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Main questions for this talk

Q1: How can we solve large games with complex structures?

Part 1: Solving mean-field problems with deep learning

Q2: How can large populations learn to coordinate?

Part 2: Reinforcement learning with mean-field interactions
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Mean Field Paradigm: number of agents N — oo

i

Main question: How do global outcomes emerge from individual decisions?
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Mean Field Paradigm: number of agents N — oo

Main question: How do global outcomes emerge from individual decisions?
Large population = individual interactions are intractable

Assumption: perfect homogeneity & symmetry of the agents

Mean Field in statistical mechanics: particles (micro) — density function (macro)

Mix with optimization:
e mean field control: infinitely many cooperating agents
e mean field game: infinitely many competing players
2/32



Landscape of Research on MFG

Initiated by Lasry and Lions, and Huang et al. around 2006
Main research directions:

e Modeling: crowd motion, econ./finance, flocking, risk management, smart grid, energy
production, distributed robotics, epidemic, ...
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Landscape of Research on MFG

Initiated by Lasry and Lions, and Huang et al. around 2006
Main research directions:

e Modeling: crowd motion, econ./finance, flocking, risk management, smart grid, energy
production, distributed robotics, epidemic, ...

¢ Mean field approach justification:
o N-agent problem — mean field: convergence

o N-agent problem <— mean field: e-optimality

e Characterization of the mean field problem solutions (optimality conditions):

o partial differential equations (PDE system)

© stochastic differential equations (SDE system)

o Master equation (PDE on Wasserstein space)

e Computation of solutions
© “solving” numerically = What is the optimal behavior? (control rule & density flow)
o crucial for applications

© challenge: coupling between optimization & mean-field
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Multi-Agent Control Problem
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Agent i uses control v' (¢, X/, ..., X}) € R? and has state X} € R¢ at time ¢, with
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Agent i uses control v' (¢, X/, ..., X}) € R? and has state X} € R¢ at time ¢, with
e initial position: X§ ~mo X,
e and dynamics: dXi = o'(t, X}, X)) dt + dwi
~—~ —_——— ~—
variation velocity noise
of position

Agent i pays running cost f (X{, i, v' (£, X)) typically increasing w.r.t. (uf',v;)
where the interaction is of mean-field type (symmetry) since it occurs only through

N
1
N
He = N Z;‘ng
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which is the empirical distribution of the agents’ states (6, = Dirac mass at z)
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e initial position: X§ ~mo X,
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~—~ —_——— ~—
variation velocity noise
of position

Agent i pays running cost f (X{, i, v' (£, X)) typically increasing w.r.t. (uf',v;)
where the interaction is of mean-field type (symmetry) since it occurs only through

N
1
N
He = N Z; 5Xg
=
which is the empirical distribution of the agents’ states (6, = Dirac mass at z)
The social cost is the average of all the individual costs:

N T
JN(wl.....,vA):N E IE{ / f(XZ,uiv,w (t,Xt)) dt  + g(XIT) }
i=1 0 - N~
running cost terminal cost

Goal: Find an optimal © = (¢*,..., 9" ) minimizing J~
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Multi-Agent Control Problem

Assume there are N identical agents (homogeneity)

Agent i uses control v' (¢, X/, ..., X}) € R? and has state X} € R¢ at time ¢, with
e initial position: X§ ~mo X,
e and dynamics: dXi = o'(t, X}, X)) dt + dwi
~—~ —_——— ~—
variation velocity noise
of position

Agent i pays running cost f (X{, i, v' (£, X)) typically increasing w.r.t. (uf',v;)
where the interaction is of mean-field type (symmetry) since it occurs only through

N
1
N
He = N Z; 5Xg
=
which is the empirical distribution of the agents’ states (6, = Dirac mass at z)
The social cost is the average of all the individual costs:

N T
P = B /f(Xz,uiV,w,xo) dt + g(xt) |
= 0 N—_——
! running cost terminal cost
1

Goal: Find an optimal © = (¢*,..., 9" ) minimizing J~
Rem.: Terminal cost and drift could involve ;. too
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Control with Mean Field Interactions: N-Agent & Asymptotic Versions

Optimal control of N agents: Find (¢2',...,%") minimizing the social cost
1 T
JV@! M) = S [/ F(XE 0 (8, X)) dt+ g (X5) |
i=1 ©

where 1Y = % > | 0; and

dX? =07 (t, Xy) dt +dW{, XJiid ~mo.
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Control with Mean Field Interactions: N-Agent & Asymptotic Versions

Optimal control of N agents: Find (¢2',...,%") minimizing the social cost
1 — T
JV@! M) = S [/ F (XL 0" (4, X)) dt + g (X7) |
i=1 0

where 1Y = % > | 0; and

dX? =07 (t, Xy) dt +dW{, XJiid ~mo.

As N — 400, ¥ — p; = deterministic distribution. Asymptotic problem:
Mean field control (MFC): Find a control ¢ minimizing

T
J(U) =E |:/ f(X:a['(X;))vv(t?Xt))dt+g(X%) 5

where u; = L£(X/) is the law of X; = state of a representative player with
dX{ =v(t, X7) dt +dW;, X ~mo.
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Control with Mean Field Interactions: N-Agent & Asymptotic Versions

Optimal control of N agents: Find (¢2',...,%") minimizing the social cost

N T
Py = £ B [ (it 0 %0) dikg (38)]
o=il

where 1Y = % > | 0 and

dX] =o' (t,X,)dt +dW{, X§iid ~mo.

