS + Kobeissi, L., Mateos González’18]
• Monotone operators: [Almulla et al.’17; Gomes, Saúde’18; Gomes, Yang’18]

Methods based on a probabilistic approach:
• Cubature: [Chaudru de Raynal, Garcia Trillos’15]
• Recursion: [Chassagneux et al.’17; Angiuli et al.’18]
• MC+Regression: [Balata, Huré, L., Pham, Pimentel’18]

Limitations:
• dimensionality (state in dimension ≤ 3)
• structure of the problem (simple costs, dynamics and noises)

Recent progress: extending the toolbox with tools from machine learning:
• approximation without a grid (mesh-free methods): opt. control & distribution
→ [Carmona, L.; Al-Aradi et al.; Fouque et al.; Germain et al.; Ruthotto et al.; Agram et al.; . . .]

• even when the dynamics / cost are not known (model-free methods)
→ [Guo et al.; Subramanian et al.; Elie et al.; Carmona et al.; Pham et al.; . . .]

7 / 32

Numerical Methods for MFG

Methods based on a deterministic approach:
• Finite differences & Newton meth.: [Achdou, Capuzzo-Dolcetta’10; . . . ; Achdou, L.’15]
• Gradient descent: [L., Pironneau’14; Pfeiffer’16]
• Semi-Lagrangian scheme: [Carlini, Silva’14; Carlini, Silva’15]
• Augmented Lagrangian & ADMM: [Benamou, Carlier’14; Achdou, L.’16; Andreev’17]
• Primal-dual algo.: [Briceño-Arias, Kalise, Silva’18; BAKS + Kobeissi, L., Mateos González’18]
• Monotone operators: [Almulla et al.’17; Gomes, Saúde’18; Gomes, Yang’18]

Methods based on a probabilistic approach:
• Cubature: [Chaudru de Raynal, Garcia Trillos’15]
• Recursion: [Chassagneux et al.’17; Angiuli et al.’18]
• MC+Regression: [Balata, Huré, L., Pham, Pimentel’18]

Limitations:
• dimensionality (state in dimension ≤ 3)
• structure of the problem (simple costs, dynamics and noises)

Recent progress: extending the toolbox with tools from machine learning:
• approximation without a grid (mesh-free methods): opt. control & distribution
→ [Carmona, L.; Al-Aradi et al.; Fouque et al.; Germain et al.; Ruthotto et al.; Agram et al.; . . .]

• even when the dynamics / cost are not known (model-free methods)
→ [Guo et al.; Subramanian et al.; Elie et al.; Carmona et al.; Pham et al.; . . .]

7 / 32

Outline

Introduction

Part 1: Solving Mean Field Problems with Deep Learning
Direct approach for MFC
MKV FBSDE system
Mean Field PDE System

Part 2: Reinforcement Learning with Mean-Field Interactions

Conclusion

Approximation Result for MFC

MFC:

(1) Finite pop., (2) neural network ϕθ , (3) time discretization

Minimize over v(·, ·)

J(v(·, ·)) = E
[∫ T

0
f(Xt, µt, v(t,Xt)) dt+ g(XT)

]
,

where µt = L(Xt) with
X0 ∼ m0 , dXt = v(t,Xt) dt+ dWt

Theorem: Convergence rate of the approximation [Carmona, L.’20]

Under suitable assumptions (in particular regularity of the value function),∣∣∣∣ inf
v(·,·)

J(v(·, ·))− inf
θ
JN,NT (θ)

∣∣∣∣ ≤ ε1(N) + ε2(dim(θ)) + ε3(NT)

Implementation: Stochastic Gradient Descent

Loss function = cost: JN,NT (θ) = E[L(ϕθ, ξ)]
One sample: ξ =

(
Xj

0 , (∆W j
n)n=0,...,NT−1

)
j=1,...,N

• Generalizes standard stochastic control problems (no MF); [. . . ; Gobet, Munos’05; Han, E’16]
• Related work with mean field: [Fouque, Zhang’19; Germain et al.’19; . . .]

8 / 32

Approximation Result for MFC

MFC: (1) Finite pop.,

(2) neural network ϕθ , (3) time discretization

Minimize over decentralized controls v(·, ·) with N agents

JN (v(·, ·)) = E
[1
N

N∑
i=1

∫ T

0
f
(
Xi
t , µ

N
t , v(t,Xi

t)
)
dt+ g

(
Xi
T

)]
,

with µNt = 1
N

∑N

j=1 δXj
t
,

Xj
0 ∼ m0 , dXj

t = v(t,Xj
t) dt+ dW j

t

Theorem: Convergence rate of the approximation [Carmona, L.’20]

Under suitable assumptions (in particular regularity of the value function),∣∣∣∣ inf
v(·,·)

J(v(·, ·))− inf
θ
JN,NT (θ)

∣∣∣∣ ≤ ε1(N) + ε2(dim(θ)) + ε3(NT)

Implementation: Stochastic Gradient Descent

Loss function = cost: JN,NT (θ) = E[L(ϕθ, ξ)]
One sample: ξ =

(
Xj

0 , (∆W j
n)n=0,...,NT−1

)
j=1,...,N

• Generalizes standard stochastic control problems (no MF); [. . . ; Gobet, Munos’05; Han, E’16]
• Related work with mean field: [Fouque, Zhang’19; Germain et al.’19; . . .]

8 / 32

Approximation Result for MFC

MFC: (1) Finite pop., (2) neural network ϕθ ,

(3) time discretization

Minimize over neural network parameters θ with N agents

JN (θ) = E
[1
N

N∑
i=1

∫ T

0
f
(
Xi
t , µ

N
t , ϕθ(t,Xi

t)
)
dt+ g

(
Xi
T

)]
,

with µNt = 1
N

∑N

j=1 δXj
t
,

Xj
0 ∼ m0 , dXj

t = ϕθ(t,Xj
t) dt+ dW j

t

Theorem: Convergence rate of the approximation [Carmona, L.’20]

Under suitable assumptions (in particular regularity of the value function),∣∣∣∣ inf
v(·,·)

J(v(·, ·))− inf
θ
JN,NT (θ)

∣∣∣∣ ≤ ε1(N) + ε2(dim(θ)) + ε3(NT)

Implementation: Stochastic Gradient Descent

Loss function = cost: JN,NT (θ) = E[L(ϕθ, ξ)]
One sample: ξ =

(
Xj

0 , (∆W j
n)n=0,...,NT−1

)
j=1,...,N

• Generalizes standard stochastic control problems (no MF); [. . . ; Gobet, Munos’05; Han, E’16]
• Related work with mean field: [Fouque, Zhang’19; Germain et al.’19; . . .]

8 / 32

Approximation Result for MFC

MFC: (1) Finite pop., (2) neural network ϕθ , (3) time discretization

Minimize over neural network parameters θ with N agents and NT time steps

JN,NT (θ) = E
[1
N

N∑
i=1

NT−1∑
n=0

f
(
Xi
n, µ

N
n , ϕθ(tn, Xi

n)
)

∆t+ g
(
Xi
NT

)]
,

with µNn = 1
N

∑N

j=1 δXjn
,

Xj
0 ∼ m0 , Xj

n+1 −X
j
n = ϕθ(tn, Xj

n)∆t+ ∆W j
n

Theorem: Convergence rate of the approximation [Carmona, L.’20]

Under suitable assumptions (in particular regularity of the value function),∣∣∣∣ inf
v(·,·)

J(v(·, ·))− inf
θ
JN,NT (θ)

∣∣∣∣ ≤ ε1(N) + ε2(dim(θ)) + ε3(NT)

Implementation: Stochastic Gradient Descent

Loss function = cost: JN,NT (θ) = E[L(ϕθ, ξ)]
One sample: ξ =

(
Xj

0 , (∆W j
n)n=0,...,NT−1

)
j=1,...,N

• Generalizes standard stochastic control problems (no MF); [. . . ; Gobet, Munos’05; Han, E’16]
• Related work with mean field: [Fouque, Zhang’19; Germain et al.’19; . . .]

8 / 32

Approximation Result for MFC

MFC: (1) Finite pop., (2) neural network ϕθ , (3) time discretization

Minimize over neural network parameters θ with N agents and NT time steps

JN,NT (θ) = E
[1
N

N∑
i=1

NT−1∑
n=0

f
(
Xi
n, µ

N
n , ϕθ(tn, Xi

n)
)

∆t+ g
(
Xi
NT

)]
,

with µNn = 1
N

∑N

j=1 δXjn
,

Xj
0 ∼ m0 , Xj

n+1 −X
j
n = ϕθ(tn, Xj

n)∆t+ ∆W j
n

Theorem: Convergence rate of the approximation [Carmona, L.’20]

Under suitable assumptions (in particular regularity of the value function),∣∣∣∣ inf
v(·,·)

J(v(·, ·))− inf
θ
JN,NT (θ)

∣∣∣∣ ≤ ε1(N) + ε2(dim(θ)) + ε3(NT)

Implementation: Stochastic Gradient Descent

Loss function = cost: JN,NT (θ) = E[L(ϕθ, ξ)]
One sample: ξ =

(
Xj

0 , (∆W j
n)n=0,...,NT−1

)
j=1,...,N

• Generalizes standard stochastic control problems (no MF); [. . . ; Gobet, Munos’05; Han, E’16]
• Related work with mean field: [Fouque, Zhang’19; Germain et al.’19; . . .]