As N — 400, ul — p: = deterministic distribution. Asymptotic problem:
Mean field control (MFC): Find a control ¢ minimizing

J(v) =E {/ FX¢, L(X¢), 0(t, Xo)) dt + 9(X7) |

where u; = L£(X/) is the law of X; = state of a representative player with
dXy = o(t, XP)dt +dW,, X ~mo.

Motivations:
e “N — o0”: a large number of cooperative agents; McKean-Vlasov dynamics:
dXy = b(X, u, v(t, X)) dt + dW,
e Non-linear dependence on the law: e.g. risk measures:
Elg(X7, pr)] = Var(Xr) — E[X7]
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Games with Mean Field Interactions: N-Agent & Asymptotic Versions

Nash Equilibrium: When a player optimizes, the other players’ controls are fixed

Nash equilibrium between N players: Find ¢ = (4',...,9") such that

ot ottt , 0 minimizes

Foreachi=1,...,N,given o ‘= (¢',...,0 e,
T
v J(0'507) = E [/ F(Xipd 0" (8, X0)) dt +g (X1)
0

where ;i = N 2jzi9x7 + w0x; and
dX; =" (6, X,) dt +dWy¢,  dX? =07 (6, X)) dt +dWi, j#i

)

v
As N — 400, ¥ — p; which is not influenced by v*. Asymptotic problem:
Mean field game (MFG): Find (0, 1) = (control, flow of distributions) such that
(1) Given i = (fit)¢e[0,7), the control & minimizes
v J(v; ) = [/ F(XY, e, o(t, XP))dt + g(X7) |,
where dX{ = v(t, X{) dt + dWy, X5 ~ mg
(2) i = L(X}) for all t. )

(1) = standard optimal control problem for a representative player vs the population

(2) = consistency condition (fixed point): “all the agents think in the same way”
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Part 1: Solving Mean Field Problems with Deep Learning



Numerical Methods for MFG

Methods based on a deterministic approach:
o Finite differences & Newton meth.: [Achdou, Capuzzo-Dolcetta’10; . .. ; Achdou, L’15]
e Gradient descent: [L., Pironneau’14; Pfeiffer'16]
e Semi-Lagrangian scheme: [Carlini, Silva’14; Carlini, Silva’15]
e Augmented Lagrangian & ADMM: [Benamou, Carlier'14; Achdou, L.'16; Andreev’'17]
e Primal-dual algo.: [Bricefno-Arias, Kalise, Silva’18; BAKS + Kobeissi, L., Mateos Gonzalez’18]
e Monotone operators: [Almulla et al.’17; Gomes, Saude’18; Gomes, Yang'18]

Methods based on a probabilistic approach:
e Cubature: [Chaudru de Raynal, Garcia Trillos’15]
e Recursion: [Chassagneux et al.’17; Angiuli et al’18]
o MC+Regression: [Balata, Huré, L., Pham, Pimentel'18]
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Methods based on a deterministic approach:
o Finite differences & Newton meth.: [Achdou, Capuzzo-Dolcetta’10; .. .; Achdou, L/15]
e Gradient descent: [L., Pironneau’14; Pfeiffer'16]
e Semi-Lagrangian scheme: [Carlini, Silva’14; Carlini, Silva’15]
e Augmented Lagrangian & ADMM: [Benamou, Carlier'14; Achdou, L.'16; Andreev’'17]
e Primal-dual algo.: [Bricefno-Arias, Kalise, Silva’18; BAKS + Kobeissi, L., Mateos Gonzalez’18]
e Monotone operators: [Almulla et al.’17; Gomes, Saude’18; Gomes, Yang'18]

Methods based on a probabilistic approach:
e Cubature: [Chaudru de Raynal, Garcia Trillos’15]
e Recursion: [Chassagneux et al.’17; Angiuli et al’18]
o MC+Regression: [Balata, Huré, L., Pham, Pimentel'18]

Limitations:
e dimensionality (state in dimension < 3)
e structure of the problem (simple costs, dynamics and noises)

Recent progress: extending the toolbox with tools from machine learning:
e approximation without a grid (mesh-free methods): opt. control & distribution
— [Carmona, L.; Al-Aradi et al.; Fouque et al.; Germain et al.; Ruthotto et al.; Agram et al.; ...]
e even when the dynamics / cost are not known (model-free methods)

— [Guo et al.; Subramanian et al.; Elie et al.; Carmona et al.; Pham et al.; . ..]
7132



Outline

Part 1: Solving Mean Field Problems with Deep Learning
@ Direct approach for MFC



Approximation Result for MFC

MFC:
Minimize over v(-, )

s06. ) =E[ [ a0t X0) i+ 961,

where p, = L(X) with
Xo~mo, dX ZU(t,Xt) dt + dW;
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Approximation Result for MFC

MFC: (1) Finite pop.,
Minimize over decentralized controls v(-, -) with N agents

IV (., Z/ (X3, 1 u(t, X0)) dt—i—g(XT)],

with f' = & 3200, 85
Xy ~mo, dX] =o(t,X7])dt+dW]
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Approximation Result for MFC

MFC: (1) Finite pop., (2) neural network ¢y,
Minimize over neural network parameters 6 with N agents

N 1o [7 i N i i
J (G)ZE{NZ/ f(Xt7Mt7LPG(t7Xt)) dt-l—g(XT)}y

Xi~mo, dX] = pe(t, X])dt + dW}
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Approximation Result for MFC

MFC: (1) Finite pop., (2) neural network ¢y, (3) time discretization

Minimize over neural network parameters ¢ with NV agents and N time steps
N Np—1

JNNT(g) = [ Z Z £ (X, 1, po(tn, X)) At—i—g(X]ivT)},

i=1 n=0

with ) = %30 6y,
X3 ~mo, XJ.1— XL = po(ta, XZ)AL + AW
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Minimize over neural network parameters ¢ with NV agents and N time steps
N Np—1

; 1 5 i i
TN O) =B [ 30 D7 £ (X paltn, X0)) At + g (Xir) |
i=1 n=0
with ) = %30 6y,

X3 ~mo, XJ.1— XL = po(ta, XZ)AL + AW )

Theorem: Convergence rate of the approximation [Carmona, L.’20]

Under suitable assumptions (in particular regularity of the value function),

inf J(o() = inf SV (6)] < a(N) + ex(dim(®)) + es(Vr)
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Approximation Result for MFC

MFC: (1) Finite pop., (2) neural network ¢y, (3) time discretization

Minimize over neural network parameters ¢ with NV agents and N time steps
N Np—1

; 1 i i i
JVNT(9) = E [ﬁ SN F (X un poltn, X2)) At +g (XNT):| ;
=1 n=0
with ) = %30 6y,

X3 ~mo, XJ.1— XL = po(ta, XZ)AL + AW

y
Theorem: Convergence rate of the approximation [Carmona, L.’20]
Under suitable assumptions (in particular regularity of the value function),
i(nf) J(v(-, ) — ilgf JVNT (9) < e1(N) + ea(dim(0)) + e3(Nr)
I y

Implementation: Stochastic Gradient Descent ]

Loss function = cost: JV'"7(0) = E[L(s, )]
One sample: £ = (X3, (AW3)n=0,.. .Ngp—1) ._
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Approximation Result for MFC

MFC: (1) Finite pop., (2) neural network ¢y, (3) time discretization

Minimize over neural network parameters ¢ with NV agents and N time steps
N Np—1

g 1 i i i
JVNT(9) = E [ﬁ SN F (X un poltn, X2)) At +g (XNT):| ;
=1 n=0
with ) = %30 6y,
X3 ~mo, X, — X5 = poltn, X3)At + AW

y
Theorem: Convergence rate of the approximation [Carmona, L.’20]
Under suitable assumptions (in particular regularity of the value function),
i(nf) J(v(-, ) — ilgf JVNT (9) < e1(N) + ea(dim(0)) + e3(Nr)
I y

Implementation: Stochastic Gradient Descent ]

Loss function = cost: JV'"7(0) = E[L(s, )]
One sample: £ = (X3, (AW)n=0,... Nz 1)

j=1,...,N

e Generalizes standard stochastic control problems (no MF); [...; Gobet, Munos’05; Han, E’16]

o Related work with mean field: [Fouque, Zhang’19; Germain et al.’19; ...] 8/32



Approximation Result: Sketch of Proof

Proposition 1 (N agents & decentralized controls):

Under suitable assumptions, there exists a decentralized control ¢ s.t. (@ = dimension of X )

inf J(v()) = J%(-))’ <e(N)eO (N9,

Proof: propagation of chaos type argument [Carmona, Delarue’18]
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Approximation Result: Sketch of Proof

Proposition 1 (N agents & decentralized controls):

Under suitable assumptions, there exists a decentralized control ¢ s.t. (@ = dimension of X )

inf () - JN@(-))’ < a(N) e B (N-1/9).

y
Proof: propagation of chaos type argument [Carmona, Delarue’18]
Proposition 2 (approximation by neural networks): Under suitable assumptions
There exists a set of parameters 0 for a one-hidden layer ¢ s.t.
1
}JN(ﬁ()) — JN(@9(~))| < e2(dim(0)) € O (dilxl(ﬁ)_“<d+l)).
V.

Proof: Key difficulty: approximate ©(-) by ¢4 (-) while controlling ||V g (-)[| by |[Vo(-)]|
— universal approximation without rate of convergence is not enough
— approximation rate for the derivative too, e.g. from [Mhaskar, Micchelli’'95]
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Under suitable assumptions, there exists a decentralized control ¢ s.t. (@ = dimension of X )

inf () - JN@(-))’ < a(N) e B (N-1/9).

y
Proof: propagation of chaos type argument [Carmona, Delarue’18]
Proposition 2 (approximation by neural networks): Under suitable assumptions
There exists a set of parameters 0 for a one-hidden layer ¢ s.t.
1
}JN(ﬁ()) — JN(¢9(~))| < e2(dim(0)) € O (dim(ﬁ)_“(d“)).
V.

Proof: Key difficulty: approximate ©(-) by ¢4 (-) while controlling ||V g (-)[| by |[Vo(-)]|
— universal approximation without rate of convergence is not enough
— approximation rate for the derivative too, e.g. from [Mhaskar, Micchelli’'95]
Proposition 3 (Euler-Maruyama scheme):

For a specific neural network ¢ (+),
[TV (@) = IV (g0()] < (V) € O (N7 V7).

Key point: O (-) independent of N and n;
Proof: analysis of strong error rate for Euler scheme (reminiscent of [Bossy, Talay’97])
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Numerical lllustration: LQ MFC

Benchmark to assess empirical convergence of SGD: LQ problem with explicit sol.