8 / 32

Approximation Result for MFC

MFC: (1) Finite pop., (2) neural network ϕθ , (3) time discretization

Minimize over neural network parameters θ with N agents and NT time steps

JN,NT (θ) = E
[1
N

N∑
i=1

NT−1∑
n=0

f
(
Xi
n, µ

N
n , ϕθ(tn, Xi

n)
)

∆t+ g
(
Xi
NT

)]
,

with µNn = 1
N

∑N

j=1 δXjn
,

Xj
0 ∼ m0 , Xj

n+1 −X
j
n = ϕθ(tn, Xj

n)∆t+ ∆W j
n

Theorem: Convergence rate of the approximation [Carmona, L.’20]

Under suitable assumptions (in particular regularity of the value function),∣∣∣∣ inf
v(·,·)

J(v(·, ·))− inf
θ
JN,NT (θ)

∣∣∣∣ ≤ ε1(N) + ε2(dim(θ)) + ε3(NT)

Implementation: Stochastic Gradient Descent

Loss function = cost: JN,NT (θ) = E[L(ϕθ, ξ)]
One sample: ξ =

(
Xj

0 , (∆W j
n)n=0,...,NT−1

)
j=1,...,N

• Generalizes standard stochastic control problems (no MF); [. . . ; Gobet, Munos’05; Han, E’16]
• Related work with mean field: [Fouque, Zhang’19; Germain et al.’19; . . .]

8 / 32

Approximation Result for MFC

MFC: (1) Finite pop., (2) neural network ϕθ , (3) time discretization

Minimize over neural network parameters θ with N agents and NT time steps

JN,NT (θ) = E
[1
N

N∑
i=1

NT−1∑
n=0

f
(
Xi
n, µ

N
n , ϕθ(tn, Xi

n)
)

∆t+ g
(
Xi
NT

)]
,

with µNn = 1
N

∑N

j=1 δXjn
,

Xj
0 ∼ m0 , Xj

n+1 −X
j
n = ϕθ(tn, Xj

n)∆t+ ∆W j
n

Theorem: Convergence rate of the approximation [Carmona, L.’20]

Under suitable assumptions (in particular regularity of the value function),∣∣∣∣ inf
v(·,·)

J(v(·, ·))− inf
θ
JN,NT (θ)

∣∣∣∣ ≤ ε1(N) + ε2(dim(θ)) + ε3(NT)

Implementation: Stochastic Gradient Descent

Loss function = cost: JN,NT (θ) = E[L(ϕθ, ξ)]
One sample: ξ =

(
Xj

0 , (∆W j
n)n=0,...,NT−1

)
j=1,...,N

• Generalizes standard stochastic control problems (no MF); [. . . ; Gobet, Munos’05; Han, E’16]
• Related work with mean field: [Fouque, Zhang’19; Germain et al.’19; . . .]

8 / 32

Approximation Result: Sketch of Proof

Proposition 1 (N agents & decentralized controls):

Under suitable assumptions, there exists a decentralized control v̂ s.t. (d = dimension of Xt)∣∣∣∣ inf
v(·)

J(v(·))− JN (v̂(·))

∣∣∣∣ ≤ ε1(N) ∈ Õ
(
N−1/d

)
.

Proof: propagation of chaos type argument [Carmona, Delarue’18]

Proposition 2 (approximation by neural networks): Under suitable assumptions

There exists a set of parameters θ for a one-hidden layer ϕ̂θ s.t.∣∣JN (v̂(·))− JN (ϕ̂θ(·))
∣∣ ≤ ε2(dim(θ)) ∈ O

(
dim(θ)−

1
3(d+1)

)
.

Proof: Key difficulty: approximate v̂(·) by ϕ̂θ(·) while controlling ‖∇ϕ̂θ(·)‖ by ‖∇v̂(·)‖
→ universal approximation without rate of convergence is not enough
→ approximation rate for the derivative too, e.g. from [Mhaskar, Micchelli’95]

Proposition 3 (Euler-Maruyama scheme):

For a specific neural network ϕ̂θ(·),∣∣JN (ϕ̂θ(·))− JN,NT (ϕ̂θ(·))
∣∣ ≤ ε3(NT) ∈ O

(
N
−1/2
T

)
.

Key point: O (·) independent of N and nU
Proof: analysis of strong error rate for Euler scheme (reminiscent of [Bossy, Talay’97])

9 / 32

Approximation Result: Sketch of Proof

Proposition 1 (N agents & decentralized controls):

Under suitable assumptions, there exists a decentralized control v̂ s.t. (d = dimension of Xt)∣∣∣∣ inf
v(·)

J(v(·))− JN (v̂(·))

∣∣∣∣ ≤ ε1(N) ∈ Õ
(
N−1/d

)
.

Proof: propagation of chaos type argument [Carmona, Delarue’18]

Proposition 2 (approximation by neural networks): Under suitable assumptions

There exists a set of parameters θ for a one-hidden layer ϕ̂θ s.t.∣∣JN (v̂(·))− JN (ϕ̂θ(·))
∣∣ ≤ ε2(dim(θ)) ∈ O

(
dim(θ)−

1
3(d+1)

)
.

Proof: Key difficulty: approximate v̂(·) by ϕ̂θ(·) while controlling ‖∇ϕ̂θ(·)‖ by ‖∇v̂(·)‖
→ universal approximation without rate of convergence is not enough
→ approximation rate for the derivative too, e.g. from [Mhaskar, Micchelli’95]

Proposition 3 (Euler-Maruyama scheme):

For a specific neural network ϕ̂θ(·),∣∣JN (ϕ̂θ(·))− JN,NT (ϕ̂θ(·))
∣∣ ≤ ε3(NT) ∈ O

(
N
−1/2
T

)
.

Key point: O (·) independent of N and nU
Proof: analysis of strong error rate for Euler scheme (reminiscent of [Bossy, Talay’97])

9 / 32

Approximation Result: Sketch of Proof

Proposition 1 (N agents & decentralized controls):

Under suitable assumptions, there exists a decentralized control v̂ s.t. (d = dimension of Xt)∣∣∣∣ inf
v(·)

J(v(·))− JN (v̂(·))

∣∣∣∣ ≤ ε1(N) ∈ Õ
(
N−1/d

)
.

Proof: propagation of chaos type argument [Carmona, Delarue’18]

Proposition 2 (approximation by neural networks): Under suitable assumptions

There exists a set of parameters θ for a one-hidden layer ϕ̂θ s.t.∣∣JN (v̂(·))− JN (ϕ̂θ(·))
∣∣ ≤ ε2(dim(θ)) ∈ O

(
dim(θ)−

1
3(d+1)

)
.

Proof: Key difficulty: approximate v̂(·) by ϕ̂θ(·) while controlling ‖∇ϕ̂θ(·)‖ by ‖∇v̂(·)‖
→ universal approximation without rate of convergence is not enough
→ approximation rate for the derivative too, e.g. from [Mhaskar, Micchelli’95]

Proposition 3 (Euler-Maruyama scheme):

For a specific neural network ϕ̂θ(·),∣∣JN (ϕ̂θ(·))− JN,NT (ϕ̂θ(·))
∣∣ ≤ ε3(NT) ∈ O

(
N
−1/2
T

)
.

Key point: O (·) independent of N and nU
Proof: analysis of strong error rate for Euler scheme (reminiscent of [Bossy, Talay’97])

9 / 32

Numerical Illustration: LQ MFC

Benchmark to assess empirical convergence of SGD: LQ problem with explicit sol.

Example: Linear dynamics, quadratic costs of the type

f(x, µ, v) = (µ̄− x)2︸ ︷︷ ︸
distance to

mean position

+ v2︸︷︷︸
cost of
moving

, µ̄ =
∫

µ(ξ)dξ︸ ︷︷ ︸
mean position

, g(x) = x2

Numerical example with d = 10:

0 10000 20000 30000 40000
SGD iterations

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5.0

5.1

lo
ss

N= 32,NT = 100
N= 128,NT = 100
N= 1024,NT = 100
N= 1024,NT = 20
N= 1024,NT = 10

total cost (= loss function)

0 10000 20000 30000 40000
SGD iterations

10−2

10−1

100

er
ro

r

N= 32,NT = 100
N= 128,NT = 100
N= 1024,NT = 100
N= 1024,NT = 20
N= 1024,NT = 10

L2-error on the control

(More details in [Carmona, L.’20])

10 / 32

Q: What about mean-field Nash equilibria?

Forward-backward mean-field systems

• Forward-backward structure:

� Forward evolution of the state / density

� Backward evolution of the control / value function

• SDE system:

� Deep BSDE method [E, Jentzen, Han’18]→ [Carmona, L.’20]

• PDE system:

� Deep Galerkin Method [Sirignano, Spiliopoulos’18]→ [Carmona, L.’20]

11 / 32

Q: What about mean-field Nash equilibria?

Forward-backward mean-field systems

• Forward-backward structure:

� Forward evolution of the state / density

� Backward evolution of the control / value function

• SDE system:

� Deep BSDE method [E, Jentzen, Han’18]→ [Carmona, L.’20]

• PDE system:

� Deep Galerkin Method [Sirignano, Spiliopoulos’18]→ [Carmona, L.’20]

11 / 32

Q: What about mean-field Nash equilibria?