Example: Linear dynamics, quadratic costs of the type

- 2 2 - _ .2
fl@pv)= (-2 + o, §k= /u(&)dﬁ o g@) ==
—— ~~
distance to  cost of —
mean position Moving mean position
Numerical example with d = 10:
5.1 N=32,Nr=100 N=32,Nr=100
N =128, Nr=100 N=128,Nr=100
5.0 —— N=1024, Nr =100 100 —— N=1024,Nr =100
=== N=1024,N;r=20 -== N=1024,Nr=20
4.9 --= N=1024,N;=10 h --- N=1024,Nr=10
48 -
8 5
S47 @
4.6 107
4.5
4.4
4.3 10-2
0 10000 20000 30000 40000 0 10000 20000 30000 40000
SGD iterations SGD iterations
total cost (= loss function) L2-error on the control

(More details in [Carmona, L.’20])
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Q: What about mean-field Nash equilibria?

Forward-backward mean-field systems

e Forward-backward structure:
o Forward evolution of the state / density
< Backward evolution of the control / value function
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Q: What about mean-field Nash equilibria?

Forward-backward mean-field systems

e Forward-backward structure:
o Forward evolution of the state / density
< Backward evolution of the control / value function

e SDE system:
© Deep BSDE method [E, Jentzen, Han'18] — [Carmona, L.’20]

e PDE system:
< Deep Galerkin Method [Sirignano, Spiliopoulos’18] — [Carmona, L.20]
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Outline

Part 1: Solving Mean Field Problems with Deep Learning

@ MKV FBSDE system



Mean Field Game

Reminder:

Nash Eq.: When a player optimizes, the other players’ controls are fixed

Mean field game (MFG): Find (¢, 1) = (control, flow of distribution) such that
(1) Given i = (fit)¢e[0,7), the control & minimizes
v J(v; ) = [/ FXE, e, 0(t, X)) dt+ g(X7) |

where dX; = v(t, X;') dt + dWr,
(2) o = L(X}) for all ¢.

(1) = standard optimal control problem for a representative player vs the population
(2) = consistency condition (fixed point): “all the agents think in the same way”
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Optimality Condition for MFG: forward-backward system

At equilibrium, X evolves according to: Xo ~ mo, dX: = 0(t, X¢) dt + dWs.
The evolution of its distribution ji: = £(X:) is given by a Fokker-Planck PDE:

it =0,z) = mo(z), op(t,x) = — O (Alt,x)o(t,z)) + 10wfi(t, )
—_— ——
initial condition advection diffusion
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The evolution of its distribution ji: = £(X:) is given by a Fokker-Planck PDE:

it =0,z) = mo(z), op(t,x) = — O (Alt,x)o(t,z)) + 10wfi(t, )
—_— ——
initial condition advection diffusion

How can we characterize the best response (= opt. control) of a typical player?

T
0(+,-) = argmin J(v(-, -); i) = argminE |:/ F( Xy, pe,v(t, Xo)) dt + g(X7)
v(-) v() 0
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Optimality Condition for MFG: forward-backward system

At equilibrium, X evolves according to: Xo ~ mo, dX: = 0(t, X;) dt + dWy .
The evolution of its distribution fi: = £(X:) is given by a Fokker-Planck PDE:

ﬂ(t = 071') = mo(x), afﬂ(t7w) = = 0O (/l(tl‘)f}(tl’)) + %61111(25,1)
—— S——
initial condition advection diffusion

How can we characterize the best response (= opt. control) of a typical player?

T
fv(* ) = argmin J(/U(", '); ﬂ) = argminE |:/ f(th&‘tv /U(tv Xf)) dt + g(XT)
v(-,) v(-,r) 0

,_[ Picard iterations for MFG ]

Start with an initial guess 1(*). Repeat for k = 0,1, .. .: Given p(®,

(1) Compute v**!) = best response against x.*
(2) Compute Y = mean-field flow associated to v(** 1

Converges if 1 — 1 **Y s a strict contraction (very restrictive .. .)
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At equilibrium, X evolves according to: Xo ~ mo, dX: = 0(t, X;) dt + dWy .
The evolution of its distribution fi: = £(X:) is given by a Fokker-Planck PDE:

ﬂ(t = 071') = mo(l‘), afﬂ(tv 'T) = - O (ﬂ(tl‘)f}(tl’)) + %8195/1(25,1)
—— S——
initial condition advection diffusion

How can we characterize the best response (= opt. control) of a typical player?

T
0(-,-) = argmin J(v(-,-); i) = argminE |:/ F( Xy, pe,v(t, Xo)) dt + g(Xr)
v(+y) v(,) 0

(1) Dynamic programming: (-, -) is given in terms of the value function (-, -)
which solves the Hamilton-Jacobi-Bellman PDE

—0a(t,z) = H(z,ult,-),da(t,x) + 1 0pati(t, ), a(t =T, z) = g(z)
—— — —
backward evolution Hamiltonian terminal condition

where H(z,m,q) := min, cga (f(x, m,a)+q- a,).
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—0a(t,z) = H(z,ult,-),da(t,x) + 1 0pati(t, ), a(t =T, z) = g(z)
—— — —
backward evolution Hamiltonian

terminal condition
where H(z,m,q) := min, cga (f(a:, m,a)+q- a,).

r(2) Or: Stoch. Maximum Principle: 9(¢, X ) is characterized in terms of X, £(X}) )
and the adjoint state V; € R¢, which solves the backward SDE

Ay, = —0:H(Xy, fu,Yi)dt + Z, - dWy, Vi = 0ug(Xr)
= forward-backward SDE or PDE system
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ML for FBSDE of McKean-Vlasov type

Solutions of MFG (and MFC) can be characterized by MKV FBSDEs of the form

dX: = B(t, X, L(Xy), Y2 )dt + dWr, Xo ~ mo — state
dYy = —F(t, X¢, L(Xe), Y2 )dt + Z¢ - AWy, Yr = G(Xr,L(X7T)) — control/cost
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Idea: rewrite as optimal control of 2 forward SDEs (/Ma, Yong], “Sannikov’s trick”, . ..)