Forward-backward mean-field systems

• Forward-backward structure:

� Forward evolution of the state / density

� Backward evolution of the control / value function

• SDE system:

� Deep BSDE method [E, Jentzen, Han’18]→ [Carmona, L.’20]

• PDE system:

� Deep Galerkin Method [Sirignano, Spiliopoulos’18]→ [Carmona, L.’20]

11 / 32

Outline

Introduction

Part 1: Solving Mean Field Problems with Deep Learning
Direct approach for MFC
MKV FBSDE system
Mean Field PDE System

Part 2: Reinforcement Learning with Mean-Field Interactions

Conclusion

Mean Field Game

Reminder:

Nash Eq.: When a player optimizes, the other players’ controls are fixed

Mean field game (MFG): Find (v̂, µ̂) = (control, flow of distribution) such that

(1) Given µ̂ = (µ̂t)t∈[0,T], the control v̂ minimizes

v 7→ J(v; µ̂) = E
[∫ T

0
f(Xv

t , µ̂t, v(t,Xv
t)) dt+ g(Xv

T)
]
,

where dXv
t = v(t,Xv

t) dt+ dWt,
(2) µ̂t = L(X v̂

t) for all t.

(1) = standard optimal control problem for a representative player vs the population
(2) = consistency condition (fixed point): “all the agents think in the same way”

12 / 32

Optimality Condition for MFG: forward-backward system

At equilibrium, X evolves according to: X0 ∼ m0, dXt = v̂(t,Xt) dt+ dWt .
The evolution of its distribution µ̂t = L(Xt) is given by a Fokker-Planck PDE:

µ̂(t = 0, x) = m0(x),︸ ︷︷ ︸
initial condition

∂tµ̂(t, x) = − ∂x (µ̂(t, x) v̂(t, x))︸ ︷︷ ︸
advection

+ 1
2 ∂xxµ̂(t, x)︸ ︷︷ ︸

diffusion

How can we characterize the best response (= opt. control) of a typical player?

v̂(·, ·) = argmin
v(·,·)

J(v(·, ·); µ̂) = argmin
v(·,·)

E
[∫ T

0
f(Xt, µ̂t, v(t,Xt)) dt+ g(XT)

]
(2) Or: Stoch. Maximum Principle: v̂(t,Xt) is characterized in terms of Xt,L(Xt)
and the adjoint state Yt ∈ Rd, which solves the backward SDE

dYt = −∂xĤ(Xt, µ̂t, Yt)dt+ Zt · dWt, YT = ∂xg(XT)

⇒ forward-backward SDE or PDE system

13 / 32

Optimality Condition for MFG: forward-backward system

At equilibrium, X evolves according to: X0 ∼ m0, dXt = v̂(t,Xt) dt+ dWt .
The evolution of its distribution µ̂t = L(Xt) is given by a Fokker-Planck PDE:

µ̂(t = 0, x) = m0(x),︸ ︷︷ ︸
initial condition

∂tµ̂(t, x) = − ∂x (µ̂(t, x) v̂(t, x))︸ ︷︷ ︸
advection

+ 1
2 ∂xxµ̂(t, x)︸ ︷︷ ︸

diffusion

How can we characterize the best response (= opt. control) of a typical player?

v̂(·, ·) = argmin
v(·,·)

J(v(·, ·); µ̂) = argmin
v(·,·)

E
[∫ T

0
f(Xt, µ̂t, v(t,Xt)) dt+ g(XT)

]

(2) Or: Stoch. Maximum Principle: v̂(t,Xt) is characterized in terms of Xt,L(Xt)
and the adjoint state Yt ∈ Rd, which solves the backward SDE

dYt = −∂xĤ(Xt, µ̂t, Yt)dt+ Zt · dWt, YT = ∂xg(XT)

⇒ forward-backward SDE or PDE system

13 / 32

Optimality Condition for MFG: forward-backward system

At equilibrium, X evolves according to: X0 ∼ m0, dXt = v̂(t,Xt) dt+ dWt .
The evolution of its distribution µ̂t = L(Xt) is given by a Fokker-Planck PDE:

µ̂(t = 0, x) = m0(x),︸ ︷︷ ︸
initial condition

∂tµ̂(t, x) = − ∂x (µ̂(t, x) v̂(t, x))︸ ︷︷ ︸
advection

+ 1
2 ∂xxµ̂(t, x)︸ ︷︷ ︸

diffusion

How can we characterize the best response (= opt. control) of a typical player?

v̂(·, ·) = argmin
v(·,·)

J(v(·, ·); µ̂) = argmin
v(·,·)

E
[∫ T

0
f(Xt, µ̂t, v(t,Xt)) dt+ g(XT)

]
Picard iterations for MFG

Start with an initial guess µ(0). Repeat for k = 0, 1, . . . : Given µ(k),

(1) Compute v(k+1) = best response against µ(k)

(2) Compute µ(k+1) = mean-field flow associated to v(k+1)

Converges if µ(k) 7→ µ(k+1) is a strict contraction (very restrictive . . .)

(2) Or: Stoch. Maximum Principle: v̂(t,Xt) is characterized in terms of Xt,L(Xt)
and the adjoint state Yt ∈ Rd, which solves the backward SDE

dYt = −∂xĤ(Xt, µ̂t, Yt)dt+ Zt · dWt, YT = ∂xg(XT)

⇒ forward-backward SDE or PDE system

13 / 32

Optimality Condition for MFG: forward-backward system

At equilibrium, X evolves according to: X0 ∼ m0, dXt = v̂(t,Xt) dt+ dWt .
The evolution of its distribution µ̂t = L(Xt) is given by a Fokker-Planck PDE:

µ̂(t = 0, x) = m0(x),︸ ︷︷ ︸
initial condition

∂tµ̂(t, x) = − ∂x (µ̂(t, x) v̂(t, x))︸ ︷︷ ︸
advection

+ 1
2 ∂xxµ̂(t, x)︸ ︷︷ ︸

diffusion

How can we characterize the best response (= opt. control) of a typical player?

v̂(·, ·) = argmin
v(·,·)

J(v(·, ·); µ̂) = argmin
v(·,·)

E
[∫ T

0
f(Xt, µ̂t, v(t,Xt)) dt+ g(XT)

]
(1) Dynamic programming: v̂(·, ·) is given in terms of the value function û(·, ·)
which solves the Hamilton-Jacobi-Bellman PDE
−∂tû(t, x)︸ ︷︷ ︸

backward evolution

= Ĥ(x, µ(t, ·), ∂xû(t, x))︸ ︷︷ ︸
Hamiltonian

+ 1
2∂xxû(t, x), û(t = T, x) = g(x)︸ ︷︷ ︸

terminal condition

where Ĥ(x,m, q) := mina∈Rd
(
f(x,m, a) + q · a

)
.

(2) Or: Stoch. Maximum Principle: v̂(t,Xt) is characterized in terms of Xt,L(Xt)
and the adjoint state Yt ∈ Rd, which solves the backward SDE

dYt = −∂xĤ(Xt, µ̂t, Yt)dt+ Zt · dWt, YT = ∂xg(XT)

⇒ forward-backward SDE or PDE system

13 / 32

Optimality Condition for MFG: forward-backward system

At equilibrium, X evolves according to: X0 ∼ m0, dXt = v̂(t,Xt) dt+ dWt .
The evolution of its distribution µ̂t = L(Xt) is given by a Fokker-Planck PDE:

µ̂(t = 0, x) = m0(x),︸ ︷︷ ︸
initial condition

∂tµ̂(t, x) = − ∂x (µ̂(t, x) v̂(t, x))︸ ︷︷ ︸
advection

+ 1
2 ∂xxµ̂(t, x)︸ ︷︷ ︸

diffusion

How can we characterize the best response (= opt. control) of a typical player?

v̂(·, ·) = argmin
v(·,·)

J(v(·, ·); µ̂) = argmin
v(·,·)

E
[∫ T

0
f(Xt, µ̂t, v(t,Xt)) dt+ g(XT)

]
(1) Dynamic programming: v̂(·, ·) is given in terms of the value function û(·, ·)
which solves the Hamilton-Jacobi-Bellman PDE
−∂tû(t, x)︸ ︷︷ ︸

backward evolution

= Ĥ(x, µ(t, ·), ∂xû(t, x))︸ ︷︷ ︸
Hamiltonian

+ 1
2∂xxû(t, x), û(t = T, x) = g(x)︸ ︷︷ ︸

terminal condition

where Ĥ(x,m, q) := mina∈Rd
(
f(x,m, a) + q · a

)
.

(2) Or: Stoch. Maximum Principle: v̂(t,Xt) is characterized in terms of Xt,L(Xt)
and the adjoint state Yt ∈ Rd, which solves the backward SDE

dYt = −∂xĤ(Xt, µ̂t, Yt)dt+ Zt · dWt, YT = ∂xg(XT)

⇒ forward-backward SDE or PDE system

13 / 32

Optimality Condition for MFG: forward-backward system

At equilibrium, X evolves according to: X0 ∼ m0, dXt = v̂(t,Xt) dt+ dWt .
The evolution of its distribution µ̂t = L(Xt) is given by a Fokker-Planck PDE:

µ̂(t = 0, x) = m0(x),︸ ︷︷ ︸
initial condition

∂tµ̂(t, x) = − ∂x (µ̂(t, x) v̂(t, x))︸ ︷︷ ︸
advection

+ 1
2 ∂xxµ̂(t, x)︸ ︷︷ ︸

diffusion

How can we characterize the best response (= opt. control) of a typical player?

v̂(·, ·) = argmin
v(·,·)

J(v(·, ·); µ̂) = argmin
v(·,·)

E
[∫ T

0
f(Xt, µ̂t, v(t,Xt)) dt+ g(XT)

]
(1) Dynamic programming: v̂(·, ·) is given in terms of the value function û(·, ·)
which solves the Hamilton-Jacobi-Bellman PDE
−∂tû(t, x)︸ ︷︷ ︸

backward evolution

= Ĥ(x, µ(t, ·), ∂xû(t, x))︸ ︷︷ ︸
Hamiltonian

+ 1
2∂xxû(t, x), û(t = T, x) = g(x)︸ ︷︷ ︸

terminal condition

where Ĥ(x,m, q) := mina∈Rd
(
f(x,m, a) + q · a

)
.

(2) Or: Stoch. Maximum Principle: v̂(t,Xt) is characterized in terms of Xt,L(Xt)
and the adjoint state Yt ∈ Rd, which solves the backward SDE

dYt = −∂xĤ(Xt, µ̂t, Yt)dt+ Zt · dWt, YT = ∂xg(XT)

⇒ forward-backward SDE or PDE system
13 / 32

ML for FBSDE of McKean-Vlasov type

Solutions of MFG (and MFC) can be characterized by MKV FBSDEs of the form

{
dXt = B(t,Xt,L(Xt), Yt)dt+ dWt, X0 ∼ m0 → state

dYt = −F (t,Xt,L(Xt), Yt)dt+ Zt · dWt, YT = G(XT ,L(XT)) → control/cost

Idea: rewrite as optimal control of 2 forward SDEs ([Ma,Yong], “Sannikov’s trick”, . . .)

Reformulation as a MFC problem

Minimize over y0(·) and z(·) = (zt(·))t≥0

J(y0(·), z(·)) = E
[
‖Y y0,z

T −G(Xy0,z
T ,L(Xy0,z

T))‖2
]
,

under the constraint that (Xy0,z, Y y0,z) solve: ∀t ∈ [0, T]{
dXt = B(t,Xt,L(Xt), Yt)dt+ dWt, X0 ∼ µ0,

dYt = −F (t,Xt,L(Xt), Yt)dt+ zt(Xt) · dWt, Y0 = y0(X0).

→ MFC: can apply direct approach, replacing y0(·), z(·, ·) by NN

Extends [Han, Jentzen, E’17] for FBSDE without mean-field interactions

14 / 32

ML for FBSDE of McKean-Vlasov type

Solutions of MFG (and MFC) can be characterized by MKV FBSDEs of the form

{
dXt = B(t,Xt,L(Xt), Yt)dt+ dWt, X0 ∼ m0 → state

dYt = −F (t,Xt,L(Xt), Yt)dt+ Zt · dWt, YT = G(XT ,L(XT)) → control/cost

Idea: rewrite as optimal control of 2 forward SDEs ([Ma,Yong], “Sannikov’s trick”, . . .)

Reformulation as a MFC problem

Minimize over y0(·) and z(·) = (zt(·))t≥0

J(y0(·), z(·)) = E
[
‖Y y0,z

T −G(Xy0,z
T ,L(Xy0,z

T))‖2
]
,

under the constraint that (Xy0,z, Y y0,z) solve: ∀t ∈ [0, T]{
dXt = B(t,Xt,L(Xt), Yt)dt+ dWt, X0 ∼ µ0,

dYt = −F (t,Xt,L(Xt), Yt)dt+ zt(Xt) · dWt, Y0 = y0(X0).

→ MFC: can apply direct approach, replacing y0(·), z(·, ·) by NN

Extends [Han, Jentzen, E’17] for FBSDE without mean-field interactions

14 / 32

ML for FBSDE of McKean-Vlasov type

Solutions of MFG (and MFC) can be characterized by MKV FBSDEs of the form

{
dXt = B(t,Xt,L(Xt), Yt)dt+ dWt, X0 ∼ m0 → state

dYt = −F (t,Xt,L(Xt), Yt)dt+ Zt · dWt, YT = G(XT ,L(XT)) → control/cost

Idea: rewrite as optimal control of 2 forward SDEs ([Ma,Yong], “Sannikov’s trick”, . . .)

Reformulation as a MFC problem

Minimize over y0(·) and z(·) = (zt(·))t≥0

J(y0(·), z(·)) = E
[
‖Y y0,z

T −G(Xy0,z
T ,L(Xy0,z

T))‖2
]
,

under the constraint that (Xy0,z, Y y0,z) solve: ∀t ∈ [0, T]{
dXt = B(t,Xt,L(Xt), Yt)dt+ dWt, X0 ∼ µ0,

dYt = −F (t,Xt,L(Xt), Yt)dt+ zt(Xt) · dWt, Y0 = y0(X0).

→ MFC: can apply direct approach, replacing y0(·), z(·, ·) by NN

Extends [Han, Jentzen, E’17] for FBSDE without mean-field interactions

14 / 32

ML for FBSDE of McKean-Vlasov type

Solutions of MFG (and MFC) can be characterized by MKV FBSDEs of the form

{
dXt = B(t,Xt,L(Xt), Yt)dt+ dWt, X0 ∼ m0 → state

dYt = −F (t,Xt,L(Xt), Yt)dt+ Zt · dWt, YT = G(XT ,L(XT)) → control/cost

Idea: rewrite as optimal control of 2 forward SDEs ([Ma,Yong], “Sannikov’s trick”, . . .)

Reformulation as a MFC problem

Minimize over y0(·) and z(·) = (zt(·))t≥0

J(y0(·), z(·)) = E
[
‖Y y0,z

T −G(Xy0,z
T ,L(Xy0,z

T))‖2
]
,

under the constraint that (Xy0,z, Y y0,z) solve: ∀t ∈ [0, T]{
dXt = B(t,Xt,L(Xt), Yt)dt+ dWt, X0 ∼ µ0,

dYt = −F (t,Xt,L(Xt), Yt)dt+ zt(Xt) · dWt, Y0 = y0(X0).

→ MFC: can apply direct approach, replacing y0(·), z(·, ·) by NN

Extends [Han, Jentzen, E’17] for FBSDE without mean-field interactions

14 / 32

ML for FBSDE of McKean-Vlasov type

Solutions of MFG (and MFC) can be characterized by MKV FBSDEs of the form

{
dXt = B(t,Xt,L(Xt), Yt)dt+ dWt, X0 ∼ m0 → state

dYt = −F (t,Xt,L(Xt), Yt)dt+ Zt · dWt, YT = G(XT ,L(XT)) → control/cost

Idea: rewrite as optimal control of 2 forward SDEs ([Ma,Yong], “Sannikov’s trick”, . . .)

Reformulation as a MFC problem

Minimize over y0(·) and z(·) = (zt(·))t≥0

J(y0(·), z(·)) = E
[
‖Y y0,z

T −G(Xy0,z
T ,L(Xy0,z

T))‖2
]
,

under the constraint that (Xy0,z, Y y0,z) solve: ∀t ∈ [0, T]{
dXt = B(t,Xt,L(Xt), Yt)dt+ dWt, X0 ∼ µ0,

dYt = −F (t,Xt,L(Xt), Yt)dt+ zt(Xt) · dWt, Y0 = y0(X0).

→ MFC: can apply direct approach, replacing y0(·), z(·, ·) by NN

Extends [Han, Jentzen, E’17] for FBSDE without mean-field interactions

14 / 32

Numerical Illustration: LQ-MFG with common noise

Example: MFG for inter-bank borrowing/lending [Carmona, Fouque, Sun]
X = log-monetary reserve, α = rate of borrowing/lending to central bank, cost:

J(α; m̄) = E
[∫ T

0

[1
2α

2
t − qαt(m̄t −Xt) + ε

2(m̄t −Xt)2
]
dt+ c

2(m̄T −XT)2
]

where m̄ = (m̄t)t≥0 is the cond. mean given W 0 of the population states, and

dXt = [a(m̄t −Xt) + αt]dt+ σ
(√

1− ρ2dWt + ρ dW 0
t

)

15 / 32

Numerical Illustration: LQ-MFG with common noise

Example: MFG for inter-bank borrowing/lending [Carmona, Fouque, Sun]
X = log-monetary reserve, α = rate of borrowing/lending to central bank, cost:

J(α; m̄) = E
[∫ T

0

[1
2α

2
t − qαt(m̄t −Xt) + ε

2(m̄t −Xt)2
]
dt+ c

2(m̄T −XT)2
]

where m̄ = (m̄t)t≥0 is the cond. mean given W 0 of the population states, and

dXt = [a(m̄t −Xt) + αt]dt+ σ
(√

1− ρ2dWt + ρ dW 0
t

)
The Nash equilibrium can be characterized by the FBSDE system:

dXt = [(a+ q)(m̄t −Xt)− Yt]︸ ︷︷ ︸
∂yH

dt+ σ

(√
1− ρ2dWt + ρ dW 0

t

)
, X0 ∼ m0

dYt = (a+ q)Yt + (ε− q2)(m̄t −Xt)︸ ︷︷ ︸
−∂xH

dt+ Zt · dWt + Z0
t · dW 0

t , YT = c(XT − m̄T)