Reformulation as a MFC problem

Minimize over yo(-) and z(-) = (z:(+))¢>0
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Idea: rewrite as optimal control of 2 forward SDEs (/Ma, Yong], “Sannikov’s trick”, . ..)

Reformulation as a MFC problem
Minimize over yo(-) and z(-) = (2:(-))¢>0

Tn(),2()) = B[ Y22 = GO, LXH )] |

under the constraint that (X0# Y'¥°-#) solve: Vt € [0, T

dXt :B(t,Xt,;c(Xt),l/t)dt-‘rth, Xo ~ o,
dYe = —F(t, X¢, L(X:), Yi)dt + 2¢(X:) - dWe, Yo = yo(Xo).

— MFC: can apply direct approach, replacing yo(-), z(-, -) by NN
Extends [Han, Jentzen, E’17] for FBSDE without mean-field interactions
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Numerical lllustration: LQ-MFG with common noise

Example: MFG for inter-bank borrowing/lending [Carmona, Fouque, Sun]
X = log-monetary reserve, « = rate of borrowing/lending to central bank, cost:

J(a;m) = E [/OT [%af — gl — Xo) + 5 (e — Xﬂ i+ & (ma — XT)2}

where m = (m;):>o is the cond. mean given W of the population states, and

dX; = la(my — X¢) + oy]dt + o (\/ 1— p2dW; + pdVV,?)
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Numerical lllustration: LQ-MFG with common noise

Example: MFG for inter-bank borrowing/lending [Carmona, Fouque, Sun]
X = log-monetary reserve, a = rate of borrowing/lending to central bank, cost:

T

1 _

J(a;m) =E [/ ba? — qau (e — X)) + %(mf, - Xﬂ dt + g(mT - XT)Q}
0

where m = (m.):>o is the cond. mean given W of the population states, and

dX: = [a(m: — X¢) + a]dt + o (det + pdVV/,O>

The Nash equilibrium can be characterized by the FBSDE system:

dX; = [(a+q) (M — X¢) — Yi]dt + o («/1 — p2dW; + de,f’> . Xo~mo
oy H
dYi = (a+qQ)Ys + (e — ¢y — Xp) dt + Zy - AWy + 20 -dW?,  Yp = (X7 — mr)

—0, H
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Numerical lllustration: LQ-MFG with common noise

DL for FBSDE system VS (semi) analytical solution (LQ structure)
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Numerical lllustration: LQ-MFG with common noise

DL for FBSDE system VS (semi) analytical solution (LQ structure)

—— X! (Algorithm 2) X2 (Algorithm 2) —— Y* (Algorithm 2) Y2 (Algorithm 2)
—— —— X! (benchmark) X2 (benchmark) —— —— Y (benchmark) Y2 (benchmark)
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Numerical lllustration: LQ-MFG with common noise

DL for FBSDE system VS (semi) analytical solution (LQ structure)

== Nr=100,N=10' —8— Nr=50,N=10° —— Ny=100,N=10| = Nr=100,N=10° —8— N;=50,N=10° —k— Ny=100,N=10?|
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iteration iteration
2 2
L* erroron X L7 erroronY
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Outline

Part 1: Solving Mean Field Problems with Deep Learning

@ Mean Field PDE System



MFG: PDE system

MFG: If (11, 0) solves the MFG, then (riu(t,z), 0 (t, 2)) = (m(t, ), ¥(z, m(t), Vu(t, z)))

with V(z, m(t), Vu(t,z)) = argmin, cpr (f(a:, m(t),a) + Vu(t, z) - b(z, m(t), a)) ,
where (m, u) solve the PDE system
0 = 9ym(t,x) — vAm(t,x) + div (m(t, x)9g H (x, m(t), Vu(t, x)))
0 = dru(t, z) + vAu(t,z) + H(z, m(t), Vu(t, z))

m(0,z) = mo(z), u(T,z)=g(z,m(T))
with

I:I(x, m, q) :=min,cpk (f(z, m,a) + q-b(xz,m, a)).
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0 = dru(t, z) + vAu(t,z) + H(z, m(t), Vu(t, z))
m(0,z) = mo(z), u(T,z)=g(z,m(T))
with

H(xz,m,q) := min, cpr (f(z, m,a) + q-b(xz,m, a)).

Deep Galerkin Method [Sirignano, Spiliopoulos]:
— application to MFGs: see [Al-Aradi et al.; Carmona, L.; Cao, Guo, L.]

e replace unknown functions by deep NN
e try to minimize the squared residual

e by sampling points in the domain
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0 = dru(t, z) + vAu(t,z) + H(z, m(t), Vu(t, z))
m(0,z) = mo(z), u(T,z)=g(z,m(T))
with

H(x,m,q) := min, cpr (f(z, m,a) + q-b(xz,m, a)).

Deep Galerkin Method [Sirignano, Spiliopoulos]:
— application to MFGs: see [Al-Aradi et al.; Carmona, L.; Cao, Guo, L.]

o replace unknown functions by deep NN — mg, , ug,
o try to minimize the squared residual — loss = [ [ [9;mg, (t, ) + ... [*dtdz + . ..

e by sampling points in the domain — sample (¢;, ;)
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Example: Crowd trading

Model of crowd trading [Cardaliaguet, Lehalle]:

dSI" = yigdt + odWy (asset price)
dQY = v.di (player’s inventory)
dX)F = —v,(SF + kv, )dt  (player's wealth)

Objective: given i = (f:)+, maximize
T
J(vii) =B | Xp* + QpSh — AIQ# — ¢ / |Q:|2dt]
0

where: ¢, A > 0 = penalty for holding inventory
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Objective: given i = (f:)+, maximize
T
J(vii) =B | Xp* + QpSh — AIQ# — ¢ / |Q:|2dt]
0

where: ¢, A > 0 = penalty for holding inventory
Ansatz [Cartea, Jaimungall: V (¢, z, s,q) = = + gsu(t, q), vi(q) = W
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Example: Crowd trading

Model of crowd trading [Cardaliaguet, Lehalle]:

dSI" = yigdt + odWy (asset price)
dQY = v.di (player’s inventory)
dX)F = —v,(SF + kv, )dt  (player's wealth)

Objective: given i = (f:)+, maximize
T
J(vii) =B | Xp* + QpSh — AIQ# — ¢ / |Q:|2dt]
0

where: ¢, A > 0 = penalty for holding inventory
Ansatz [Cartea, Jaimungall: V (¢, z, s,q) = = + gsu(t, q), vi(q) = W
where u(-) solves

—vjg = Bu — ¢g° + sup{vdqu — m,vZ}, uw(T,q) = —Ag
Mean field term: at equilibrium
_ . . Oqu”(t, .
i = / o (q)m” (¢, dg) = / )

where m™ solves the KFP equation:

m(0,-) = mo, Orm + 04 (mW) =0
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Example: Crowd trading

Forward-backward PDE system:

2
— ypeq = Orult, q) — ¢q2 + W

dem(t,q) + 0, <m(t, q)aq“;l:’@) —0

Oqul(t,
ﬂt=/%m(t,q)dq

m(0,-) = mo,u(T, q) = —Aq2.
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Numerical lllustration: Crowd trading

Trade crowding MFG example solved by DGM.

-~ benchmark mean

Evolution of the distribution m: surface (left) and contour (right).
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Numerical lllustration: Crowd trading

Trade crowding MFG example solved by DGM.

Evolution of the optimal control v* (3 different time steps).
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Outline

Part 2: Reinforcement Learning with Mean-Field Interactions



Mean Field Framework

Generic Mean Field model: for a typical infinitesimal agent

e Dynamics: discrete time

oL [y 0 ey
Xn+1 _@(Xn 7a71,7,un76n+17€n}1)7 n > 07 X() ~ o

o X&* e X CRY: state, a,, € U C R* : action
o e, ~ v : idiosyncratic noise, ), ~ v : common noise (random environment)
o un € P(X) is a state distribution

e Cost: J(a;pu) =E, o {Z:’:O V”f(XS’“, Qs ,un)]
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Mean Field Framework

Generic Mean Field model: for a typical infinitesimal agent

e Dynamics: discrete time

oL [y 0 ey
Xn+1 _@(Xn 7an,7,un7€n+175n\1)7 nZ 07 X() ~ o

o X&* e X CRY: state, a,, € U C R* : action
o e, ~ v : idiosyncratic noise, ), ~ v : common noise (random environment)
o un € P(X) is a state distribution

e Cost: J(a;p) =E, .0 {Z o7 f( ozn,,un)]

Two scenarios:

« Cooperative (MFControl): Find o minimizing o — J¥% (o) = J(a; u®)
where pg = P°

rku

e Non-Cooperative (MFGame): Find & minimizing o — J" % (a; o) = J(o; 1)
where [i,, = IP;){(W

Q: How to learn an optimal behavior when the model (p, f) is not known?
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Two scenarios

1. Learning with cooperation

2. Learning with competition
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Two scenarios

1. Learning with cooperation
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From Optimal Control to Mean Field RL

Mean-Field Control

N—oo
MKV

unknown model

Optimal Control

unknown model

Mean-Field
Reinforcement Learning

N—oo
MKV

Reinforcement Learning
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Approximate Policy Gradient

Idea 1: Make the “direct approach” model-free
Policy Gradient (PG) to minimize J(60)
e Control &~ parameterized function
e Look for the optimal parameter 0*
e Perform gradient descent on the space of parameters
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e Control &~ parameterized function
e Look for the optimal parameter 0*
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(2) access to a mean field simulator:
— idem + gradient estimation (0*"-order opt.):
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Ok+1 =0 —nV J(0k)
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Approximate Policy Gradient

Idea 1: Make the “direct approach” model-free
Policy Gradient (PG) to minimize J(60)
e Control &~ parameterized function
e Look for the optimal parameter 0*
e Perform gradient descent on the space of parameters

Hierarchy of three situations, more and more complex:

(1) access to the exact (mean field) model: Ok+1 =0 —nV J(0k)
(2) access to a mean field simulator: _
—s idem + gradient estimation (0*"-order opt.): Op+1 =0 —nVJ(0k)
(3) access to a N-agent population simulator: N
— idem + error on mean = empirical mean (LLN): Or1 = 0p — VY J(0k)
Theorem: For Linear-Quadratic MFC [Carmona, L., Tan’19]

In each case, convergence holds at a linear rate:
Taking k ~ O(log(1/e€)) is sufficient to ensure .J(0;) — J(6") < e.