15 / 32

Numerical Illustration: LQ-MFG with common noise

DL for FBSDE system VS (semi) analytical solution (LQ structure)

16 / 32

Numerical Illustration: LQ-MFG with common noise

DL for FBSDE system VS (semi) analytical solution (LQ structure)

0.0 0.1 0.2 0.3 0.4 0.5
time t

−0.6

−0.4

−0.2

0.0

0.2

X1 (Algorithm 2)
X1 (benchmark)

X2 (Algorithm 2)
X2 (benchmark)

Samples of X

0.0 0.1 0.2 0.3 0.4 0.5
time t

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

Y1 (Algorithm 2)
Y1 (benchmark)

Y2 (Algorithm 2)
Y2 (benchmark)

Samples of Y

16 / 32

Numerical Illustration: LQ-MFG with common noise

DL for FBSDE system VS (semi) analytical solution (LQ structure)

0 10000 20000 30000 40000 50000
iteration

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

NT = 100, N = 104 NT = 50, N = 104 NT = 100, N = 102

L2 error on X

0 10000 20000 30000 40000 50000
iteration

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

NT = 100, N = 104 NT = 50, N = 104 NT = 100, N = 102

L2 error on Y

16 / 32

Outline

Introduction

Part 1: Solving Mean Field Problems with Deep Learning
Direct approach for MFC
MKV FBSDE system
Mean Field PDE System

Part 2: Reinforcement Learning with Mean-Field Interactions

Conclusion

MFG: PDE system

MFG: If (m̂, v̂) solves the MFG, then (m̂(t, x), v̂(t, x)) =
(
m(t, x), v̂(x,m(t),∇u(t, x))

)
with v̂(x,m(t),∇u(t, x)) = argmina∈Rk

(
f(x,m(t), a) +∇u(t, x) · b(x,m(t), a)

)
,

where (m,u) solve the PDE system
0 = ∂tm(t, x)− ν∆m(t, x) + div

(
m(t, x)∂qĤ(x,m(t),∇u(t, x))

)
0 = ∂tu(t, x) + ν∆u(t, x) + Ĥ(x,m(t),∇u(t, x))
m(0, x) = m0(x), u(T, x) = g(x,m(T))

with
Ĥ(x,m, q) := mina∈Rk

(
f(x,m, a) + q · b(x,m, a)

)
.

Deep Galerkin Method [Sirignano, Spiliopoulos]:
→ application to MFGs: see [Al-Aradi et al.; Carmona, L.; Cao, Guo, L.]

• replace unknown functions by deep NN

→ mθ1 , uθ2

• try to minimize the squared residual

→ loss =
∫ ∫
|∂tmθ1 (t, x) + . . . |2dtdx+ . . .

• by sampling points in the domain

→ sample (ti, xi)

17 / 32

MFG: PDE system

MFG: If (m̂, v̂) solves the MFG, then (m̂(t, x), v̂(t, x)) =
(
m(t, x), v̂(x,m(t),∇u(t, x))

)
with v̂(x,m(t),∇u(t, x)) = argmina∈Rk

(
f(x,m(t), a) +∇u(t, x) · b(x,m(t), a)

)
,

where (m,u) solve the PDE system
0 = ∂tm(t, x)− ν∆m(t, x) + div

(
m(t, x)∂qĤ(x,m(t),∇u(t, x))

)
0 = ∂tu(t, x) + ν∆u(t, x) + Ĥ(x,m(t),∇u(t, x))
m(0, x) = m0(x), u(T, x) = g(x,m(T))

with
Ĥ(x,m, q) := mina∈Rk

(
f(x,m, a) + q · b(x,m, a)

)
.

Deep Galerkin Method [Sirignano, Spiliopoulos]:
→ application to MFGs: see [Al-Aradi et al.; Carmona, L.; Cao, Guo, L.]

• replace unknown functions by deep NN

→ mθ1 , uθ2

• try to minimize the squared residual

→ loss =
∫ ∫
|∂tmθ1 (t, x) + . . . |2dtdx+ . . .

• by sampling points in the domain

→ sample (ti, xi)

17 / 32

MFG: PDE system

MFG: If (m̂, v̂) solves the MFG, then (m̂(t, x), v̂(t, x)) =
(
m(t, x), v̂(x,m(t),∇u(t, x))

)
with v̂(x,m(t),∇u(t, x)) = argmina∈Rk

(
f(x,m(t), a) +∇u(t, x) · b(x,m(t), a)

)
,

where (m,u) solve the PDE system
0 = ∂tm(t, x)− ν∆m(t, x) + div

(
m(t, x)∂qĤ(x,m(t),∇u(t, x))

)
0 = ∂tu(t, x) + ν∆u(t, x) + Ĥ(x,m(t),∇u(t, x))
m(0, x) = m0(x), u(T, x) = g(x,m(T))

with
Ĥ(x,m, q) := mina∈Rk

(
f(x,m, a) + q · b(x,m, a)

)
.

Deep Galerkin Method [Sirignano, Spiliopoulos]:
→ application to MFGs: see [Al-Aradi et al.; Carmona, L.; Cao, Guo, L.]

• replace unknown functions by deep NN→ mθ1 , uθ2

• try to minimize the squared residual→ loss =
∫ ∫
|∂tmθ1 (t, x) + . . . |2dtdx+ . . .

• by sampling points in the domain→ sample (ti, xi)

17 / 32

Example: Crowd trading

Model of crowd trading [Cardaliaguet, Lehalle]:
dSµ̄t = γµ̄tdt+ σdWt (asset price)
dQvt = vtdt (player’s inventory)
dXv,µ̄

t = −vt(Sµ̄t + κvt)dt (player’s wealth)

Objective: given µ̄ = (µ̄t)t, maximize

J(v; µ̄) = E
[
Xv,µ̄
T +QvTS

µ̄
T −A|Q

v
T |2 − φ

∫ T

0
|Qvt |2dt

]
where: φ,A > 0⇒ penalty for holding inventory

Ansatz [Cartea, Jaimungal]: V (t, x, s, q) = x+ qsu(t, q), v∗t (q) = ∂qu(t,q)
2κ

where u(·) solves

−γµ̄q = ∂tu− φq2 + sup
v

{v∂qu− κv2}, u(T, q) = −Aq2

Mean field term: at equilibrium

µ̄t =
∫
v∗t (q)m∗(t, dq) =

∫
∂qu
∗(t, q)
2κ m∗(t, dq),

where m∗ solves the KFP equation:

m(0, ·) = m0, ∂tm+ ∂q

(
m
∂qu
∗(t, q)
2κ

)
= 0

18 / 32

Example: Crowd trading

Model of crowd trading [Cardaliaguet, Lehalle]:
dSµ̄t = γµ̄tdt+ σdWt (asset price)
dQvt = vtdt (player’s inventory)
dXv,µ̄

t = −vt(Sµ̄t + κvt)dt (player’s wealth)

Objective: given µ̄ = (µ̄t)t, maximize

J(v; µ̄) = E
[
Xv,µ̄
T +QvTS

µ̄
T −A|Q

v
T |2 − φ

∫ T

0
|Qvt |2dt

]
where: φ,A > 0⇒ penalty for holding inventory
Ansatz [Cartea, Jaimungal]: V (t, x, s, q) = x+ qsu(t, q), v∗t (q) = ∂qu(t,q)

2κ
where u(·) solves

−γµ̄q = ∂tu− φq2 + sup
v

{v∂qu− κv2}, u(T, q) = −Aq2

Mean field term: at equilibrium

µ̄t =
∫
v∗t (q)m∗(t, dq) =

∫
∂qu
∗(t, q)
2κ m∗(t, dq),

where m∗ solves the KFP equation:

m(0, ·) = m0, ∂tm+ ∂q

(
m
∂qu
∗(t, q)
2κ

)
= 0

18 / 32

Example: Crowd trading

Model of crowd trading [Cardaliaguet, Lehalle]:
dSµ̄t = γµ̄tdt+ σdWt (asset price)
dQvt = vtdt (player’s inventory)
dXv,µ̄

t = −vt(Sµ̄t + κvt)dt (player’s wealth)

Objective: given µ̄ = (µ̄t)t, maximize

J(v; µ̄) = E
[
Xv,µ̄
T +QvTS

µ̄
T −A|Q

v
T |2 − φ

∫ T

0
|Qvt |2dt

]
where: φ,A > 0⇒ penalty for holding inventory
Ansatz [Cartea, Jaimungal]: V (t, x, s, q) = x+ qsu(t, q), v∗t (q) = ∂qu(t,q)

2κ
where u(·) solves

−γµ̄q = ∂tu− φq2 + sup
v

{v∂qu− κv2}, u(T, q) = −Aq2

Mean field term: at equilibrium

µ̄t =
∫
v∗t (q)m∗(t, dq) =

∫
∂qu
∗(t, q)
2κ m∗(t, dq),

where m∗ solves the KFP equation:

m(0, ·) = m0, ∂tm+ ∂q

(
m
∂qu
∗(t, q)
2κ

)
= 0

18 / 32

Example: Crowd trading

Forward-backward PDE system:

− γµ̄tq = ∂tu(t, q)− φq2 + |∂qu(t, q)|2

4κ

∂tm(t, q) + ∂q

(
m(t, q)∂qu(t, q)

2κ

)
= 0

µ̄t =
∫

∂qu(t, q)
2κ m(t, q)dq

m(0, ·) = m0, u(T, q) = −Aq2.