Proof: builds on [Fazel et al.18], analysis of perturbation of Riccati equations
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Numerical lllustration: LQMFC [Carmona, L., Tan’19]

Example: Linear dynamics, quadratic costs of the type:

f(xauav): (ﬂ_m)z + ‘vQ,a ﬂ: /“(§)d§ ’
distance o costof —
mean position moving mean position

\\\\\\\\\

Value of the MF cost Rel. err. on MF cost
MF cost = cost in the mean field problem
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Example: Linear dynamics, quadratic costs of the type:

flpmo)= (-2 + ", }= /u(&)dﬁ,

distance to  Cost of e
mean position ~ MoOvVINg mean position
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Social cost = average over the N-agents



Numerical lllustration: LQMFC [Carmona, L., Tan’19]

Example: Linear dynamics, quadratic costs of the type:

f(xauav): (ﬂ_m)z + ‘vQ,a ﬂ: /“(§)d§ ’
distance o costof —
mean position moving mean position

Tt gt o
,h,u'&lm;u'.% f;’g"ft\. !3!,?

\\\\\\\\\

Value of the social cost Rel. err. on social cost
Social cost = average over the N-agents

Main take-away:
Trying to learn the mean-field regime solution can be efficient even for N small



Mean Field Control and (MF)RL

Q: Beyond the LQ setting?
Idea 2: Generalize Q-learning to the mean-field setting
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oo
o € argmin ST (0) =B, 0[S F (X cn )| i =P
[e3 n=0
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Mean Field Control and (MF)RL

Q: Beyond the LQ setting?
Idea 2: Generalize Q-learning to the mean-field setting

oo
o’ € argmin JMFC(O‘) =E. 0 |:Z ’Ynf(X;ia Qny MZ)} ) pn = Pg{;}
«@ "0
=E. [Z 7"/ f(za, 1) uﬁ(d%da)]
— xxu

function of &
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Mean Field Control and (MF)RL

Q: Beyond the LQ setting?
Idea 2: Generalize Q-learning to the mean-field setting

oo
a" € argmin JY 7 () = E. 0 {Z (X an,,ﬂii)}, pn =P
n=0

=E. [Z A" /
n=0 X

f(av7 a, MZ) 1o (dz, d(z)]
xU

function of &

Dynamic Programming Principle (DPP):
e via the “lifted” problem for the population distribution ©* (social planner’s optim.)
e value function = function of the distribution p
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MFMDP and Dynamic Programming

Mean Field Markov Decision Process: (S, A, p,,~), where:

e State space: S =P(&)

e Action space: A =P(X xU)

e Transition: u= <I>(M a,c") ~ pp,a)

e Reward: r(p,a fXxM z,a, p)a(dz, da)

Goal: max. V"™ (y [Zv 7t @n ] an ~ (|pn), a1 ~ C|un, an), po = p
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MFMDP and Dynamic Programming

Mean Field Markov Decision Process: (S, A, p,,~), where:
e State space: S =P(&)
e Action space: A =P(X xU)

e Transition: u= ‘I’(M a, ') ~pp,a)
e Reward: P(p,a) = = [, (@ a, pa(de, da)
Goal: max. V" ( [27 7t Gn ] n ~ T n)y pngr ~ By @n), po = p
Theorem: DPP for MEMDP [Carmona, L., Tan’20]
V) 1= sup ¥ () = supf [ [0+ B[P (800.2.9)] |t}

under suitable conditions, where the sup is over a subset of {7 : S — P(A)}
Likewise for mean field state-action value function Q*

Proof based on double lifting [Bertsekas, Shreve'78]
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MFMDP and Dynamic Programming

Mean Field Markov Decision Process: (S, A, p,,~), where:
e State space: S =P(&)
e Action space: A =P(X xU)

e Transition: w =, a, ") ~ plu,a)

e Reward: m(w,a) _fXxM z,a, p)a(dz, da)
Goal: max. V" ( [Zv 7 (pms an ] an ~ 7 (- pn)s a1 ~ D(-lpny Gn), 16 = p
Theorem: DPP for MFMDP [Carmona, L., Tan’20]

V() 1= sup 77 () = St}p{/ [F(0.8) + B[P (2013, )] | (.
T us A

under suitable conditions, where the sup is over a subset of {7 : S — P(A)}

Likewise for mean field state-action value function Q*

Proof based on double lifting [Bertsekas, Shreve'78]
DPPs for MFC: [L., Pironneau; Pham et al.; Gast et al.; Guo et al.; Possamai et al.;. . .]

Here: discrete time, infinite horizon, common noise, feedback controls.
— well-suited for RL — Mean-field Q-learning algorithm 26/32



Two scenarios

2. Learning with competition

27/32



Fictitious Play for MFG

Picard fixed-point iterations: ]

p®) oy QD) |y (kD)
o o+ pest response against p*)
o 1Y induced by oFtY

— Convergence typically relies on strict contraction [Caines et al.; Guo et al.; ...]
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Fictitious Play for MFG

’_[ Picard fixed-point iterations: ]
J

p®) oy QD) |y (kD)
o o"1) pest response against p*)
o 1Y induced by oFtY
— Convergence typically relies on strict contraction [Caines et al.; Guo et al.; ...]

f[ Fictitious Play [Brown'51; Robinson’51; ... ; Cardaliaguet, Hadikhanloo'15] I

A 1y @D oy () et
e o"1) pest response against ;")
o 1Y induced by o1
—(k+1) _ k_ —(k 1 k+1) _ 1 k+1 (¢
o i) = i) gD = 2 ST W@
— Convergence typically under monotonicity condition
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Fictitious Play for MFG

’_[ Picard fixed-point iterations: ]
J

)y gDy D)
o o"1) pest response against p*)
o 1Y induced by oFtY

— Convergence typically relies on strict contraction [Caines et al.; Guo et al.; . ..

]

f[ Approximate Fictitious Play ]
J

e a**t1) approximate best response against ¥’

o 1tV induced by a1

—(k+1) _ _k ~(k 1, (k+1) _ _1 k+1 ()
o i = i + s = B4l 2ue=1

— Convergence typically under monotonicity condition

Theorem: Error propagation
Under Lasry-Lions monotonicity condition,

(@®, p®) ——— (¢, 9)-Nash equilibrium

—+o00

[Elie, Pérolat, L., Geist, Pietquin, AAAI'20]
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Fictitious Play for MFG

’_[ Picard fixed-point iterations: ]
J

)y R+ Ly (kD)
o o"1) pest response against p*)
o 1Y induced by oFtY

— Convergence typically relies on strict contraction [Caines et al.; Guo et al.; ...]

f[ Approximate Fictitious Play ]
J

e a**t1) approximate best response against ¥’

o pktD |nduced by aF+1

(b41) = k(%) pOHD = LSk (@)
il T ET T 21

— Convergence typ/cally under monotonicity condition

./1

Theorem: Error propagation [Elie, Pérolat, L., Geist, Pietquin, AAAI'20]
Under Lasry-Lions monotonicity condition,

(@™, 1"y ——— (¢, §)-Nash equilibrium
k—+4o00

RL for o**"): standard MDP parameterized by /"’ 28/32



Continuous Time Fictitious Play

Fictitious Play [Cardaliaguet, Hadikhanloo'15]: 1% — aF 1) 1y 4Dy (D with

(k)
p 1 (k+1) (k)
P SR G ")

Gk

f[ Continuous Time Fictitious Play ]

e averaged distribution dynamics: ¢ > 1,

d_w_L1@w_ -
i = (W =)
where 1Y = induced by BR against (")
e averaged (mixed) policy dynamics: 7*) generating /2"’
— Rate of convergence
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Continuous Time Fictitious Play

Fictitious Play [Cardaliaguet, Hadikhanloo'15]: 1% — aF 1) 1y 4Dy (D with

(k+1) _ ll'(k) _ 1 (/L<k+1> . ﬁ(k))
k+1 k+1

i

f[ Continuous Time Fictitious Play ]

e averaged distribution dynamics: ¢ > 1,

d_w_L1@w_ -
i = (W =)
where 1Y = induced by BR against (")
e averaged (mixed) policy dynamics: 7*) generating /2"’
— Rate of convergence

Theorem: Convergence Rate  [Perrin, Pérolat, L., Geist, Elie, Pietquin, Neur|lPS'20]
Under Lasry-Lions monotonicity condition,

E(@") =0(1/1)
Exploitability: £(r) = max J(7's 1) = J(myp”)

29/32



Example: Systemic Risk

Systemic risk model of [Carmona, Fouque, Sun] with LQ structure & common noise:

J(a; (mn)n) = —E{i (ai —qan (mn — Xn) +K(mn — Xn)2) + c(mng — Xng)?

n=0 borrow if X,, < mn,

lend if X,, > mn,
Subj. t0: X1 = Xy 4 [K (M — Xn) + an] + €ns1 + €

At equilibrium: mn, = E[X,|"],n >0
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Example: Systemic Risk

Systemic risk model of [Carmona, Fouque, Sun] with LQ structure & common noise
Nt

J(a; (mn)n) = —E{Z (ai —qan(mn — Xpn) +x(my — Xn)2> + c(mn, — XNT)2
—_——
n=0 borrow if X,, < mn,
lend if X,, > my,
Subj. to: X1 = Xp + [K (s — Xn) + an] + €ng1 + )
At equilibrium: mn, = E[X,|"],n >0

coo
P

— Backward nduction
I i. I I II‘ II . Qearning
10°
30025 20 15 39 5, O

oooo
Sow

30 25 20
States

10!
15 10 s Logiterations)
States 0

Exact solution Exploitability

Fictitious Play & RL
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Outline

Conclusion



Summary

Q1: How can we solve large games with complex structures?

Part 1: Solving mean-field problems with deep learning
e Direct approach
¢ FB systems of SDEs
e B systems of PDEs

Q2: How can large populations learn to coordinate?

Part 2: Reinforcement learning with mean-field interactions
e Learning with cooperation: PG / mean-field Q-learning
e Learning with competition: Fictitious Play & RL

31/32



Perspectives and future work

Main directions for future research:

1. Bidirectional links with machine learning
e Machine learning for large population games

¢ Mean field view on machine learning

2. Breaking the barrier of homogeneity & symmetry
e Variety of agents
e Networked interactions
e PDEs on the Wasserstein space
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One last example of MFG: Walk for the climate, Paris

Thank you
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