19 / 32

Numerical Illustration: Crowd trading

Trade crowding MFG example solved by DGM.

t

0.0 0.2 0.4 0.6 0.8 1.0

x

0
1

2
3

4
5

6

0.2
0.4
0.6
0.8
1.0
1.2

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.2 0.4 0.6 0.8 1.0
t

0

1

2

3

4

5

6

x

benchmark mean

0.00

0.16

0.32

0.48

0.64

0.80

0.96

1.12

1.28

1.44

Evolution of the distribution m: surface (left) and contour (right).

20 / 32

Numerical Illustration: Crowd trading

Trade crowding MFG example solved by DGM.

0 1 2 3 4 5 6
x

7

6

5

4

3

2

1

0

co
nt

ro
l

control from NN, t=0.0
control from ODE, t=0.0

0 1 2 3 4 5 6
x

6

5

4

3

2

1

0

1

co
nt

ro
l

control from NN, t=0.6
control from ODE, t=0.6

0 1 2 3 4 5 6
x

6

5

4

3

2

1

0

1

co
nt

ro
l

control from NN, t=0.98
control from ODE, t=0.98

Evolution of the optimal control v∗ (3 different time steps).

20 / 32

Outline

Introduction

Part 1: Solving Mean Field Problems with Deep Learning

Part 2: Reinforcement Learning with Mean-Field Interactions

Conclusion

Mean Field Framework

Generic Mean Field model: for a typical infinitesimal agent

• Dynamics: discrete time

Xα,µ
n+1 = ϕ(Xα,µ

n , αn, µn, εn+1, ε
0
n+1), n ≥ 0, Xα,µ

0 ∼ µ0

� Xα,µ
n ∈ X ⊆ Rd : state, αn ∈ U ⊆ Rk : action

� εn ∼ ν : idiosyncratic noise, ε0n ∼ ν0 : common noise (random environment)

� µn ∈ P(X) is a state distribution

• Cost: J(α;µ) = Eε,ε0

[∑∞
n=0 γ

nf
(
Xα,µ
n , αn, µn

)]

Two scenarios:

• Cooperative (MFControl): Find α∗ minimizing α 7→ JMFC(α) = J(α;µα)
where µαn = P0

X
α,µα
n

• Non-Cooperative (MFGame): Find α̂ minimizing α 7→ JMFG(α; µ̂) = J(α; µ̂)
where µ̂n = P0

X
α̂,µ̂
n

Q: How to learn an optimal behavior when the model (ϕ, f) is not known?

21 / 32

Mean Field Framework

Generic Mean Field model: for a typical infinitesimal agent

• Dynamics: discrete time

Xα,µ
n+1 = ϕ(Xα,µ

n , αn, µn, εn+1, ε
0
n+1), n ≥ 0, Xα,µ

0 ∼ µ0

� Xα,µ
n ∈ X ⊆ Rd : state, αn ∈ U ⊆ Rk : action

� εn ∼ ν : idiosyncratic noise, ε0n ∼ ν0 : common noise (random environment)

� µn ∈ P(X) is a state distribution

• Cost: J(α;µ) = Eε,ε0

[∑∞
n=0 γ

nf
(
Xα,µ
n , αn, µn

)]
Two scenarios:

• Cooperative (MFControl): Find α∗ minimizing α 7→ JMFC(α) = J(α;µα)
where µαn = P0

X
α,µα
n

• Non-Cooperative (MFGame): Find α̂ minimizing α 7→ JMFG(α; µ̂) = J(α; µ̂)
where µ̂n = P0

X
α̂,µ̂
n

Q: How to learn an optimal behavior when the model (ϕ, f) is not known?
21 / 32

Two scenarios

1. Learning with cooperation

2. Learning with competition

22 / 32

Two scenarios

1. Learning with cooperation

2. Learning with competition

22 / 32

From Optimal Control to Mean Field RL

Mean-Field Control
unknown model // Mean-Field

Reinforcement Learning

Optimal Control

N→∞
MKV

OO

unknown model
// Reinforcement Learning

N→∞
MKV

OO

23 / 32

Approximate Policy Gradient

Idea 1: Make the “direct approach” model-free

Policy Gradient (PG) to minimize J(θ)
• Control ≈ parameterized function
• Look for the optimal parameter θ∗

• Perform gradient descent on the space of parameters

Hierarchy of three situations, more and more complex:

(1) access to the exact (mean field) model: θk+1 = θk − η∇J(θk)

(2) access to a mean field simulator:
→ idem + gradient estimation (0th-order opt.): θk+1 = θk − η∇̃J(θk)

(3) access to a N -agent population simulator:
→ idem + error on mean ≈ empirical mean (LLN): θk+1 = θk − η∇̃NJ(θk)

Theorem: For Linear-Quadratic MFC [Carmona, L., Tan’19]

In each case, convergence holds at a linear rate:

Taking k ≈ O
(

log(1/ε)
)

is sufficient to ensure J(θk)− J(θ∗) < ε.

Proof: builds on [Fazel et al.’18], analysis of perturbation of Riccati equations

24 / 32

Approximate Policy Gradient

Idea 1: Make the “direct approach” model-free

Policy Gradient (PG) to minimize J(θ)
• Control ≈ parameterized function
• Look for the optimal parameter θ∗

• Perform gradient descent on the space of parameters

Hierarchy of three situations, more and more complex:

(1) access to the exact (mean field) model: θk+1 = θk − η∇J(θk)

(2) access to a mean field simulator:
→ idem + gradient estimation (0th-order opt.): θk+1 = θk − η∇̃J(θk)

(3) access to a N -agent population simulator:
→ idem + error on mean ≈ empirical mean (LLN): θk+1 = θk − η∇̃NJ(θk)

Theorem: For Linear-Quadratic MFC [Carmona, L., Tan’19]

In each case, convergence holds at a linear rate:

Taking k ≈ O
(

log(1/ε)
)

is sufficient to ensure J(θk)− J(θ∗) < ε.

Proof: builds on [Fazel et al.’18], analysis of perturbation of Riccati equations

24 / 32

Approximate Policy Gradient

Idea 1: Make the “direct approach” model-free

Policy Gradient (PG) to minimize J(θ)
• Control ≈ parameterized function
• Look for the optimal parameter θ∗

• Perform gradient descent on the space of parameters

Hierarchy of three situations, more and more complex:

(1) access to the exact (mean field) model: θk+1 = θk − η∇J(θk)

(2) access to a mean field simulator:
→ idem + gradient estimation (0th-order opt.): θk+1 = θk − η∇̃J(θk)

(3) access to a N -agent population simulator:
→ idem + error on mean ≈ empirical mean (LLN): θk+1 = θk − η∇̃NJ(θk)

Theorem: For Linear-Quadratic MFC [Carmona, L., Tan’19]

In each case, convergence holds at a linear rate:

Taking k ≈ O
(

log(1/ε)
)

is sufficient to ensure J(θk)− J(θ∗) < ε.

Proof: builds on [Fazel et al.’18], analysis of perturbation of Riccati equations

24 / 32

Approximate Policy Gradient

Idea 1: Make the “direct approach” model-free

Policy Gradient (PG) to minimize J(θ)
• Control ≈ parameterized function
• Look for the optimal parameter θ∗

• Perform gradient descent on the space of parameters

Hierarchy of three situations, more and more complex:

(1) access to the exact (mean field) model: θk+1 = θk − η∇J(θk)

(2) access to a mean field simulator:
→ idem + gradient estimation (0th-order opt.): θk+1 = θk − η∇̃J(θk)

(3) access to a N -agent population simulator:
→ idem + error on mean ≈ empirical mean (LLN): θk+1 = θk − η∇̃NJ(θk)

Theorem: For Linear-Quadratic MFC [Carmona, L., Tan’19]

In each case, convergence holds at a linear rate:

Taking k ≈ O
(

log(1/ε)
)

is sufficient to ensure J(θk)− J(θ∗) < ε.

Proof: builds on [Fazel et al.’18], analysis of perturbation of Riccati equations

24 / 32

Approximate Policy Gradient

Idea 1: Make the “direct approach” model-free

Policy Gradient (PG) to minimize J(θ)
• Control ≈ parameterized function
• Look for the optimal parameter θ∗

• Perform gradient descent on the space of parameters

Hierarchy of three situations, more and more complex:

(1) access to the exact (mean field) model: θk+1 = θk − η∇J(θk)

(2) access to a mean field simulator:
→ idem + gradient estimation (0th-order opt.): θk+1 = θk − η∇̃J(θk)

(3) access to a N -agent population simulator:
→ idem + error on mean ≈ empirical mean (LLN): θk+1 = θk − η∇̃NJ(θk)

Theorem: For Linear-Quadratic MFC [Carmona, L., Tan’19]

In each case, convergence holds at a linear rate:

Taking k ≈ O
(

log(1/ε)
)

is sufficient to ensure J(θk)− J(θ∗) < ε.

Proof: builds on [Fazel et al.’18], analysis of perturbation of Riccati equations
24 / 32

Numerical Illustration: LQMFC [Carmona, L., Tan’19]

Example: Linear dynamics, quadratic costs of the type:

f(x, µ, v) = (µ̄− x)2︸ ︷︷ ︸
distance to

mean position

+ v2︸︷︷︸
cost of
moving

, µ̄ =
∫
µ(ξ)dξ︸ ︷︷ ︸

mean position

,

Value of the MF cost Rel. err. on MF cost
MF cost = cost in the mean field problem

Main take-away:
Trying to learn the mean-field regime solution can be efficient even for N small

Numerical Illustration: LQMFC [Carmona, L., Tan’19]

Example: Linear dynamics, quadratic costs of the type:

f(x, µ, v) = (µ̄− x)2︸ ︷︷ ︸
distance to

mean position

+ v2︸︷︷︸
cost of
moving

, µ̄ =
∫
µ(ξ)dξ︸ ︷︷ ︸

mean position

,

Value of the social cost Rel. err. on social cost
Social cost = average over the N -agents

Main take-away:
Trying to learn the mean-field regime solution can be efficient even for N small

Numerical Illustration: LQMFC [Carmona, L., Tan’19]

Example: Linear dynamics, quadratic costs of the type:

f(x, µ, v) = (µ̄− x)2︸ ︷︷ ︸
distance to

mean position

+ v2︸︷︷︸
cost of
moving

, µ̄ =
∫
µ(ξ)dξ︸ ︷︷ ︸

mean position

,

Value of the social cost Rel. err. on social cost
Social cost = average over the N -agents

Main take-away:
Trying to learn the mean-field regime solution can be efficient even for N small

Mean Field Control and (MF)RL

Q: Beyond the LQ setting?
Idea 2: Generalize Q-learning to the mean-field setting

α∗ ∈ argmin
α

JMFC(α) = Eε,ε0

[∞∑
n=0

γnf
(
Xα
n , αn, µ

α
n

)]
, µαn = P0

Xαn

= Eε0

[∞∑
n=0

γn
∫
X×U

f
(
x, a, µαn

)
µαn(dx, da)︸ ︷︷ ︸

function of µαn

]

Dynamic Programming Principle (DPP):
• via the “lifted” problem for the population distribution µα (social planner’s optim.)
• value function = function of the distribution µ

25 / 32

Mean Field Control and (MF)RL

Q: Beyond the LQ setting?
Idea 2: Generalize Q-learning to the mean-field setting

α∗ ∈ argmin
α

JMFC(α) = Eε,ε0

[∞∑
n=0

γnf
(
Xα
n , αn, µ

α
n

)]
, µαn = P0

Xαn

= Eε0

[∞∑
n=0

γn
∫
X×U

f
(
x, a, µαn

)
µαn(dx, da)︸ ︷︷ ︸

function of µαn

]

Dynamic Programming Principle (DPP):
• via the “lifted” problem for the population distribution µα (social planner’s optim.)
• value function = function of the distribution µ

25 / 32

Mean Field Control and (MF)RL

Q: Beyond the LQ setting?
Idea 2: Generalize Q-learning to the mean-field setting

α∗ ∈ argmin
α

JMFC(α) = Eε,ε0

[∞∑
n=0

γnf
(
Xα
n , αn, µ

α
n

)]
, µαn = P0

Xαn

= Eε0

[∞∑
n=0

γn
∫
X×U

f
(
x, a, µαn

)
µαn(dx, da)︸ ︷︷ ︸

function of µαn

]

Dynamic Programming Principle (DPP):
• via the “lifted” problem for the population distribution µα (social planner’s optim.)
• value function = function of the distribution µ

25 / 32

Mean Field Control and (MF)RL

Q: Beyond the LQ setting?
Idea 2: Generalize Q-learning to the mean-field setting

α∗ ∈ argmin
α

JMFC(α) = Eε,ε0

[∞∑
n=0

γnf
(
Xα
n , αn, µ

α
n

)]
, µαn = P0

Xαn

= Eε0

[∞∑
n=0

γn
∫
X×U

f
(
x, a, µαn

)
µαn(dx, da)︸ ︷︷ ︸

function of µαn

]

Dynamic Programming Principle (DPP):
• via the “lifted” problem for the population distribution µα (social planner’s optim.)
• value function = function of the distribution µ

25 / 32

Mean Field Control and (MF)RL

Q: Beyond the LQ setting?
Idea 2: Generalize Q-learning to the mean-field setting

α∗ ∈ argmin
α

JMFC(α) = Eε,ε0

[∞∑
n=0

γnf
(
Xα
n , αn, µ

α
n

)]
, µαn = P0

Xαn

= Eε0

[∞∑
n=0

γn
∫
X×U

f
(
x, a, µαn

)
µαn(dx, da)︸ ︷︷ ︸

function of µαn

]

Dynamic Programming Principle (DPP):
• via the “lifted” problem for the population distribution µα (social planner’s optim.)
• value function = function of the distribution µ

25 / 32

MFMDP and Dynamic Programming

Mean Field Markov Decision Process: (S̄, Ā, p̄, r̄, γ), where:

• State space: S̄ = P(X)
• Action space: Ā = P(X × U)
• Transition: µ′ = Φ̄(µ, ā, ε0) ∼ p̄(µ, ā)
• Reward: r̄(µ, ā) = −

∫
X×U f(x, a, µ)ā(dx, da)

Goal: max. V̄ π̄(µ) = E
[∞∑
n=0

γnr̄
(
µπ̄n, ān

)]
, ān ∼ π̄(·|µπ̄n), µπ̄n+1 ∼ p̄(·|µπ̄n, ān), µπ̄0 = µ

Theorem: DPP for MFMDP [Carmona, L., Tan’20]

V̄ ∗(µ) := sup
π̄

V̄ π̄(µ) = sup
π̄

{∫
Ā

[
r̄(µ, ā) + γ E

[
V̄ ∗
(
Φ̄(µ, ā, ε0)

)]]
π̄(dā|µ)

}
,

under suitable conditions, where the sup is over a subset of {π̄ : S̄ → P(Ā)}
Likewise for mean field state-action value function Q̄∗

Proof based on double lifting [Bertsekas, Shreve’78]

DPPs for MFC: [L., Pironneau; Pham et al.; Gast et al.; Guo et al.; Possamai et al.;. . .]

Here: discrete time, infinite horizon, common noise, feedback controls.
→ well-suited for RL→ Mean-field Q-learning algorithm

26 / 32

MFMDP and Dynamic Programming

Mean Field Markov Decision Process: (S̄, Ā, p̄, r̄, γ), where:

• State space: S̄ = P(X)
• Action space: Ā = P(X × U)
• Transition: µ′ = Φ̄(µ, ā, ε0) ∼ p̄(µ, ā)
• Reward: r̄(µ, ā) = −

∫
X×U f(x, a, µ)ā(dx, da)

Goal: max. V̄ π̄(µ) = E
[∞∑
n=0

γnr̄
(
µπ̄n, ān

)]
, ān ∼ π̄(·|µπ̄n), µπ̄n+1 ∼ p̄(·|µπ̄n, ān), µπ̄0 = µ

Theorem: DPP for MFMDP [Carmona, L., Tan’20]

V̄ ∗(µ) := sup
π̄

V̄ π̄(µ) = sup
π̄

{∫
Ā

[
r̄(µ, ā) + γ E

[
V̄ ∗
(
Φ̄(µ, ā, ε0)

)]]
π̄(dā|µ)

}
,

under suitable conditions, where the sup is over a subset of {π̄ : S̄ → P(Ā)}
Likewise for mean field state-action value function Q̄∗

Proof based on double lifting [Bertsekas, Shreve’78]

DPPs for MFC: [L., Pironneau; Pham et al.; Gast et al.; Guo et al.; Possamai et al.;. . .]

Here: discrete time, infinite horizon, common noise, feedback controls.
→ well-suited for RL→ Mean-field Q-learning algorithm

26 / 32

MFMDP and Dynamic Programming

Mean Field Markov Decision Process: (S̄, Ā, p̄, r̄, γ), where:

• State space: S̄ = P(X)
• Action space: Ā = P(X × U)
• Transition: µ′ = Φ̄(µ, ā, ε0) ∼ p̄(µ, ā)
• Reward: r̄(µ, ā) = −

∫
X×U f(x, a, µ)ā(dx, da)

Goal: max. V̄ π̄(µ) = E
[∞∑
n=0

γnr̄
(
µπ̄n, ān

)]
, ān ∼ π̄(·|µπ̄n), µπ̄n+1 ∼ p̄(·|µπ̄n, ān), µπ̄0 = µ

Theorem: DPP for MFMDP [Carmona, L., Tan’20]

V̄ ∗(µ) := sup
π̄

V̄ π̄(µ) = sup
π̄

{∫
Ā

[
r̄(µ, ā) + γ E

[
V̄ ∗
(
Φ̄(µ, ā, ε0)

)]]
π̄(dā|µ)

}
,

under suitable conditions, where the sup is over a subset of {π̄ : S̄ → P(Ā)}
Likewise for mean field state-action value function Q̄∗

Proof based on double lifting [Bertsekas, Shreve’78]

DPPs for MFC: [L., Pironneau; Pham et al.; Gast et al.; Guo et al.; Possamai et al.;. . .]

Here: discrete time, infinite horizon, common noise, feedback controls.
→ well-suited for RL→ Mean-field Q-learning algorithm 26 / 32

Two scenarios

1. Learning with cooperation

2. Learning with competition

27 / 32

Fictitious Play for MFG

Picard fixed-point iterations:

µ(k) 7→ α(k+1) 7→ µ(k+1)

• α(k+1) best response against µ(k)

• µ(k+1) induced by α(k+1)

→ Convergence typically relies on strict contraction [Caines et al.; Guo et al.; . . .]

Theorem: Error propagation [Elie, Pérolat, L., Geist, Pietquin, AAAI’20]

Under Lasry-Lions monotonicity condition,

(α̃(k), µ̄(k)) −−−−−→
k→+∞

(ε, δ)-Nash equilibrium

RL for α̃(k+1): standard MDP parameterized by µ̄(k)

28 / 32

Fictitious Play for MFG

Picard fixed-point iterations:

µ(k) 7→ α(k+1) 7→ µ(k+1)

• α(k+1) best response against µ(k)

• µ(k+1) induced by α(k+1)

→ Convergence typically relies on strict contraction [Caines et al.; Guo et al.; . . .]

Fictitious Play [Brown’51; Robinson’51; . . . ; Cardaliaguet, Hadikhanloo’15]

µ̄(k) 7→ α(k+1) 7→ µ(k+1) 7→ µ̄(k+1)

• α(k+1) best response against µ̄(k)

• µ(k+1) induced by α(k+1)

• µ̄(k+1) = k
k+1 µ̄

(k) + 1
k+1µ

(k+1) = 1
k+1

∑k+1
`=1 µ

(`)

→ Convergence typically under monotonicity condition

Theorem: Error propagation [Elie, Pérolat, L., Geist, Pietquin, AAAI’20]

Under Lasry-Lions monotonicity condition,

(α̃(k), µ̄(k)) −−−−−→
k→+∞

(ε, δ)-Nash equilibrium

RL for α̃(k+1): standard MDP parameterized by µ̄(k)

28 / 32

Fictitious Play for MFG

Picard fixed-point iterations:

µ(k) 7→ α(k+1) 7→ µ(k+1)

• α(k+1) best response against µ(k)

• µ(k+1) induced by α(k+1)

→ Convergence typically relies on strict contraction [Caines et al.; Guo et al.; . . .]

Approximate Fictitious Play

• α̃(k+1) approximate best response against µ̄(k)

• µ(k+1) induced by α̃(k+1)

• µ̄(k+1) = k
k+1 µ̄

(k) + 1
k+1µ

(k+1) = 1
k+1

∑k+1
`=1 µ

(`)

→ Convergence typically under monotonicity condition

Theorem: Error propagation [Elie, Pérolat, L., Geist, Pietquin, AAAI’20]

Under Lasry-Lions monotonicity condition,

(α̃(k), µ̄(k)) −−−−−→
k→+∞

(ε, δ)-Nash equilibrium

RL for α̃(k+1): standard MDP parameterized by µ̄(k)

28 / 32

Fictitious Play for MFG

Picard fixed-point iterations:

µ(k) 7→ α(k+1) 7→ µ(k+1)

• α(k+1) best response against µ(k)

• µ(k+1) induced by α(k+1)

→ Convergence typically relies on strict contraction [Caines et al.; Guo et al.; . . .]

Approximate Fictitious Play

• α̃(k+1) approximate best response against µ̄(k)

• µ(k+1) induced by α̃(k+1)

• µ̄(k+1) = k
k+1 µ̄

(k) + 1
k+1µ

(k+1) = 1
k+1

∑k+1
`=1 µ

(`)

→ Convergence typically under monotonicity condition

Theorem: Error propagation [Elie, Pérolat, L., Geist, Pietquin, AAAI’20]

Under Lasry-Lions monotonicity condition,

(α̃(k), µ̄(k)) −−−−−→
k→+∞

(ε, δ)-Nash equilibrium

RL for α̃(k+1): standard MDP parameterized by µ̄(k)
28 / 32

Continuous Time Fictitious Play

Fictitious Play [Cardaliaguet, Hadikhanloo’15]: µ̄(k) 7→ α(k+1) 7→ µ(k+1) 7→ µ̄(k+1), with

µ̄(k+1) − µ̄(k)

k + 1 = 1
k + 1

(
µ(k+1) − µ̄(k))

Continuous Time Fictitious Play

• averaged distribution dynamics: t ≥ 1,

d

dt
µ̄(t) = 1

t

(
µ(t) − µ̄(t))

where µ(t) = induced by BR against µ̄(t)

• averaged (mixed) policy dynamics: π̄(t) generating µ̄(t)

→ Rate of convergence

Theorem: Convergence Rate [Perrin, Pérolat, L., Geist, Elie, Pietquin, NeurIPS’20]

Under Lasry-Lions monotonicity condition,

E(π̄(t)) = O (1/t)

Exploitability: E(π) = max
π′

J(π′;µπ)− J(π;µπ)

29 / 32

Continuous Time Fictitious Play

Fictitious Play [Cardaliaguet, Hadikhanloo’15]: µ̄(k) 7→ α(k+1) 7→ µ(k+1) 7→ µ̄(k+1), with

µ̄(k+1) − µ̄(k)

k + 1 = 1
k + 1

(
µ(k+1) − µ̄(k))

Continuous Time Fictitious Play

• averaged distribution dynamics: t ≥ 1,

d

dt
µ̄(t) = 1

t

(
µ(t) − µ̄(t))

where µ(t) = induced by BR against µ̄(t)

• averaged (mixed) policy dynamics: π̄(t) generating µ̄(t)

→ Rate of convergence

Theorem: Convergence Rate [Perrin, Pérolat, L., Geist, Elie, Pietquin, NeurIPS’20]

Under Lasry-Lions monotonicity condition,

E(π̄(t)) = O (1/t)

Exploitability: E(π) = max
π′

J(π′;µπ)− J(π;µπ)

29 / 32

Example: Systemic Risk

Systemic risk model of [Carmona, Fouque, Sun] with LQ structure & common noise:

J(a; (mn)n) = −E
[NT∑
n=0

(
a2
n −qan(mn −Xn)︸ ︷︷ ︸

borrow if Xn < mn
lend if Xn > mn

+κ(mn −Xn)2
)

+ c(mNT −XNT)2
]

Subj. to: Xn+1 = Xn + [K(mn −Xn) + an] + εn+1 + ε0n+1

At equilibrium: mn = E[Xn|ε0], n ≥ 0

Time

0.02.55.07.510.012.515.017.5

States 051015202530

0.0
0.1
0.2

Exact solution

Time

0.02.55.07.510.012.515.017.5

States 051015202530

0.00.10.20.3

Fictitious Play & RL

100 101

Log(iterations)

100

Backward Induction
Q-learning

Exploitability

30 / 32

Example: Systemic Risk

Systemic risk model of [Carmona, Fouque, Sun] with LQ structure & common noise:

J(a; (mn)n) = −E
[NT∑
n=0

(
a2
n −qan(mn −Xn)︸ ︷︷ ︸

borrow if Xn < mn
lend if Xn > mn

+κ(mn −Xn)2
)

+ c(mNT −XNT)2
]

Subj. to: Xn+1 = Xn + [K(mn −Xn) + an] + εn+1 + ε0n+1

At equilibrium: mn = E[Xn|ε0], n ≥ 0

Time

0.02.55.07.510.012.515.017.5

States 051015202530

0.0
0.1
0.2

Exact solution

Time

0.02.55.07.510.012.515.017.5

States 051015202530

0.00.10.20.3

Fictitious Play & RL

100 101

Log(iterations)

100

Backward Induction
Q-learning

Exploitability

30 / 32

Outline

Introduction

Part 1: Solving Mean Field Problems with Deep Learning

Part 2: Reinforcement Learning with Mean-Field Interactions

Conclusion

Summary

Q1: How can we solve large games with complex structures?

Part 1: Solving mean-field problems with deep learning

• Direct approach

• FB systems of SDEs

• FB systems of PDEs

Q2: How can large populations learn to coordinate?

Part 2: Reinforcement learning with mean-field interactions

• Learning with cooperation: PG / mean-field Q-learning

• Learning with competition: Fictitious Play & RL

31 / 32

Perspectives and future work

Main directions for future research:

1. Bidirectional links with machine learning

• Machine learning for large population games

• Mean field view on machine learning

2. Breaking the barrier of homogeneity & symmetry

• Variety of agents

• Networked interactions

• PDEs on the Wasserstein space

32 / 32

One last example of MFG: Walk for the climate, Paris

Thank you

	Outline
	Introduction
	Part 1: Solving Mean Field Problems with Deep Learning
	Direct approach for MFC
	MKV FBSDE system
	Mean Field PDE System

	Part 2: Reinforcement Learning with Mean-Field Interactions
	Conclusion

	anm3:
	3.0:
	anm2:
	2.0:
	anm1:
	1.0:
	anm0:
	0.0:

