Machine learning methods for mean field games and mean field control problems

Mathieu Laurière

August 11, 2022 CIRM, Marseille CEMRACS 2022

Main questions for this talk

Q1: How can we solve large games with complex structures?

Part 1: Solving mean-field problems with deep learning

Q2: How can large populations learn to coordinate?

Part 2: Reinforcement learning with mean-field interactions

Outline

Introduction

Part 1: Solving Mean Field Problems with Deep Learning

Part 2: Reinforcement Learning with Mean-Field Interactions

Conclusion

Outline

Introduction

Part 1: Solving Mean Field Problems with Deep Learning

Part 2: Reinforcement Learning with Mean-Field Interactions

Conclusion

Main question: How do global outcomes emerge from individual decisions?

Main question: How do global outcomes emerge from individual decisions? Large population \Rightarrow individual interactions are **intractable**

Main question: How do global outcomes emerge from individual decisions? Large population ⇒ individual interactions are **intractable** Assumption: perfect **homogeneity** & **symmetry** of the agents

Main question: How do global outcomes emerge from individual decisions?

Large population \Rightarrow individual interactions are **intractable** Assumption: perfect **homogeneity** & **symmetry** of the agents

Mean Field in statistical mechanics: particles (micro) → density function (macro)

Main question: How do global outcomes emerge from individual decisions?

Large population \Rightarrow individual interactions are **intractable** Assumption: perfect **homogeneity** & **symmetry** of the agents

Mean Field in statistical mechanics: particles (micro) → density function (macro)

Main question: How do global outcomes emerge from individual decisions?

Large population ⇒ individual interactions are **intractable** Assumption: perfect homogeneity & symmetry of the agents

Mean Field in statistical mechanics: particles (micro) → density function (macro)

Mix with optimization:

- mean field control: infinitely many cooperating agents
- mean field game: infinitely many competing players

Initiated by Lasry and Lions, and Huang et al. around 2006

Main research directions:

• **Modeling**: crowd motion, econ./finance, flocking, risk management, smart grid, energy production, distributed robotics, epidemic, . . .

Initiated by Lasry and Lions, and Huang et al. around 2006

Main research directions:

- **Modeling**: crowd motion, econ./finance, flocking, risk management, smart grid, energy production, distributed robotics, epidemic, . . .
- Mean field approach justification:
 - $\diamond N$ -agent problem \rightarrow mean field: convergence
 - \diamond N-agent problem \leftarrow mean field: ϵ -optimality

Initiated by Lasry and Lions, and Huang et al. around 2006

Main research directions:

- **Modeling**: crowd motion, econ./finance, flocking, risk management, smart grid, energy production, distributed robotics, epidemic, . . .
- Mean field approach justification:
 - $\diamond N$ -agent problem \rightarrow mean field: convergence
 - $\diamond N$ -agent problem \leftarrow mean field: ϵ -optimality
- Characterization of the mean field problem solutions (optimality conditions):
 - partial differential equations (PDE system)
 - stochastic differential equations (SDE system)
 - Master equation (PDE on Wasserstein space)

Initiated by Lasry and Lions, and Huang et al. around 2006

Main research directions:

- **Modeling**: crowd motion, econ./finance, flocking, risk management, smart grid, energy production, distributed robotics, epidemic, . . .
- Mean field approach justification:
 - $\diamond N$ -agent problem \rightarrow mean field: convergence
 - \diamond N-agent problem \leftarrow mean field: ϵ -optimality
- Characterization of the mean field problem solutions (optimality conditions):
 - partial differential equations (PDE system)
 - stochastic differential equations (SDE system)
 - Master equation (PDE on Wasserstein space)
- Computation of solutions
 - ♦ "solving" numerically = What is the optimal behavior? (control rule & density flow)
 - crucial for applications

Assume there are *N* identical agents (*homogeneity*)

Agent i uses control $v^i(t,X^1_t,\ldots,X^N_t)\in\mathbb{R}^d$ and has state $X^i_t\in\mathbb{R}^d$ at time t, with

Assume there are N identical agents (homogeneity)

Agent i uses control $v^i(t,X^1_t,\ldots,X^N_t)\in\mathbb{R}^d$ and has state $X^i_t\in\mathbb{R}^d$ at time t, with

• initial position: $X_0^i \sim m_0 \qquad \underbrace{X_t}_{t}$ • and dynamics: $dX_t^i = \underbrace{v^i(t, X_t^1, \dots, X_t^N)}_{\text{variation of position}} dt + \underbrace{dW_t^i}_{\text{noise}} \qquad \underbrace{(\text{common noise})}_{\text{(common noise}}$

Assume there are *N* identical agents (*homogeneity*)

Agent i uses control $v^i(t, X^1_t, \dots, X^N_t) \in \mathbb{R}^d$ and has state $X^i_t \in \mathbb{R}^d$ at time t, with

• initial position: $X_0^i \sim m_0 \qquad \underbrace{X_t}_{variation}$ • and dynamics: $dX_t^i = \underbrace{v^i(t, X_t^1, \dots, X_t^N)}_{velocity} dt + \underbrace{dW_t^i}_{noise} \qquad \underbrace{(\text{common noise})}_{(\text{common noise}}$

Agent i pays running cost $f\left(X_t^i, \mu_t^N, v^i(t, \mathbf{X}_t)\right)$ typically increasing w.r.t. $\left(\mu_t^N, v_t^i\right)$ where the interaction is of **mean-field** type (**symmetry**) since it occurs only through

$$\mu_t^N = \frac{1}{N} \sum_{i=1}^N \delta_{X_t^j}$$

which is the **empirical distribution** of the agents' states (δ_x = Dirac mass at x)

Assume there are N identical agents (homogeneity)

Agent i uses control $v^i(t, X^1_t, \dots, X^N_t) \in \mathbb{R}^d$ and has state $X^i_t \in \mathbb{R}^d$ at time t, with

• initial position: $X_0^i \sim m_0 \qquad \underbrace{X_t}_{t}$ • and dynamics: $dX_t^i = \underbrace{v^i(t, X_t^1, \dots, X_t^N)}_{\text{velocity}} dt + \underbrace{dW_t^i}_{\text{noise}} \qquad \underbrace{\left(+ \underbrace{dB_t} \right)}_{\text{common noise}}$

Agent i pays running cost $f\left(X_t^i, \mu_t^N, v^i(t, \mathbf{X}_t)\right)$ typically increasing w.r.t. $\left(\mu_t^N, v_t^i\right)$ where the interaction is of **mean-field** type (**symmetry**) since it occurs only through

$$\mu_t^N = \frac{1}{N} \sum_{i=1}^N \delta_{X_t^j}$$

which is the **empirical distribution** of the agents' states ($\delta_x = \text{Dirac mass at } x$)

The **social cost** is the average of all the individual costs:

$$J^N(\boldsymbol{v^1},\dots,\boldsymbol{v^N}) = \frac{1}{N} \sum_{i=1}^N \mathbb{E} \left[\quad \int_0^T \underbrace{f\left(\boldsymbol{X_t^i},\boldsymbol{\mu_t^N},\boldsymbol{v^i(t,\mathbf{X_t})}\right)}_{\text{running cost}} dt \quad + \underbrace{g\left(\boldsymbol{X_T^i}\right)}_{\text{terminal cost}} \right]$$

Goal: Find an optimal $\hat{\mathbf{v}} = (\hat{\mathbf{v}}^1, \dots, \hat{\mathbf{v}}^N)$ minimizing J^N

Assume there are N identical agents (homogeneity)

Agent i uses control $v^i(t, X_t^1, \dots, X_t^N) \in \mathbb{R}^d$ and has state $X_t^i \in \mathbb{R}^d$ at time t, with

• initial position: $X_0^i \sim m_0 \qquad \underbrace{X_t}_{t}$ • and dynamics: $dX_t^i = \underbrace{v^i(t, X_t^1, \dots, X_t^N)}_{\text{velocity}} dt + \underbrace{dW_t^i}_{\text{noise}} \qquad \underbrace{(\text{common noise})}_{\text{(common noise}}$

Agent i pays running cost $f\left(X_t^i, \mu_t^N, v^i(t, \mathbf{X}_t)\right)$ typically increasing w.r.t. $\left(\mu_t^N, v_t^i\right)$ where the interaction is of **mean-field** type (**symmetry**) since it occurs only through

$$\mu_t^N = \frac{1}{N} \sum_{i=1}^N \delta_{X_t^j}$$

which is the **empirical distribution** of the agents' states ($\delta_x = \text{Dirac}$ mass at x)

The **social cost** is the average of all the individual costs:

$$J^{N}(\boldsymbol{v^{1}},\ldots,\boldsymbol{v^{N}}) = \frac{1}{N}\sum_{i=1}^{N}\mathbb{E}\left[-\int_{0}^{T}\underbrace{f\left(\boldsymbol{X_{t}^{i}},\boldsymbol{\mu_{t}^{N}},\boldsymbol{v^{i}(t,\mathbf{X_{t}})}\right)}_{\text{running cost}}dt - + \underbrace{g\left(\boldsymbol{X_{T}^{i}}\right)}_{\text{terminal cost}}\right]$$

Goal: Find an optimal $\hat{\boldsymbol{v}} = (\hat{\boldsymbol{v}}^1, \dots, \hat{\boldsymbol{v}}^N)$ minimizing J^N

Rem.: Terminal cost and drift could involve μ_t^N too

Optimal control of N **agents:** Find $(\hat{v}^1,\ldots,\hat{v}^N)$ minimizing the social cost

$$J^{N}(\boldsymbol{v}^{1},\ldots,\boldsymbol{v}^{N}) = \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}\left[\int_{0}^{T} f\left(X_{t}^{i},\mu_{t}^{N},\boldsymbol{v}^{i}(t,\mathbf{X}_{t})\right) dt + g\left(X_{T}^{i}\right)\right],$$

where
$$\mu_t^N := \frac{1}{N} \sum_{j=1}^N \delta_{X_i^j}$$
 and

$$dX_t^j = v^j(t, \mathbf{X}_t) dt + dW_t^j, \quad X_0^j \text{ i.i.d } \sim m_0.$$

Optimal control of N **agents:** Find $(\hat{v}^1, \dots, \hat{v}^N)$ minimizing the social cost

$$J^{N}(\boldsymbol{v}^{1},\ldots,\boldsymbol{v}^{N}) = \frac{1}{N} \sum_{i=1}^{N} \mathbb{E} \left[\int_{0}^{T} f\left(X_{t}^{i},\mu_{t}^{N},\boldsymbol{v}^{i}(t,\mathbf{X}_{t})\right) dt + g\left(X_{T}^{i}\right) \right],$$

where $\mu^N_t := rac{1}{N} \sum_{j=1}^N \delta_{X^j_t}$ and

$$dX_t^j = v^j(t, \mathbf{X}_t) dt + dW_t^j, \quad X_0^j \text{ i.i.d } \sim m_0.$$

As $N \longrightarrow +\infty$, $\mu_t^N \longrightarrow \mu_t$ = deterministic distribution. **Asymptotic** problem:

Optimal control of N **agents:** Find $(\hat{v}^1,\ldots,\hat{v}^N)$ minimizing the social cost

$$J^{N}(\boldsymbol{v}^{1},\ldots,\boldsymbol{v}^{N}) = \frac{1}{N} \sum_{i=1}^{N} \mathbb{E} \left[\int_{0}^{T} f\left(X_{t}^{i},\mu_{t}^{N},\boldsymbol{v}^{i}(t,\mathbf{X}_{t})\right) dt + g\left(X_{T}^{i}\right) \right],$$

where $\mu^N_t := rac{1}{N} \sum_{j=1}^N \delta_{X^j_t}$ and

$$dX_t^j = v^j(t, \mathbf{X}_t) dt + dW_t^j, \quad X_0^j \text{ i.i.d } \sim m_0.$$

As $N \longrightarrow +\infty$, $\mu_t^N \longrightarrow \mu_t$ = deterministic distribution. **Asymptotic** problem:

Mean field control (MFC): Find a control \hat{v} minimizing

$$J(\boldsymbol{v}) = \mathbb{E}\left[\int_0^T f(X_t^{\boldsymbol{v}}, \mathcal{L}(X_t^{\boldsymbol{v}}), \boldsymbol{v}(t, X_t)) dt + g(X_T^{\boldsymbol{v}})\right],$$

where $\mu_t = \mathcal{L}(X_t^v)$ is the **law** of $X_t^v =$ state of a **representative player** with

$$dX_t^{\mathbf{v}} = \mathbf{v}(t, X_t^{\mathbf{v}}) dt + dW_t, \quad X_0^{\mathbf{v}} \sim m_0.$$

Optimal control of N **agents:** Find $(\hat{v}^1, \dots, \hat{v}^N)$ minimizing the social cost

$$J^{N}(\boldsymbol{v}^{1},\ldots,\boldsymbol{v}^{N}) = \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}\left[\int_{0}^{T} f\left(X_{t}^{i},\mu_{t}^{N},\boldsymbol{v}^{i}(t,\mathbf{X}_{t})\right) dt + g\left(X_{T}^{i}\right)\right],$$

where $\mu_t^N := \frac{1}{N} \sum_{j=1}^N \delta_{X_{\star}^j}$ and

$$dX_t^j = v^j(t, \mathbf{X}_t) dt + dW_t^j, \quad X_0^j \text{ i.i.d } \sim m_0$$
 .

As $N \longrightarrow +\infty$, $\mu_t^N \longrightarrow \mu_t$ = deterministic distribution. **Asymptotic** problem:

Mean field control (MFC): Find a control \hat{v} minimizing

$$J(v) = \mathbb{E}\left[\int_0^T f(X_t^v, \mathcal{L}(X_t^v), v(t, X_t)) dt + g(X_T^v)\right],$$

where $\mu_t = \mathcal{L}(X_t^v)$ is the law of $X_t^v = \text{state}$ of a representative player with

$$dX_t^v = v(t, X_t^v) dt + dW_t, \quad X_0^v \sim m_0.$$

Motivations:

• " $N \to \infty$ ": a large number of **cooperative** agents; **McKean-Vlasov** dynamics:

$$dX_t = b(X_t, \mu_t^v, v(t, X_t)) dt + dW_t$$

• Non-linear dependence on the law: e.g. risk measures:

$$\mathbb{E}[g(X_T, \mu_T)] = \operatorname{Var}(X_T) - \mathbb{E}[X_T]$$

Nash Equilibrium: When a player optimizes, the other players' controls are fixed

Nash Equilibrium: When a player optimizes, the other players' controls are fixed

Nash equilibrium between N players: Find $\hat{v} = (\hat{v}^1, \dots, \hat{v}^N)$ such that

For each $i=1,\ldots,N,$ given $\hat{v}^{-i}=(\hat{v}^1,\ldots,\hat{v}^{i-1},\hat{v}^{i+1},\ldots,\hat{v}^N),$ \hat{v}^i minimizes

$$v^{i} \mapsto J(v^{i}; \hat{v}^{-i}) = \mathbb{E}\left[\int_{0}^{T} f\left(X_{t}^{i}, \mu_{t}^{N}, v^{i}(t, \mathbf{X}_{t})\right) dt + g\left(X_{T}^{i}\right)\right]$$

where
$$\mu^N_t = \frac{1}{N} \sum_{j \neq i} \delta_{X^j_t} + \frac{1}{N} \delta_{X^i_t}$$
 and
$$dX^i_t = v^i(t, \mathbf{X}_t) \, dt + dW^i_t, \qquad dX^j_t = \hat{v}^j(t, \mathbf{X}_t) \, dt + dW^j_t, \quad j \neq i$$

Nash Equilibrium: When a player optimizes, the other players' controls are fixed

Nash equilibrium between N players: Find $\hat{v} = (\hat{v}^1, \dots, \hat{v}^N)$ such that

For each $i=1,\dots,N$, given $\hat{v}^{-i}=(\hat{v}^1,\dots,\hat{v}^{i-1},\hat{v}^{i+1},\dots,\hat{v}^N)$, \hat{v}^i minimizes

$$v^i \mapsto J(v^i; \hat{v}^{-i}) = \mathbb{E}\left[\int_0^T f\left(X_t^i, \mu_t^N, v^i(t, \mathbf{X}_t)\right) dt + g\left(X_T^i\right)\right]$$

where
$$\mu^N_t = \frac{1}{N} \sum_{j \neq i} \delta_{X^j_t} + \frac{1}{N} \delta_{X^i_t}$$
 and
$$dX^i_t = v^i(t, \mathbf{X}_t) \, dt + dW^i_t, \qquad dX^j_t = \hat{v}^j(t, \mathbf{X}_t) \, dt + dW^j_t, \quad j \neq i$$

As $N \longrightarrow +\infty$, $\mu_t^N \longrightarrow \mu_t$ which is *not influenced by* v^i . **Asymptotic** problem:

Nash Equilibrium: When a player optimizes, the other players' controls are fixed

Nash equilibrium between N players: Find $\hat{v} = (\hat{v}^1, \dots, \hat{v}^N)$ such that

For each $i=1,\dots,N$, given $\hat{v}^{-i}=(\hat{v}^1,\dots,\hat{v}^{i-1},\hat{v}^{i+1},\dots,\hat{v}^N)$, $\hat{\boldsymbol{v}^i}$ minimizes

$$v^{i} \mapsto J(v^{i}; \hat{v}^{-i}) = \mathbb{E}\left[\int_{0}^{T} f\left(X_{t}^{i}, \mu_{t}^{N}, v^{i}(t, \mathbf{X}_{t})\right) dt + g\left(X_{T}^{i}\right)\right]$$

where $\mu^N_t = \frac{1}{N} \sum_{j \neq i} \delta_{X^j_t} + \frac{1}{N} \delta_{X^i_t}$ and $dX^i_t = v^i(t, \mathbf{X}_t) dt + dW^i_t, \qquad dX^j_t = \hat{v}^j(t, \mathbf{X}_t) dt + dW^j_t, \quad j \neq i$

As
$$N \longrightarrow +\infty$$
, $\mu_t^N \longrightarrow \mu_t$ which is *not influenced by* v^i . **Asymptotic** problem:

Mean field game (MFG): Find $(\hat{v}, \hat{\mu}) =$ (control, flow of distributions) such that

(1) Given $\hat{\mu} = (\hat{\mu}_t)_{t \in [0,T]}$, the control \hat{v} minimizes

$$\mathbf{v} \mapsto J(\mathbf{v}; \hat{\mu}) = \mathbb{E}\left[\int_0^T f(X_t^{\mathbf{v}}, \hat{\mu}_t, \mathbf{v}(t, X_t^{\mathbf{v}})) dt + g(X_T^{\mathbf{v}})\right],$$

where $dX_t^v = v(t, X_t^v) dt + dW_t, X_0^v \sim m_0$

- (2) $\hat{\mu}_t = \mathcal{L}(X_t^{\hat{v}})$ for all t.
- (1) = standard optimal control problem for a representative player vs the population
- (2) = consistency condition (fixed point): "all the agents think in the same way"

Outline

Introduction

Part 1: Solving Mean Field Problems with Deep Learning

- Direct approach for MFC
- MKV FBSDE system
- Mean Field PDE System

Part 2: Reinforcement Learning with Mean-Field Interactions

Conclusion

Numerical Methods for MFG

Methods based on a deterministic approach:

- Finite differences & Newton meth.: [Achdou, Capuzzo-Dolcetta'10; ...; Achdou, L.'15]
- Gradient descent: [L., Pironneau'14; Pfeiffer'16]
- Semi-Lagrangian scheme: [Carlini, Silva'14; Carlini, Silva'15]
- Augmented Lagrangian & ADMM: [Benamou, Carlier'14; Achdou, L.'16; Andreev'17]
- Primal-dual algo.: [Briceño-Arias, Kalise, Silva'18; BAKS + Kobeissi, L., Mateos González'18]
- Monotone operators: [Almulla et al.'17; Gomes, Saúde'18; Gomes, Yang'18]

Methods based on a probabilistic approach:

- Cubature: [Chaudru de Raynal, Garcia Trillos'15]
- Recursion: [Chassagneux et al.'17; Angiuli et al.'18]
- MC+Regression: [Balata, Huré, L., Pham, Pimentel'18]

Numerical Methods for MFG

Methods based on a deterministic approach:

- Finite differences & Newton meth.: [Achdou, Capuzzo-Dolcetta'10; ...; Achdou, L.'15]
- Gradient descent: [L., Pironneau'14; Pfeiffer'16]
- Semi-Lagrangian scheme: [Carlini, Silva'14; Carlini, Silva'15]
- Augmented Lagrangian & ADMM: [Benamou, Carlier'14; Achdou, L.'16; Andreev'17]
- Primal-dual algo.: [Briceño-Arias, Kalise, Silva'18; BAKS + Kobeissi, L., Mateos González'18]
- Monotone operators: [Almulla et al.'17; Gomes, Saúde'18; Gomes, Yang'18]

Methods based on a probabilistic approach:

- Cubature: [Chaudru de Raynal, Garcia Trillos'15]
- Recursion: [Chassagneux et al.'17; Angiuli et al.'18]
- MC+Regression: [Balata, Huré, L., Pham, Pimentel'18]

Limitations:

- dimensionality (state in dimension ≤ 3)
- structure of the problem (simple costs, dynamics and noises)

Numerical Methods for MFG

Methods based on a deterministic approach:

- Finite differences & Newton meth.: [Achdou, Capuzzo-Dolcetta'10; ...; Achdou, L.'15]
- Gradient descent: [L., Pironneau'14; Pfeiffer'16]
- Semi-Lagrangian scheme: [Carlini, Silva'14; Carlini, Silva'15]
- Augmented Lagrangian & ADMM: [Benamou, Carlier'14; Achdou, L.'16; Andreev'17]
- Primal-dual algo.: [Briceño-Arias, Kalise, Silva'18; BAKS + Kobeissi, L., Mateos González'18]
- Monotone operators: [Almulla et al.'17; Gomes, Saúde'18; Gomes, Yang'18]

Methods based on a probabilistic approach:

- Cubature: [Chaudru de Raynal, Garcia Trillos'15]
- Recursion: [Chassagneux et al.'17; Angiuli et al.'18]
- MC+Regression: [Balata, Huré, L., Pham, Pimentel'18]

Limitations:

- dimensionality (state in dimension ≤ 3)
- structure of the problem (simple costs, dynamics and noises)

Recent progress: extending the toolbox with tools from **machine learning**:

- approximation without a grid (mesh-free methods): opt. control & distribution
- \rightarrow [Carmona, L.; Al-Aradi et al.; Fouque et al.; Germain et al.; Ruthotto et al.; Agram et al.; . . .]
- even when the **dynamics** / **cost are not known** (model-free methods)
 - → [Guo et al.; Subramanian et al.; Elie et al.; Carmona et al.; Pham et al.; . . .]

Outline

Introduction

Part 1: Solving Mean Field Problems with Deep Learning

- Direct approach for MFC
- MKV FBSDE system
- Mean Field PDE System

Part 2: Reinforcement Learning with Mean-Field Interactions

Conclusion

MFC:

Minimize over $v(\cdot, \cdot)$

$$J(\mathbf{v}(\cdot,\cdot)) = \mathbb{E}\left[\int_0^T f(X_t, \mu_t, \mathbf{v}(t, \mathbf{X}_t)) dt + g(X_T)\right],$$

where $\mu_t = \mathcal{L}(X_t)$ with

$$X_0 \sim m_0$$
, $dX_t = v(t, X_t) dt + dW_t$

MFC: (1) Finite pop.,

Minimize over **decentralized** controls $v(\cdot, \cdot)$ with N agents

$$J^{N}(\boldsymbol{v}(\cdot,\cdot)) = \mathbb{E}\left[\frac{1}{N}\sum_{i=1}^{N}\int_{0}^{T}f\left(X_{t}^{i},\mu_{t}^{N},\boldsymbol{v}(t,\boldsymbol{X}_{t}^{i})\right)\,dt + g\left(X_{T}^{i}\right)\right],$$

with
$$\mu^N_t=rac{1}{N}\sum_{j=1}^N\delta_{X^j_t},$$

$$X^j_0\sim m_0\,,\quad dX^j_t=\pmb{v(t,X^j_t)}\,dt+dW^j_t$$

MFC: (1) Finite pop., (2) neural network φ_{θ} ,

Minimize over **neural network** parameters θ with N agents

$$J^{N}(\theta) = \mathbb{E}\left[\frac{1}{N}\sum_{i=1}^{N}\int_{0}^{T}f\left(X_{t}^{i},\mu_{t}^{N},\varphi_{\theta}(t,X_{t}^{i})\right)\,dt + g\left(X_{T}^{i}\right)
ight],$$

with
$$\mu^N_t = \frac{1}{N} \sum_{j=1}^N \delta_{X^j_t}$$
,
$$X^j_0 \sim m_0 \,, \quad dX^j_t = \varphi_\theta(t, X^j_t) \, dt + dW^j_t$$

MFC: (1) Finite pop., (2) neural network φ_{θ} , (3) time discretization

Minimize over **neural network** parameters θ with N agents and N_T time steps

$$J^{N,N_T}(\theta) = \mathbb{E}\left[\frac{1}{N}\sum_{i=1}^{N}\sum_{n=0}^{N_T-1}f\left(X_n^i,\mu_n^N,\varphi_{\theta}(t_n,X_n^i)\right)\Delta t + g\left(X_{N_T}^i\right)\right],$$

with
$$\mu_n^N=\frac{1}{N}\sum_{j=1}^N\delta_{X_n^j},$$

$$X_0^j\sim m_0\,,\quad X_{n+1}^j-X_n^j=\varphi_\theta(t_n,X_n^j)\Delta t+\Delta W_n^j$$

Approximation Result for MFC

MFC: (1) Finite pop., (2) neural network φ_{θ} , (3) time discretization

Minimize over **neural network** parameters θ with N agents and N_T time steps

$$J^{N,N_T}(\theta) = \mathbb{E}\left[\frac{1}{N}\sum_{i=1}^{N}\sum_{n=0}^{N_T-1}f\left(X_n^i, \mu_n^N, \varphi_{\theta}(t_n, X_n^i)\right)\Delta t + g\left(X_{N_T}^i\right)\right],$$

with
$$\mu_n^N=\frac{1}{N}\sum_{j=1}^N\delta_{X_n^j},$$

$$X_0^j\sim m_0\,,\quad X_{n+1}^j-X_n^j=\varphi_\theta(t_n,X_n^j)\Delta t+\Delta W_n^j$$

Theorem: Convergence rate of the approximation

[Carmona, L.'20]

Under suitable assumptions (in particular regularity of the value function),

$$\left|\inf_{v(\cdot,\cdot)}J(v(\cdot,\cdot))-\inf_{\theta}J^{N,N_T}(\theta)\right|\leq \epsilon_1(N)+\epsilon_2(\dim(\theta))+\epsilon_3(N_T)$$

Approximation Result for MFC

MFC: (1) Finite pop., (2) neural network φ_{θ} , (3) time discretization

Minimize over **neural network** parameters θ with N agents and N_T time steps

$$J^{N,N_T}(\theta) = \mathbb{E}\left[\frac{1}{N}\sum_{i=1}^{N}\sum_{n=0}^{N_T-1} f\left(X_n^i, \mu_n^N, \varphi_{\theta}(t_n, X_n^i)\right) \Delta t + g\left(X_{N_T}^i\right)\right],$$

with
$$\mu_n^N=\frac{1}{N}\sum_{j=1}^N\delta_{X_n^j},$$

$$X_0^j\sim m_0\,,\quad X_{n+1}^j-X_n^j=\varphi_\theta(t_n,X_n^j)\Delta t+\Delta W_n^j$$

Theorem: Convergence rate of the approximation

[Carmona, L.'20]

Under suitable assumptions (in particular regularity of the value function),

$$\left|\inf_{\boldsymbol{v}(\cdot,\cdot)}J(\boldsymbol{v}(\cdot,\cdot))-\inf_{\boldsymbol{\theta}}J^{N,N_T}(\boldsymbol{\theta})\right|\leq \epsilon_1(N)+\epsilon_2(\dim(\boldsymbol{\theta}))+\epsilon_3(N_T)$$

Implementation: Stochastic Gradient Descent

Loss function = cost: $J^{N,N_T}(\theta) = \mathbb{E}[\mathbb{L}(\varphi_{\theta},\xi)]$

One sample: $\xi = \left(X_0^j, (\Delta W_n^j)_{n=0,\dots,N_T-1}\right)_{j=1,\dots,N}$

Approximation Result for MFC

MFC: (1) Finite pop., (2) neural network φ_{θ} , (3) time discretization

Minimize over **neural network** parameters θ with N agents and N_T time steps

$$J^{N,N_T}(\theta) = \mathbb{E}\left[\frac{1}{N}\sum_{i=1}^{N}\sum_{n=0}^{N_T-1}f\left(X_n^i,\mu_n^N,\varphi_{\theta}(t_n,X_n^i)\right)\Delta t + g\left(X_{N_T}^i\right)\right],$$

with $\mu_n^N = \frac{1}{N} \sum_{j=1}^N \delta_{X_n^j}$,

$$X_0^j \sim m_0$$
, $X_{n+1}^j - X_n^j = \varphi_\theta(t_n, X_n^j) \Delta t + \Delta W_n^j$

Theorem: Convergence rate of the approximation

[Carmona, L.'20]

Under suitable assumptions (in particular regularity of the value function),

$$\left|\inf_{\boldsymbol{v}(\cdot,\cdot)}J(\boldsymbol{v}(\cdot,\cdot))-\inf_{\boldsymbol{\theta}}J^{N,N_T}(\boldsymbol{\theta})\right|\leq \epsilon_1(N)+\epsilon_2(\dim(\boldsymbol{\theta}))+\epsilon_3(N_T)$$

Implementation: Stochastic Gradient Descent

Loss function = cost: $J^{N,N_T}(\theta) = \mathbb{E}[\mathbb{L}(\varphi_{\theta},\xi)]$ One sample: $\xi = (X_0^j,(\Delta W_n^j)_{n=0,\dots,N_T-1})_{i=1,\dots,N_T-1}$

- Generalizes standard stochastic control problems (no MF); [...; Gobet, Munos'05; Han, E'16]
- Generalizes standard stochastic control problems (no MF); [...; Gobet, Munos 05; Han, E 16]
 Related work with mean field: [Fouque, Zhang'19; Germain et al.'19; ...]

Approximation Result: Sketch of Proof

Proposition 1 (*N* agents & decentralized controls):

Under suitable assumptions, there exists a decentralized control $\hat{\pmb{v}}$ s.t. $(d=\textit{dimension of }X_t)$

$$\left|\inf_{v(\cdot)} J(v(\cdot)) - J^N(\hat{v}(\cdot))\right| \le \epsilon_1(N) \in \widetilde{O}\left(N^{-1/d}\right).$$

Proof: propagation of chaos type argument [Carmona, Delarue'18]

Approximation Result: Sketch of Proof

Proposition 1 (N agents & decentralized controls):

Under suitable assumptions, there exists a decentralized control \hat{v} s.t. $(d = \textit{dimension of } X_t)$

$$\left|\inf_{\boldsymbol{v}(\cdot)}J(\boldsymbol{v}(\cdot))-J^N(\hat{\boldsymbol{v}}(\cdot))\right|\leq \epsilon_1(N)\in \widetilde{O}\left(N^{-1/d}\right).$$

Proof: propagation of chaos type argument [Carmona, Delarue'18]

Proposition 2 (approximation by neural networks): Under suitable assumptions

There exists a set of parameters θ for a one-hidden layer $\hat{\varphi}_{\theta}$ s.t.

$$\left|J^{N}(\hat{v}(\cdot)) - J^{N}(\hat{\varphi}_{\theta}(\cdot))\right| \leq \epsilon_{2}(\dim(\theta)) \in O\left(\dim(\theta)^{-\frac{1}{3(d+1)}}\right).$$

Proof: Key difficulty: approximate $\hat{v}(\cdot)$ by $\hat{\varphi}_{\theta}(\cdot)$ while controlling $\|\nabla \hat{\varphi}_{\theta}(\cdot)\|$ by $\|\nabla \hat{v}(\cdot)\|$

- → universal approximation without rate of convergence is not enough
- → approximation rate for the derivative too, e.g. from [Mhaskar, Micchelli'95]

Approximation Result: Sketch of Proof

Proposition 1 (N agents & decentralized controls):

Under suitable assumptions, there exists a decentralized control \hat{v} s.t. $(d = dimension \ of \ X_t)$

$$\left|\inf_{\boldsymbol{v}(\cdot)} J(\boldsymbol{v}(\cdot)) - J^{N}(\hat{\boldsymbol{v}}(\cdot))\right| \leq \epsilon_{1}(N) \in \widetilde{O}\left(N^{-1/d}\right).$$

Proof: propagation of chaos type argument [Carmona, Delarue'18]

Proposition 2 (approximation by neural networks): Under suitable assumptions

There exists a set of parameters θ for a one-hidden layer $\hat{\varphi}_{\theta}$ s.t.

$$\left|J^{N}(\hat{v}(\cdot)) - J^{N}(\hat{\varphi}_{\theta}(\cdot))\right| \le \epsilon_{2}(\dim(\theta)) \in O\left(\dim(\theta)^{-\frac{1}{3(d+1)}}\right).$$

Proof: Key difficulty: approximate $\hat{v}(\cdot)$ by $\hat{\varphi}_{\theta}(\cdot)$ while controlling $\|\nabla \hat{\varphi}_{\theta}(\cdot)\|$ by $\|\nabla \hat{v}(\cdot)\|$

- → universal approximation without rate of convergence is not enough
- → approximation rate for the derivative too, e.g. from [Mhaskar, Micchelli'95]

Proposition 3 (Euler-Maruyama scheme):

For a specific neural network $\hat{\varphi}_{\theta}(\cdot)$,

$$\left|J^{N}(\hat{\varphi}_{\theta}(\cdot)) - J^{N,N_{T}}(\hat{\varphi}_{\theta}(\cdot))\right| \leq \epsilon_{3}(N_{T}) \in O\left(N_{T}^{-1/2}\right).$$

Key point: $O(\cdot)$ independent of N and n_U

Proof: analysis of strong error rate for Euler scheme (reminiscent of [Bossy, Talay'97])

Numerical Illustration: LQ MFC

Benchmark to assess empirical convergence of SGD: LQ problem with explicit sol.

Example: Linear dynamics, quadratic costs of the type

$$f(x,\mu,v) = \underbrace{(\bar{\mu}-x)^2}_{\mbox{distance to}} + \underbrace{v^2}_{\mbox{moving}} \,,$$

$$\bar{\mu} = \underbrace{\int \mu(\xi) d\xi}_{\text{mean position}}, \qquad g(x) = x$$

Numerical example with d = 10:

 L^2 -error on the control

(More details in [Carmona, L.'20])

Q: What about mean-field Nash equilibria?

Forward-backward mean-field systems

- Forward-backward structure:
 - Forward evolution of the state / density
 - Backward evolution of the control / value function

Q: What about mean-field Nash equilibria?

Forward-backward mean-field systems

- Forward-backward structure:
 - Forward evolution of the state / density
 - Backward evolution of the control / value function

SDE system:

 $\diamond \ \text{Deep BSDE method [E, Jentzen, Han'18]} \rightarrow [\text{Carmona, L.'20}]$

Q: What about mean-field Nash equilibria?

Forward-backward mean-field systems

- Forward-backward structure:
 - Forward evolution of the state / density
 - Backward evolution of the control / value function
- SDE system:
 - ♦ Deep BSDE method [E, Jentzen, Han'18] → [Carmona, L.'20]
- PDE system:
 - ♦ Deep Galerkin Method [Sirignano, Spiliopoulos'18] → [Carmona, L.'20]

Outline

Introduction

Part 1: Solving Mean Field Problems with Deep Learning

- Direct approach for MFC
- MKV FBSDE system
- Mean Field PDE System

Part 2: Reinforcement Learning with Mean-Field Interactions

Conclusion

Reminder:

Nash Eq.: When a player optimizes, the other players' controls are fixed

Mean field game (MFG): Find $(\hat{v}, \hat{\mu}) =$ (control, flow of distribution) such that

(1) Given $\hat{\mu} = (\hat{\mu}_t)_{t \in [0,T]}$, the control \hat{v} minimizes

$$\mathbf{v} \mapsto J(\mathbf{v}; \hat{\boldsymbol{\mu}}) = \mathbb{E}\left[\int_0^T f(X_t^v, \hat{\boldsymbol{\mu}}_t, \mathbf{v}(t, X_t^v)) dt + g(X_T^v)\right],$$

where $dX_t^v = v(t, X_t^v) dt + dW_t$,

- (2) $\hat{\mu}_t = \mathcal{L}(X_t^{\hat{v}})$ for all t.
- (1) = standard **optimal control** problem for a representative player vs the population
- (2) = consistency condition (fixed point): "all the agents think in the same way"

At equilibrium, X evolves according to: $X_0 \sim m_0$, $dX_t = \hat{v}(t, X_t) dt + dW_t$. The evolution of its distribution $\hat{\mu}_t = \mathcal{L}(X_t)$ is given by a Fokker-Planck PDE:

$$\underbrace{\hat{\mu}(t=0,x) = m_0(x)}_{\text{initial condition}}, \qquad \partial_t \hat{\mu}(t,x) \qquad = \qquad - \qquad \underbrace{\partial_x \left(\hat{\mu}(t,x) \, \hat{v}(t,x)\right)}_{\text{advection}} \qquad + \qquad \underbrace{\frac{1}{2} \underbrace{\partial_{xx} \hat{\mu}(t,x)}_{\text{diffusion}}$$

At equilibrium, X evolves according to: $X_0 \sim m_0$, $dX_t = \hat{v}(t, X_t) dt + dW_t$. The evolution of its distribution $\hat{\mu}_t = \mathcal{L}(X_t)$ is given by a Fokker-Planck PDE:

How can we characterize the **best response** (= opt. control) of a typical player?

$$\hat{\boldsymbol{v}}(\cdot,\cdot) = \operatorname*{argmin}_{\boldsymbol{v}(\cdot,\cdot)} J(\boldsymbol{v}(\cdot,\cdot); \hat{\boldsymbol{\mu}}) = \operatorname*{argmin}_{\boldsymbol{v}(\cdot,\cdot)} \mathbb{E}\left[\int_0^T f(X_t, \hat{\boldsymbol{\mu}}_t, \boldsymbol{v}(t, X_t)) \, dt + g(X_T)\right]$$

At **equilibrium**, X evolves according to: $X_0 \sim m_0$, $dX_t = \hat{v}(t, X_t) dt + dW_t$. The evolution of its distribution $\hat{\mu}_t = \mathcal{L}(X_t)$ is given by a **Fokker-Planck** PDE:

$$\underbrace{\hat{\mu}(t=0,x) = m_0(x)}_{\text{initial condition}}, \qquad \partial_t \hat{\mu}(t,x) \qquad = \qquad - \qquad \underbrace{\partial_x \left(\hat{\mu}(t,x) \, \hat{\boldsymbol{v}}(t,x)\right)}_{\text{advection}} \qquad + \qquad \underbrace{\frac{1}{2} \, \underbrace{\partial_{xx} \hat{\mu}(t,x)}_{\text{diffusion}}}_{\text{diffusion}}$$

How can we characterize the **best response** (= opt. control) of a typical player?

$$\hat{\boldsymbol{v}}(\cdot,\cdot) = \operatorname*{argmin}_{\boldsymbol{v}(\cdot,\cdot)} J(\boldsymbol{v}(\cdot,\cdot); \hat{\boldsymbol{\mu}}) = \operatorname*{argmin}_{\boldsymbol{v}(\cdot,\cdot)} \mathbb{E}\left[\int_0^T f(X_t, \hat{\boldsymbol{\mu}}_t, \boldsymbol{v}(t, X_t)) \, dt + g(X_T)\right]$$

Picard iterations for MFG

Start with an initial guess $\mu^{(0)}$. Repeat for k = 0, 1, ...: Given $\mu^{(k)}$,

- (1) Compute $v^{(k+1)} = \text{best response}$ against $\mu^{(k)}$
- (2) Compute $\mu^{(k+1)} = \text{mean-field}$ flow associated to $v^{(k+1)}$

Converges if $\mu^{(k)} \mapsto \mu^{(k+1)}$ is a strict contraction (very restrictive . . .)

At equilibrium, X evolves according to: $X_0 \sim m_0$, $dX_t = \hat{v}(t, X_t) dt + dW_t$. The evolution of its distribution $\hat{\mu}_t = \mathcal{L}(X_t)$ is given by a Fokker-Planck PDE:

$$\hat{\underline{\mu}}(t=0,x) = m_0(x), \qquad \partial_t \hat{\mu}(t,x) \qquad = \qquad - \qquad \underbrace{\partial_x \left(\hat{\mu}(t,x) \, \hat{\boldsymbol{v}}(t,x)\right)}_{\text{advection}} \qquad + \qquad \underbrace{\frac{1}{2} \, \underbrace{\partial_{xx} \hat{\mu}(t,x)}_{\text{diffusion}}$$

How can we characterize the **best response** (= opt. control) of a typical player?

$$\hat{\boldsymbol{v}}(\cdot,\cdot) = \operatorname*{argmin}_{\boldsymbol{v}(\cdot,\cdot)} J(\boldsymbol{v}(\cdot,\cdot);\hat{\boldsymbol{\mu}}) = \operatorname*{argmin}_{\boldsymbol{v}(\cdot,\cdot)} \mathbb{E}\left[\int_0^T f(X_t,\hat{\boldsymbol{\mu}}_t,\boldsymbol{v}(t,\boldsymbol{X}_t)) \, dt + g(X_T)\right]$$

(1) Dynamic programming: $\hat{v}(\cdot,\cdot)$ is given in terms of the value function $\hat{u}(\cdot,\cdot)$ which solves the Hamilton-Jacobi-Bellman PDE

$$\begin{array}{ccc} & -\partial_t \hat{u}(t,x) & = & \underline{\hat{H}(x,\mu(t,\cdot),\partial_x \hat{u}(t,x))} + \frac{1}{2}\partial_{xx}\hat{u}(t,x), & \underline{\hat{u}(t=T,x)=g(x)} \\ \text{backward evolution} & \text{Hamiltonian} & \text{terminal condition} \\ \text{where } \hat{H}(x,m,q) & := \min_{g \in \mathbb{R}^d} \left(f(x,m,a) + q \cdot a \right). \end{array}$$

At **equilibrium**, X evolves according to: $X_0 \sim m_0$, $dX_t = \hat{v}(t, X_t) dt + dW_t$.

The evolution of its distribution $\hat{\mu}_t = \mathcal{L}(X_t)$ is given by a **Fokker-Planck** PDE:

$$\underbrace{\hat{\mu}(t=0,x)=m_0(x)}_{\text{initial condition}},$$

$$\partial_t \hat{\mu}(t,x) = 0$$

$$\partial_t \hat{\mu}(t,x) = -\underbrace{\partial_x \left(\hat{\mu}(t,x)\,\hat{v}(t,x)\right)}_{\mathsf{advection}} + \frac{1}{2}\underbrace{\partial_{xx}\hat{\mu}(t,x)}_{\mathsf{diffusion}}$$

$$\underbrace{\partial_{xx}\mu(t,x)}_{\text{diffusion}}$$

How can we characterize the **best response** (= opt. control) of a typical player?

$$\hat{\boldsymbol{v}}(\cdot,\cdot) = \operatorname*{argmin}_{\boldsymbol{v}(\cdot,\cdot)} J(\boldsymbol{v}(\cdot,\cdot); \hat{\boldsymbol{\mu}}) = \operatorname*{argmin}_{\boldsymbol{v}(\cdot,\cdot)} \mathbb{E}\left[\int_0^T f(X_t, \hat{\boldsymbol{\mu}}_t, \boldsymbol{v}(t, X_t)) \, dt + g(X_T)\right]$$

(1) Dynamic programming: $\hat{v}(\cdot,\cdot)$ is given in terms of the value function $\hat{u}(\cdot,\cdot)$ which solves the Hamilton-Jacobi-Bellman PDE

$$-\partial_t \hat{u}(t,x) = \hat{H}(x,\mu(t,\cdot),\partial_x \hat{u}(t,x)) + \frac{1}{2}\partial_{xx}\hat{u}(t,x), \qquad \hat{u}(t=T,x) = g(x)$$

where
$$\hat{H}(x, m, q) := \min_{\mathbf{a} \in \mathbb{R}^d} (f(x, m, \mathbf{a}) + q \cdot \mathbf{a}).$$

(2) Or: Stoch. Maximum Principle: $\hat{v}(t, X_t)$ is characterized in terms of $X_t, \mathcal{L}(X_t)$ and the **adjoint state** $Y_t \in \mathbb{R}^d$, which solves the **backward** SDE

$$dY_t = -\partial_x \hat{H}(X_t, \hat{\mu}_t, Y_t) dt + Z_t \cdot dW_t, \qquad Y_T = \partial_x g(X_T)$$

At equilibrium, X evolves according to: $X_0 \sim m_0$, $dX_t = \hat{v}(t, X_t) dt + dW_t$.

The evolution of its distribution $\hat{\mu}_t = \mathcal{L}(X_t)$ is given by a **Fokker-Planck** PDE:

 $\hat{\mu}(t=0,x)=m_0(x),$ initial condition

$$\partial_t \hat{\mu}(t,x) =$$

$$\partial_t \hat{\mu}(t,x) = -\underbrace{\partial_x \left(\hat{\mu}(t,x)\,\hat{v}(t,x)\right)}_{\mathsf{advection}} + \frac{1}{2}\underbrace{\partial_{xx}\hat{\mu}(t,x)}_{\mathsf{diffusion}}$$

$$\frac{\int_{xx}\mu(t,x)}{\text{diffusion}}$$

How can we characterize the **best response** (= opt. control) of a typical player?

$$\hat{\boldsymbol{v}}(\cdot,\cdot) = \operatorname*{argmin}_{\boldsymbol{v}(\cdot,\cdot)} J(\boldsymbol{v}(\cdot,\cdot); \hat{\boldsymbol{\mu}}) = \operatorname*{argmin}_{\boldsymbol{v}(\cdot,\cdot)} \mathbb{E}\left[\int_0^T f(X_t, \hat{\boldsymbol{\mu}}_t, \boldsymbol{v}(t, X_t)) \, dt + g(X_T)\right]$$

(1) Dynamic programming: $\hat{v}(\cdot,\cdot)$ is given in terms of the value function $\hat{u}(\cdot,\cdot)$ which solves the Hamilton-Jacobi-Bellman PDE

$$-\partial_t \hat{u}(t,x) = \hat{H}(x,\mu(t,\cdot),\partial_x \hat{u}(t,x)) + \frac{1}{2}\partial_{xx}\hat{u}(t,x), \qquad \hat{u}(t=T,x) = g(x)$$

$$\hat{u}(t=T,x) = g(x)$$

backward evolution

Hamiltonian

where $\hat{H}(x, m, q) := \min_{\mathbf{a} \in \mathbb{R}^d} (f(x, m, \mathbf{a}) + q \cdot \mathbf{a}).$

(2) Or: Stoch. Maximum Principle: $\hat{v}(t, X_t)$ is characterized in terms of $X_t, \mathcal{L}(X_t)$ and the **adjoint state** $Y_t \in \mathbb{R}^d$, which solves the **backward** SDE

$$dY_t = -\partial_x \hat{H}(X_t, \hat{\mu}_t, Y_t) dt + Z_t \cdot dW_t, \qquad Y_T = \partial_x g(X_T)$$

⇒ forward-backward SDE or PDE system

Solutions of MFG (and MFC) can be characterized by MKV FBSDEs of the form

$$\begin{cases} dX_t = B(t, X_t, \mathcal{L}(X_t), Y_t) dt + dW_t, & X_0 \sim m_0 \\ dY_t = -F(t, X_t, \mathcal{L}(X_t), Y_t) dt + Z_t \cdot dW_t, & Y_T = G(X_T, \mathcal{L}(X_T)) \end{cases} \rightarrow \text{state}$$

Solutions of MFG (and MFC) can be characterized by MKV FBSDEs of the form

$$\begin{cases} dX_t = B(t, X_t, \mathcal{L}(X_t), Y_t) dt + dW_t, & X_0 \sim m_0 \\ dY_t = -F(t, X_t, \mathcal{L}(X_t), Y_t) dt + Z_t \cdot dW_t, & Y_T = G(X_T, \mathcal{L}(X_T)) \end{cases} \rightarrow \text{state}$$

Idea: rewrite as optimal control of 2 forward SDEs ([Ma, Yong], "Sannikov's trick", ...)

Solutions of MFG (and MFC) can be characterized by MKV FBSDEs of the form

$$\begin{cases} dX_t = B(t, X_t, \mathcal{L}(X_t), Y_t) dt + dW_t, & X_0 \sim m_0 \\ dY_t = -F(t, X_t, \mathcal{L}(X_t), Y_t) dt + Z_t \cdot dW_t, & Y_T = G(X_T, \mathcal{L}(X_T)) \end{cases} \rightarrow \text{state}$$

Idea: rewrite as optimal control of 2 forward SDEs ([Ma, Yong], "Sannikov's trick", ...)

Reformulation as a MFC problem

Minimize over $y_0(\cdot)$ and $\mathbf{z}(\cdot) = (z_t(\cdot))_{t \geq 0}$

$$J(y_0(\cdot), \mathbf{z}(\cdot)) = \mathbb{E}\left[\|Y_T^{y_0, \mathbf{z}} - G(X_T^{y_0, \mathbf{z}}, \mathcal{L}(X_T^{y_0, \mathbf{z}}))\|_2 \right],$$

under the constraint that $(X^{y_0,\mathbf{z}},Y^{y_0,\mathbf{z}})$ solve: $\forall t\in[0,T]$

$$\begin{cases} dX_t = B(t, X_t, \mathcal{L}(X_t), Y_t)dt + dW_t, & X_0 \sim \mu_0, \\ dY_t = -F(t, X_t, \mathcal{L}(X_t), Y_t)dt + \mathbf{z}_t(X_t) \cdot dW_t, & Y_0 = \mathbf{y}_0(X_0). \end{cases}$$

Solutions of MFG (and MFC) can be characterized by MKV FBSDEs of the form

$$\begin{cases} dX_t = B(t, X_t, \mathcal{L}(X_t), Y_t) dt + dW_t, & X_0 \sim m_0 \\ dY_t = -F(t, X_t, \mathcal{L}(X_t), Y_t) dt + Z_t \cdot dW_t, & Y_T = G(X_T, \mathcal{L}(X_T)) \end{cases} \rightarrow \text{state}$$

Idea: rewrite as optimal control of 2 forward SDEs ([Ma, Yong], "Sannikov's trick", ...)

Reformulation as a MFC problem

Minimize over $y_0(\cdot)$ and $\mathbf{z}(\cdot) = (z_t(\cdot))_{t \geq 0}$

$$J(y_0(\cdot), \mathbf{z}(\cdot)) = \mathbb{E}\left[\|Y_T^{y_0, \mathbf{z}} - G(X_T^{y_0, \mathbf{z}}, \mathcal{L}(X_T^{y_0, \mathbf{z}}))\|_2 \right],$$

under the constraint that $(X^{y_0,\mathbf{z}},Y^{y_0,\mathbf{z}})$ solve: $\forall t\in[0,T]$

$$\begin{cases} dX_t = B(t, X_t, \mathcal{L}(X_t), Y_t)dt + dW_t, & X_0 \sim \mu_0, \\ dY_t = -F(t, X_t, \mathcal{L}(X_t), Y_t)dt + \mathbf{z}_t(X_t) \cdot dW_t, & Y_0 = \mathbf{y}_0(X_0). \end{cases}$$

 \rightarrow MFC: can apply direct approach, replacing $y_0(\cdot), z(\cdot, \cdot)$ by NN

Solutions of MFG (and MFC) can be characterized by MKV FBSDEs of the form

$$\begin{cases} dX_t = B(t, X_t, \mathcal{L}(X_t), Y_t) dt + dW_t, & X_0 \sim m_0 \\ dY_t = -F(t, X_t, \mathcal{L}(X_t), Y_t) dt + Z_t \cdot dW_t, & Y_T = G(X_T, \mathcal{L}(X_T)) \end{cases} \rightarrow \text{state}$$

Idea: rewrite as optimal control of 2 forward SDEs ([Ma, Yong], "Sannikov's trick", ...)

Reformulation as a MFC problem

Minimize over $y_0(\cdot)$ and $\mathbf{z}(\cdot) = (z_t(\cdot))_{t \geq 0}$

$$J(y_0(\cdot), \mathbf{z}(\cdot)) = \mathbb{E}\left[\|Y_T^{y_0, \mathbf{z}} - G(X_T^{y_0, \mathbf{z}}, \mathcal{L}(X_T^{y_0, \mathbf{z}}))\|_2 \right],$$

under the constraint that $(X^{y_0,\mathbf{z}},Y^{y_0,\mathbf{z}})$ solve: $\forall t\in[0,T]$

$$\begin{cases} dX_t = B(t, X_t, \mathcal{L}(X_t), Y_t) dt + dW_t, & X_0 \sim \mu_0, \\ dY_t = -F(t, X_t, \mathcal{L}(X_t), Y_t) dt + \mathbf{z}_t(X_t) \cdot dW_t, & Y_0 = \mathbf{y}_0(X_0). \end{cases}$$

 \rightarrow MFC: can apply direct approach, replacing $y_0(\cdot), z(\cdot, \cdot)$ by NN

Extends [Han, Jentzen, E'17] for FBSDE without mean-field interactions

Example: MFG for inter-bank borrowing/lending [Carmona, Fouque, Sun] $X = \log$ -monetary reserve, $\alpha = \text{rate of borrowing/lending to central bank, cost:}$

$$J(\alpha; \bar{m}) = \mathbb{E}\left[\int_0^T \left[\frac{1}{2}\alpha_t^2 - q\alpha_t(\bar{m}_t - X_t) + \frac{\epsilon}{2}(\bar{m}_t - X_t)^2\right]dt + \frac{c}{2}(\bar{m}_T - X_T)^2\right]$$

where $\bar{m} = (\bar{m}_t)_{t\geq 0}$ is the cond. mean given W^0 of the population states, and

$$dX_t = \left[a(\bar{m}_t - X_t) + \alpha_t\right]dt + \sigma\left(\sqrt{1 - \rho^2}dW_t + \rho \frac{dW_t^0}{}\right)$$

Example: MFG for inter-bank borrowing/lending [Carmona, Fouque, Sun] $X = \log$ -monetary reserve, $\alpha = \text{rate of borrowing/lending to central bank, cost:}$

$$J(\boldsymbol{\alpha}; \bar{m}) = \mathbb{E}\left[\int_0^T \left[\frac{1}{2}\alpha_t^2 - q\alpha_t(\bar{m}_t - X_t) + \frac{\epsilon}{2}(\bar{m}_t - X_t)^2\right]dt + \frac{c}{2}(\bar{m}_T - X_T)^2\right]$$

where $\bar{m} = (\bar{m}_t)_{t \geq 0}$ is the cond. mean given W^0 of the population states, and

$$dX_t = \left[a(\bar{m}_t - X_t) + \frac{\alpha_t}{\alpha_t}\right]dt + \sigma\left(\sqrt{1 - \rho^2}dW_t + \rho \frac{dW_t^0}{\alpha_t}\right)$$

The Nash equilibrium can be characterized by the FBSDE system:

$$\begin{cases} dX_t = \underbrace{\left[(a+q)(\bar{m}_t - X_t) - Y_t \right]}_{\partial_y H} dt + \sigma \left(\sqrt{1 - \rho^2} dW_t + \rho dW_t^0 \right), & X_0 \sim m_0 \\ dY_t = \underbrace{\left(a+q \right) Y_t + (\epsilon - q^2)(\bar{m}_t - X_t)}_{-\partial_x H} dt + Z_t \cdot dW_t + Z_t^0 \cdot dW_t^0, & Y_T = c(X_T - \bar{m}_T) \end{cases}$$

Numerical Illustration: LQ-MFG with common noise

DL for FBSDE system VS (semi) analytical solution (LQ structure)

Numerical Illustration: LQ-MFG with common noise

DL for FBSDE system VS (semi) analytical solution (LQ structure)

Numerical Illustration: LQ-MFG with common noise

DL for FBSDE system VS (semi) analytical solution (LQ structure)

Outline

Introduction

Part 1: Solving Mean Field Problems with Deep Learning

- Direct approach for MFC
- MKV FBSDE system
- Mean Field PDE System

Part 2: Reinforcement Learning with Mean-Field Interactions

Conclusion

MFG: PDE system

$$\begin{aligned} \text{MFG: If } (\hat{m}, \hat{v}) \text{ solves the MFG, then } (\hat{m}(t, x), \hat{v}(t, x)) &= \left(m(t, x), \hat{\mathbf{v}}(x, m(t), \nabla u(t, x))\right) \\ \text{with} \qquad &\hat{\mathbf{v}}(x, m(t), \nabla u(t, x)) &= \operatorname{argmin}_{a \in \mathbb{R}^k} \left(f(x, m(t), a) + \nabla u(t, x) \cdot b(x, m(t), a)\right), \\ \text{where } (m, u) \text{ solve the PDE system} \\ & \left\{0 &= \partial_t m(t, x) - \nu \Delta m(t, x) + \operatorname{div}\left(m(t, x) \partial_q \hat{H}(x, m(t), \nabla u(t, x))\right)\right. \\ & \left.0 &= \partial_t u(t, x) + \nu \Delta u(t, x) + \hat{H}(x, m(t), \nabla u(t, x))\right. \\ & \left.0 &= \partial_t u(t, x) + \nu \Delta u(t, x) + \hat{H}(x, m(t), \nabla u(t, x))\right. \\ & \left.0 &= \partial_t u(t, x) + \nu \Delta u(t, x) + \hat{H}(x, m(t), \nabla u(t, x))\right. \\ & \left.0 &= \partial_t u(t, x) + \nu \Delta u(t, x) + \hat{H}(x, m(t), \nabla u(t, x))\right. \\ & \left.0 &= \partial_t u(t, x) + \nu \Delta u(t, x) + \hat{H}(x, m(t), \nabla u(t, x))\right. \\ & \left.0 &= \partial_t u(t, x) + \nu \Delta u(t, x) + \hat{H}(x, m(t), \nabla u(t, x))\right. \\ & \left.0 &= \partial_t u(t, x) + \nu \Delta u(t, x) + \hat{H}(x, m(t), \nabla u(t, x))\right. \\ & \left.0 &= \partial_t u(t, x) + \nu \Delta u(t, x) + \hat{H}(x, m(t), \nabla u(t, x))\right. \\ & \left.0 &= \partial_t u(t, x) + \nu \Delta u(t, x) + \hat{H}(x, m(t), \nabla u(t, x))\right. \\ & \left.0 &= \partial_t u(t, x) + \nu \Delta u(t, x) + \hat{H}(x, m(t), \nabla u(t, x))\right. \\ & \left.0 &= \partial_t u(t, x) + \nu \Delta u(t, x) + \hat{H}(x, m(t), \nabla u(t, x))\right. \\ & \left.0 &= \partial_t u(t, x) + \nu \Delta u(t, x) + \hat{H}(x, m(t), \nabla u(t, x))\right. \\ & \left.0 &= \partial_t u(t, x) + \nu \Delta u(t, x) + \hat{H}(x, m(t), \nabla u(t, x))\right. \\ & \left.0 &= \partial_t u(t, x) + \nu \Delta u(t, x) + \hat{H}(x, m(t), \nabla u(t, x))\right. \\ & \left.0 &= \partial_t u(t, x) + \nu \Delta u(t, x) + \hat{H}(x, m(t), \nabla u(t, x))\right. \\ & \left.0 &= \partial_t u(t, x) + \nu \Delta u(t, x) + \hat{H}(x, m(t), \nabla u(t, x))\right. \\ & \left.0 &= \partial_t u(t, x) + \hat{H}(x, m(t), \nabla u(t, x))\right. \\ & \left.0 &= \partial_t u(t, x) + \hat{H}(x, m(t), \nabla u(t, x))\right. \\ & \left.0 &= \partial_t u(t, x) + \hat{H}(x, m(t), \nabla u(t, x))\right. \\ & \left.0 &= \partial_t u(t, x) + \hat{H}(x, m(t), \nabla u(t, x)\right)\right. \\ & \left.0 &= \partial_t u(t, x) + \hat{H}(x, m(t), \nabla u(t, x)\right)\right. \\ & \left.0 &= \partial_t u(t, x) + \hat{H}(x, m(t), \nabla u(t, x)\right)\right. \\ & \left.0 &= \partial_t u(t, x) + \hat{H}(x, m(t), \nabla u(t, x)\right)\right. \\ & \left.0 &= \partial_t u(t, x) + \hat{H}(x, m(t), \nabla u(t, x)\right)\right. \\ & \left.0 &= \partial_t u(t, x) + \hat{H}(x, m(t), \nabla u(t, x)\right)\right. \\ & \left.0 &= \partial_t u(t, x) + \hat{H}(x, m(t), \nabla u(t, x)\right)\right. \\ & \left.0 &= \partial_t u(t, x) + \hat{H}(x, m(t), \nabla u(t, x)\right)\right. \\ & \left.0 &= \partial_t u(t, x) + \hat{H}(x, m(t), \nabla$$

$$\begin{aligned} \text{MFG: If } (\hat{m}, \hat{v}) \text{ solves the MFG, then } (\hat{m}(t, x), \hat{v}(t, x)) &= \left(m(t, x), \hat{\mathbf{v}}(x, m(t), \nabla u(t, x))\right) \\ \text{with} \qquad &\hat{\mathbf{v}}(x, m(t), \nabla u(t, x)) = \operatorname{argmin}_{a \in \mathbb{R}^k} \left(f(x, m(t), a) + \nabla u(t, x) \cdot b(x, m(t), a)\right), \\ \text{where } (m, u) \text{ solve the PDE system} \\ & \left\{0 &= \partial_t m(t, x) - \nu \Delta m(t, x) + \operatorname{div}\left(m(t, x) \partial_q \hat{H}(x, m(t), \nabla u(t, x))\right)\right. \\ & \left.0 &= \partial_t u(t, x) + \nu \Delta u(t, x) + \hat{H}(x, m(t), \nabla u(t, x))\right. \\ & \left.0 &= \partial_t u(t, x) + \nu \Delta u(t, x) + \hat{H}(x, m(t), \nabla u(t, x))\right. \\ & \left.0 &= m_0(x), \quad u(T, x) = g(x, m(T))\right. \end{aligned} \end{aligned}$$
 with
$$\hat{H}(x, m, q) := \min_{a \in \mathbb{R}^k} \left(f(x, m, a) + q \cdot b(x, m, a)\right).$$

Deep Galerkin Method [Sirignano, Spiliopoulos]:

- → application to MFGs: see [Al-Aradi et al.; Carmona, L.; Cao, Guo, L.]
 - replace unknown functions by deep NN
 - try to minimize the squared residual
 - by sampling points in the domain

$$\textbf{MFG:} \text{ If } (\hat{m}, \hat{v}) \text{ solves the MFG, then } (\hat{m}(t, x), \hat{v}(t, x)) = \Big(m(t, x), \hat{v}(x, m(t), \nabla u(t, x))\Big)$$

with
$$\hat{\mathbf{v}}(x, m(t), \nabla u(t, x)) = \operatorname{argmin}_{a \in \mathbb{R}^k} \left(f(x, m(t), \mathbf{a}) + \nabla u(t, x) \cdot b(x, m(t), \mathbf{a}) \right)$$
, there (x, x) solves the RDE system.

where (\boldsymbol{m},u) solve the PDE system

$$\begin{cases}
0 = \partial_t m(t, x) - \nu \Delta m(t, x) + \operatorname{div}\left(m(t, x)\partial_q \hat{H}(x, m(t), \nabla u(t, x))\right) \\
0 = \partial_t u(t, x) + \nu \Delta u(t, x) + \hat{H}(x, m(t), \nabla u(t, x)) \\
m(0, x) = m_0(x), \quad u(T, x) = g(x, m(T))
\end{cases}$$

with

$$\hat{H}(x, m, q) := \min_{a \in \mathbb{R}^k} \left(f(x, m, a) + q \cdot b(x, m, a) \right).$$

Deep Galerkin Method [Sirignano, Spiliopoulos]:

- → application to MFGs: see [Al-Aradi et al.; Carmona, L.; Cao, Guo, L.]
 - \bullet replace unknown functions by deep NN $\to m_{\theta_1}, u_{\theta_2}$
 - try to minimize the squared residual \rightarrow loss = $\int \int |\partial_t m_{\theta_1}(t,x) + \dots|^2 dt dx + \dots$
 - ullet by sampling points in the domain o sample (t_i,x_i)

Model of crowd trading [Cardaliaguet, Lehalle]:

$$\begin{cases} dS_t^{\bar{\mu}} = \gamma \bar{\mu}_t dt + \sigma dW_t & \text{(asset price)} \\ dQ_t^{\pmb{v}} = \pmb{v}_t dt & \text{(player's inventory)} \\ dX_t^{\pmb{v},\bar{\mu}} = -\pmb{v}_t (S_t^{\bar{\mu}} + \kappa \pmb{v}_t) dt & \text{(player's wealth)} \end{cases}$$

Objective: given $\bar{\mu} = (\bar{\mu}_t)_t$, maximize

$$J(\boldsymbol{v}; \bar{\boldsymbol{\mu}}) = \mathbb{E}\left[X_T^{\boldsymbol{v}, \bar{\boldsymbol{\mu}}} + Q_T^{\boldsymbol{v}} S_T^{\bar{\boldsymbol{\mu}}} - A|Q_T^{\boldsymbol{v}}|^2 - \phi \int_0^T |Q_t^{\boldsymbol{v}}|^2 dt\right]$$

where: $\phi, A > 0 \Rightarrow$ penalty for holding inventory

Model of crowd trading [Cardaliaguet, Lehalle]:

$$\begin{cases} dS_t^{\bar{\mu}} = \gamma \bar{\mu}_t dt + \sigma dW_t & \text{(asset price)} \\ dQ_t^{\pmb{v}} = \pmb{v}_t dt & \text{(player's inventory)} \\ dX_t^{\pmb{v},\bar{\mu}} = -\pmb{v}_t (S_t^{\bar{\mu}} + \kappa \pmb{v}_t) dt & \text{(player's wealth)} \end{cases}$$

Objective: given $\bar{\mu} = (\bar{\mu}_t)_t$, maximize

$$J(\boldsymbol{v}; \bar{\boldsymbol{\mu}}) = \mathbb{E}\left[X_T^{\boldsymbol{v}, \bar{\boldsymbol{\mu}}} + Q_T^{\boldsymbol{v}} S_T^{\bar{\boldsymbol{\mu}}} - A|Q_T^{\boldsymbol{v}}|^2 - \phi \int_0^T |Q_t^{\boldsymbol{v}}|^2 dt\right]$$

where: $\phi, A > 0 \Rightarrow$ penalty for holding inventory

Ansatz [Cartea, Jaimungal]: $V(t,x,s,q)=x+qsu(t,q), \qquad v_t^*(q)=\frac{\partial_q u(t,q)}{2\kappa}$ where $u(\cdot)$ solves

$$-\gamma \bar{\mu}q = \partial_t u - \phi q^2 + \sup_{v} \{ v \partial_q u - \kappa v^2 \}, \qquad u(T, q) = -Aq^2$$

Model of crowd trading [Cardaliaguet, Lehalle]:

$$\begin{cases} dS_t^{\bar{\mu}} = \gamma \bar{\mu}_t dt + \sigma dW_t & \text{(asset price)} \\ dQ_t^{\pmb{v}} = \pmb{v_t} dt & \text{(player's inventory)} \\ dX_t^{\pmb{v},\bar{\mu}} = -\pmb{v_t} (S_t^{\bar{\mu}} + \kappa \pmb{v_t}) dt & \text{(player's wealth)} \end{cases}$$

Objective: given $\bar{\mu} = (\bar{\mu}_t)_t$, maximize

$$J(\mathbf{v}; \bar{\mu}) = \mathbb{E}\left[X_T^{\mathbf{v}, \bar{\mu}} + Q_T^{\mathbf{v}} S_T^{\bar{\mu}} - A|Q_T^{\mathbf{v}}|^2 - \phi \int_0^T |Q_t^{\mathbf{v}}|^2 dt\right]$$

where: $\phi, A > 0 \Rightarrow$ penalty for holding inventory

Ansatz [Cartea, Jaimungal]: V(t,x,s,q) = x + qsu(t,q), $v_t^*(q) = \frac{\partial_q u(t,q)}{2\kappa}$ where $u(\cdot)$ solves

$$-\gamma \bar{\mu}q = \partial_t u - \phi q^2 + \sup_{\mathbf{v}} \{ \mathbf{v} \partial_q u - \kappa \mathbf{v}^2 \}, \qquad u(T, q) = -Aq^2$$

Mean field term: at equilibrium

$$ar{\mu}_t = \int v_t^*(q) m^*(t, dq) = \int rac{\partial_q u^*(t, q)}{2\kappa} m^*(t, dq),$$

where m^* solves the KFP equation:

$$m(0,\cdot) = m_0, \qquad \partial_t m + \partial_q \left(m \frac{\partial_q u^*(t,q)}{2\kappa} \right) = 0$$

Forward-backward PDE system:

$$\begin{cases} -\gamma \bar{\mu}_t q = \partial_t u(t,q) - \phi q^2 + \frac{|\partial_q u(t,q)|^2}{4\kappa} \\ \partial_t m(t,q) + \partial_q \left(m(t,q) \frac{\partial_q u(t,q)}{2\kappa} \right) = 0 \\ \bar{\mu}_t = \int \frac{\partial_q u(t,q)}{2\kappa} m(t,q) dq \\ m(0,\cdot) = m_0, u(T,q) = -Aq^2. \end{cases}$$

Numerical Illustration: Crowd trading

Trade crowding MFG example solved by DGM.

Evolution of the distribution m: surface (left) and contour (right).

Numerical Illustration: Crowd trading

Trade crowding MFG example solved by DGM.

Evolution of the optimal control \boldsymbol{v}^{*} (3 different time steps).

Outline

Introduction

Part 1: Solving Mean Field Problems with Deep Learning

Part 2: Reinforcement Learning with Mean-Field Interactions

Conclusion

Generic Mean Field model: for a typical infinitesimal agent

• Dynamics: discrete time

$$X_{n+1}^{\alpha,\mu} = \varphi(X_n^{\alpha,\mu}, \alpha_n, \mu_n, \epsilon_{n+1}, \epsilon_{n+1}^0), \quad n \ge 0, \qquad X_0^{\alpha,\mu} \sim \mu_0$$

- $\diamond X_n^{\alpha,\mu} \in \mathcal{X} \subseteq \mathbb{R}^d$: state, $\alpha_n \in \mathcal{U} \subseteq \mathbb{R}^k$: action
- \diamond $\epsilon_n \sim \nu$: idiosyncratic noise, $\epsilon_n^0 \sim \nu^0$: common noise (random environment)
- $\diamond \mu_n \in \mathcal{P}(\mathcal{X})$ is a state distribution
- $\bullet \ \, \mathbf{Cost:} \ \, \mathbb{J}({\color{blue}\alpha};\mu) = \mathbb{E}_{\epsilon,\epsilon^0} \bigg[{\color{blue}\sum_{n=0}^{\infty} \gamma^n f \big(X_n^{{\color{blue}\alpha},\mu}, {\color{blue}\alpha_n}, \mu_n \big)} \bigg]$

Generic Mean Field model: for a typical infinitesimal agent

• Dynamics: discrete time

$$X_{n+1}^{\alpha,\mu} = \varphi(X_n^{\alpha,\mu}, \alpha_n, \mu_n, \epsilon_{n+1}, \epsilon_{n+1}^0), \quad n \ge 0, \qquad X_0^{\alpha,\mu} \sim \mu_0$$

- $\diamond X_n^{\alpha,\mu} \in \mathcal{X} \subseteq \mathbb{R}^d$: state, $\alpha_n \in \mathcal{U} \subseteq \mathbb{R}^k$: action
- \diamond $\epsilon_n \sim
 u$: idiosyncratic noise, $\epsilon_n^0 \sim
 u^0$: common noise (random environment)
- $\diamond \mu_n \in \mathcal{P}(\mathcal{X})$ is a state distribution
- Cost: $\mathbb{J}(\boldsymbol{\alpha}; \boldsymbol{\mu}) = \mathbb{E}_{\epsilon, \epsilon^0} \left[\sum_{n=0}^{\infty} \gamma^n f(X_n^{\boldsymbol{\alpha}, \mu}, \boldsymbol{\alpha}_n, \mu_n) \right]$

Two scenarios:

- Cooperative (MFControl): Find α^* minimizing $\alpha \mapsto J^{MFC}(\alpha) = \mathbb{J}(\alpha; \mu^{\alpha})$ where $\mu_n^{\alpha} = \mathbb{P}_{X_{\alpha}^{\alpha}, \mu^{\alpha}}^{0}$
- Non-Cooperative (MFGame): Find $\hat{\alpha}$ minimizing $\alpha \mapsto J^{MFG}(\alpha; \hat{\mu}) = \mathbb{J}(\alpha; \hat{\mu})$ where $\hat{\mu}_n = \mathbb{P}^0_{X_n^{\hat{\alpha}, \hat{\mu}}}$

Q: How to learn an optimal behavior when the model (φ, f) is not known?

Two scenarios

1. Learning with cooperation

2. Learning with competition

Two scenarios

1. Learning with cooperation

Learning with competition

From Optimal Control to Mean Field RL

Idea 1: Make the "direct approach" model-free

Policy Gradient (PG) to minimize $J(\theta)$

- Control ≈ parameterized function
- Look for the optimal parameter θ^*
- Perform gradient descent on the space of parameters

Idea 1: Make the "direct approach" model-free

Policy Gradient (PG) to minimize $J(\theta)$

- Control ≈ parameterized function
- Look for the optimal parameter θ^*
- Perform gradient descent on the space of parameters

Hierarchy of three situations, more and more complex:

(1) access to the exact (mean field) model:

$$\theta_{k+1} = \theta_k - \eta \nabla J(\theta_k)$$

Idea 1: Make the "direct approach" model-free

Policy Gradient (PG) to minimize $J(\theta)$

- Control ≈ parameterized function
- Look for the optimal parameter θ^*
- Perform gradient descent on the space of parameters

Hierarchy of three situations, more and more complex:

(1) access to the exact (mean field) model:

$$\theta_{k+1} = \theta_k - \eta \nabla J(\theta_k)$$

(2) access to a mean field simulator:

$$\rightarrow$$
 idem + gradient estimation (0th-order opt.):

$$\theta_{k+1} = \theta_k - \eta \widetilde{\nabla} J(\theta_k)$$

Idea 1: Make the "direct approach" model-free

Policy Gradient (PG) to minimize $J(\theta)$

- Control ≈ parameterized function
- Look for the optimal parameter θ^*
- Perform gradient descent on the space of parameters

Hierarchy of three situations, more and more complex:

$$\theta_{k+1} = \theta_k - \eta \nabla J(\theta_k)$$

(2) access to a mean field simulator:

$$\rightarrow$$
 idem + gradient estimation (0th-order opt.):

$$\theta_{k+1} = \theta_k - \eta \widetilde{\nabla} J(\theta_k)$$

(3) access to a N-agent **population simulator**:

$$\rightarrow$$
 idem + error on mean \approx empirical mean (LLN):

$$\theta_{k+1} = \theta_k - \eta \widetilde{\nabla}^N J(\theta_k)$$

Idea 1: Make the "direct approach" model-free

Policy Gradient (PG) to minimize $J(\theta)$

- Control ≈ parameterized function
- Look for the optimal parameter θ^*
- Perform gradient descent on the space of parameters

Hierarchy of three situations, more and more complex:

(1) access to the exact (mean field) model:

 $\theta_{k+1} = \theta_k - \eta \nabla J(\theta_k)$

- (2) access to a mean field simulator:
 - \rightarrow idem + gradient estimation (0th-order opt.):

$$\theta_{k+1} = \theta_k - \eta \widetilde{\nabla} J(\theta_k)$$

(3) access to a N-agent population simulator:

$$\rightarrow$$
 idem + error on mean \approx empirical mean (LLN):

$$\theta_{k+1} = \theta_k - \eta \widetilde{\nabla}^N J(\theta_k)$$

Theorem: For Linear-Quadratic MFC

[Carmona, L., Tan'19]

In each case, convergence holds at a linear rate:

Taking
$$k \approx \mathcal{O}\big(\log(1/\epsilon)\big)$$
 is sufficient to ensure $J(\theta_k) - J(\theta^*) < \epsilon$.

Proof: builds on [Fazel et al.'18], analysis of perturbation of Riccati equations

Example: Linear dynamics, quadratic costs of the type:

$$f(x,\mu,\mathbf{v}) = \underbrace{(\bar{\mu} - x)^2}_{\mbox{distance to mean position}} + \underbrace{\mathbf{v}^2}_{\mbox{cost of moving}}, \qquad \bar{\mu} = \underbrace{\int \mu(\xi) d\xi}_{\mbox{mean position}},$$

Value of the MF cost

Rel. err. on MF cost

MF cost = cost in the mean field problem

Example: Linear dynamics, quadratic costs of the type:

$$f(x,\mu,v) = \underbrace{(\bar{\mu}-x)^2}_{\mbox{distance to mean position}} + \underbrace{v^2}_{\mbox{moving}} \; , \qquad \bar{\mu} = \underbrace{\int \mu(\xi) d\xi}_{\mbox{mean position}} \; ,$$

Value of the social cost

Rel. err. on social cost

Social cost = average over the N-agents

Example: Linear dynamics, quadratic costs of the type:

$$f(x,\mu,v) = \underbrace{(\bar{\mu}-x)^2}_{\mbox{distance to mean position}} + \underbrace{v^2}_{\mbox{moving}} \,, \qquad \bar{\mu} = \underbrace{\int \mu(\xi) d\xi}_{\mbox{mean position}} \,,$$

Value of the social cost

Rel. err. on social cost

Social cost = average over the N-agents

Main take-away:

Trying to learn the mean-field regime solution can be efficient even for N small

Q: Beyond the LQ setting?

Idea 2: Generalize Q-learning to the mean-field setting

Q: Beyond the LQ setting?

Idea 2: Generalize Q-learning to the mean-field setting

$$\alpha^* \in \operatorname*{argmin}_{\alpha} J^{MFC}(\alpha) = \mathbb{E}_{\epsilon, \epsilon^0} \left[\sum_{n=0}^{\infty} \gamma^n f(X_n^{\alpha}, \alpha_n, \mu_n^{\alpha}) \right], \qquad \mu_n^{\alpha} = \mathbb{P}_{X_n^{\alpha}}^0$$

Q: Beyond the LQ setting?

Idea 2: Generalize Q-learning to the mean-field setting

$$\begin{split} & \boldsymbol{\alpha}^* \in \operatorname*{argmin}_{\boldsymbol{\alpha}} J^{MFC}(\boldsymbol{\alpha}) = \mathbb{E}_{\epsilon,\epsilon^0} \Big[\sum_{n=0}^{\infty} \gamma^n f \Big(\boldsymbol{X}_n^{\boldsymbol{\alpha}}, \boldsymbol{\alpha}_n, \boldsymbol{\mu}_n^{\boldsymbol{\alpha}} \Big) \Big], \qquad \boldsymbol{\mu}_n^{\boldsymbol{\alpha}} = \mathbb{P}_{\boldsymbol{X}_n^{\boldsymbol{\alpha}}}^0 \\ & = \mathbb{E}_{\epsilon^0} \Big[\sum_{n=0}^{\infty} \gamma^n \underbrace{\int_{\mathcal{X} \times \mathcal{U}} f \Big(\boldsymbol{x}, \boldsymbol{a}, \boldsymbol{\mu}_n^{\boldsymbol{\alpha}} \Big) \, \boldsymbol{\mu}_n^{\boldsymbol{\alpha}} (d\boldsymbol{x}, \boldsymbol{da})}_{\text{function of } \boldsymbol{\mu}_n^{\boldsymbol{\alpha}}} \Big] \end{split}$$

Q: Beyond the LQ setting?

Idea 2: Generalize Q-learning to the mean-field setting

$$\begin{split} & \boldsymbol{\alpha}^* \in \operatorname*{argmin}_{\boldsymbol{\alpha}} J^{MFC}(\boldsymbol{\alpha}) = \mathbb{E}_{\epsilon, \epsilon^0} \Big[\sum_{n=0}^{\infty} \gamma^n f \Big(\boldsymbol{X}_n^{\alpha}, \boldsymbol{\alpha}_n, \boldsymbol{\mu}_n^{\alpha} \Big) \Big], \qquad \boldsymbol{\mu}_n^{\alpha} = \mathbb{P}_{\boldsymbol{X}_n^{\alpha}}^0 \\ & = \mathbb{E}_{\epsilon^0} \Big[\sum_{n=0}^{\infty} \gamma^n \underbrace{\int_{\mathcal{X} \times \mathcal{U}} f \Big(\boldsymbol{x}, \boldsymbol{a}, \boldsymbol{\mu}_n^{\alpha} \Big) \, \boldsymbol{\mu}_n^{\alpha} (d\boldsymbol{x}, \boldsymbol{da})}_{\text{function of } \boldsymbol{\mu}_n^{\alpha}} \Big] \end{split}$$

Dynamic Programming Principle (DPP):

- via the "lifted" problem for the population distribution μ^{α} (social planner's optim.)
- ullet value function = function of the distribution μ

Q: Beyond the LQ setting?

Idea 2: Generalize Q-learning to the mean-field setting

$$\begin{split} & \boldsymbol{\alpha}^* \in \operatorname*{argmin}_{\boldsymbol{\alpha}} J^{MFC}(\boldsymbol{\alpha}) = \mathbb{E}_{\epsilon, \epsilon^0} \Big[\sum_{n=0}^{\infty} \gamma^n f \Big(\boldsymbol{X}_n^{\alpha}, \boldsymbol{\alpha}_n, \boldsymbol{\mu}_n^{\alpha} \Big) \Big], \qquad \boldsymbol{\mu}_n^{\alpha} = \mathbb{P}_{\boldsymbol{X}_n^{\alpha}}^0 \\ & = \mathbb{E}_{\epsilon^0} \Big[\sum_{n=0}^{\infty} \gamma^n \underbrace{\int_{\mathcal{X} \times \mathcal{U}} f \Big(\boldsymbol{x}, \boldsymbol{a}, \boldsymbol{\mu}_n^{\alpha} \Big) \, \boldsymbol{\mu}_n^{\alpha} (d\boldsymbol{x}, \boldsymbol{da})}_{\text{function of } \boldsymbol{\mu}_n^{\alpha}} \Big] \end{split}$$

Dynamic Programming Principle (DPP):

- via the "lifted" problem for the population distribution μ^{α} (social planner's optim.)
- ullet value function = function of the distribution μ

MFMDP and Dynamic Programming

Mean Field Markov Decision Process: $(\bar{S}, \bar{A}, \bar{p}, \bar{r}, \gamma)$, where:

• State space: $\bar{S} = \mathcal{P}(\mathcal{X})$

• Action space: $\bar{\mathcal{A}} = \mathcal{P}(\mathcal{X} \times \mathcal{U})$

• Transition: $\mu' = \bar{\Phi}(\mu, \bar{a}, \epsilon^0) \sim \bar{p}(\mu, \bar{a})$

• Reward: $\bar{r}(\mu, \bar{a}) = -\int_{\mathcal{X} \times \mathcal{U}} f(x, a, \mu) \bar{a}(dx, da)$

$$\textbf{Goal: max. } \bar{V}^{\bar{\pi}}(\mu) = \mathbb{E}\Big[\sum_{n=1}^{\infty} \gamma^n \bar{r}\left(\mu_n^{\bar{\pi}}, \bar{a}_n\right)\Big], \ \bar{a}_n \sim \bar{\pi}(\cdot|\mu_n^{\bar{\pi}}), \ \mu_{n+1}^{\bar{\pi}} \sim \bar{p}(\cdot|\mu_n^{\bar{\pi}}, \bar{a}_n), \ \mu_0^{\bar{\pi}} = \mu$$

MFMDP and Dynamic Programming

Mean Field Markov Decision Process: $(\bar{S}, \bar{A}, \bar{p}, \bar{r}, \gamma)$, where:

 $\bar{\mathcal{S}} = \mathcal{P}(\mathcal{X})$ State space:

• Action space:
$$\bar{\mathcal{A}} = \mathcal{P}(\mathcal{X} \times \mathcal{U})$$

$$\mathcal{A} = I \left(\mathcal{U} \times \mathcal{U} \right)$$

• Transition: $\mu' = \bar{\Phi}(\mu, \bar{a}, \epsilon^0) \sim \bar{p}(\mu, \bar{a})$

 $\bar{r}(\mu, \bar{a}) = -\int_{\mathcal{V} \times \mathcal{U}} f(x, a, \mu) \bar{a}(dx, da)$ Reward:

$$\textbf{Goal: max. } \bar{V}^{\bar{\pi}}(\mu) = \mathbb{E}\Big[\sum_{n=0}^{\infty} \gamma^n \bar{r}\left(\mu_n^{\bar{\pi}}, \bar{a}_n\right)\Big], \ \bar{a}_n \sim \bar{\pi}(\cdot|\mu_n^{\bar{\pi}}), \ \mu_{n+1}^{\bar{\pi}} \sim \bar{p}(\cdot|\mu_n^{\bar{\pi}}, \bar{a}_n), \ \mu_0^{\bar{\pi}} = \mu$$

Theorem: DPP for MFMDP

[Carmona, L., Tan'20]

$$\bar{V}^*(\mu) := \sup_{\bar{\boldsymbol{\pi}}} \bar{V}^{\bar{\boldsymbol{\pi}}}(\mu) = \sup_{\bar{\boldsymbol{\pi}}} \left\{ \int_{\bar{\mathcal{A}}} \left[\bar{r}(\mu, \bar{\boldsymbol{a}}) + \gamma \mathbb{E} \left[\bar{V}^* \left(\bar{\Phi}(\mu, \bar{\boldsymbol{a}}, \epsilon^0) \right) \right] \right] \bar{\boldsymbol{\pi}}(d\bar{\boldsymbol{a}}|\mu) \right\},$$

under suitable conditions, where the sup is over a subset of $\{\bar{\pi}: \bar{S} \to \mathcal{P}(\bar{A})\}$ Likewise for mean field state-action value function \bar{O}^*

Proof based on double lifting [Bertsekas, Shreve'78]

MFMDP and Dynamic Programming

Mean Field Markov Decision Process: $(\bar{S}, \bar{A}, \bar{p}, \bar{r}, \gamma)$, where:

- State space: $\bar{S} = \mathcal{P}(\mathcal{X})$
- Action space: $\bar{\mathcal{A}} = \mathcal{P}(\mathcal{X} \times \mathcal{U})$
- Transition: $\mu' = \bar{\Phi}(\mu, \bar{a}, \epsilon^0) \sim \bar{p}(\mu, \bar{a})$
- Reward: $\bar{r}(\mu, \bar{a}) = -\int_{\mathcal{X} \times \mathcal{U}} f(x, a, \mu) \bar{a}(dx, da)$

$$\text{Goal: max. } \bar{V}^{\bar{\pi}}(\mu) = \mathbb{E}\Big[\sum_{n=0}^{\infty} \gamma^n \bar{r}\big(\mu_n^{\bar{\pi}}, \bar{\mathbf{a}}_n\big)\Big], \ \bar{\mathbf{a}}_n \sim \bar{\pi}(\cdot|\mu_n^{\bar{\pi}}), \ \mu_{n+1}^{\bar{\pi}} \sim \bar{p}(\cdot|\mu_n^{\bar{\pi}}, \bar{\mathbf{a}}_n), \ \mu_0^{\bar{\pi}} = \mu$$

Theorem: DPP for MFMDP

[Carmona, L., Tan'20]

$$\bar{V}^*(\mu) := \sup_{\bar{\pi}} \bar{V}^{\bar{\pi}}(\mu) = \sup_{\bar{\pi}} \left\{ \int_{\bar{\mathcal{A}}} \left[\bar{r}(\mu, \bar{\mathbf{a}}) + \gamma \mathbb{E} \left[\bar{V}^* \left(\bar{\Phi}(\mu, \bar{\mathbf{a}}, \epsilon^0) \right) \right] \right] \bar{\pi}(d\bar{\mathbf{a}}|\mu) \right\},$$

under suitable conditions, where the sup is over a subset of $\{\bar{\pi}: \bar{\mathcal{S}} \to \mathcal{P}(\bar{\mathcal{A}})\}$ Likewise for **mean field state-action value function** \bar{Q}^*

Proof based on double lifting [Bertsekas, Shreve'78]

DPPs for MFC: [L., Pironneau; Pham et al.; Gast et al.; Guo et al.; Possamai et al.;...]

Here: discrete time, infinite horizon, common noise, feedback controls.

 \rightarrow well-suited for **RL** \rightarrow Mean-field *Q*-learning algorithm

Two scenarios

1. Learning with cooperation

2. Learning with competition

Picard fixed-point iterations:

```
\begin{array}{c} \mu^{(k)} \mapsto \alpha^{(k+1)} \mapsto \mu^{(k+1)} \\ \bullet \ \alpha^{(k+1)} \ \text{best response against } \mu^{(k)} \\ \bullet \ \mu^{(k+1)} \ \text{induced by } \alpha^{(k+1)} \end{array}
```

→ Convergence typically relies on strict contraction [Caines et al.; Guo et al.; . . .]

Picard fixed-point iterations:

- $\mu^{(k)} \mapsto \alpha^{(k+1)} \mapsto \mu^{(k+1)}$
 - $\alpha^{(k+1)}$ best response against $\mu^{(k)}$
 - $\mu^{(k+1)}$ induced by $\alpha^{(k+1)}$
- → Convergence typically relies on strict contraction [Caines et al.; Guo et al.; . . .]

Fictitious Play [Brown'51; Robinson'51; . . . ; Cardaliaguet, Hadikhanloo'15]

$$\bar{\mu}^{(k)} \mapsto \alpha^{(k+1)} \mapsto \mu^{(k+1)} \mapsto \bar{\mu}^{(k+1)}$$

- ullet $\alpha^{(k+1)}$ best response against $\bar{\mu}^{(k)}$
- $\mu^{(k+1)}$ induced by $\alpha^{(k+1)}$
- $\bullet \ \bar{\mu}^{(k+1)} = \frac{k}{k+1} \bar{\mu}^{(k)} + \frac{1}{k+1} \mu^{(k+1)} = \frac{1}{k+1} \sum_{\ell=1}^{k+1} \mu^{(\ell)}$
- → Convergence typically under monotonicity condition

Picard fixed-point iterations:

$$\mu^{(k)} \mapsto \alpha^{(k+1)} \mapsto \mu^{(k+1)}$$

- $\alpha^{(k+1)}$ best response against $\mu^{(k)}$
- $\mu^{(k+1)}$ induced by $\alpha^{(k+1)}$
- → Convergence typically relies on strict contraction [Caines et al.; Guo et al.; . . .]

Approximate Fictitious Play

- $\widetilde{\alpha}^{(k+1)}$ approximate best response against $\bar{\mu}^{(k)}$
- $\mu^{(k+1)}$ induced by $\widetilde{\alpha}^{(k+1)}$
- $\bullet \; \bar{\mu}^{(k+1)} = \tfrac{k}{k+1} \bar{\mu}^{(k)} + \tfrac{1}{k+1} \mu^{(k+1)} = \tfrac{1}{k+1} \sum_{\ell=1}^{k+1} \mu^{(\ell)}$
- → Convergence typically under monotonicity condition

Theorem: Error propagation

[Elie, Pérolat, L., Geist, Pietquin, AAAI'20]

Under Lasry-Lions monotonicity condition,

$$(\widetilde{\alpha}^{(k)}, \bar{\mu}^{(k)}) \xrightarrow[k \to +\infty]{} (\epsilon, \delta)$$
-Nash equilibrium

Picard fixed-point iterations:

$$\mu^{(k)} \mapsto \alpha^{(k+1)} \mapsto \mu^{(k+1)}$$

- $\alpha^{(k+1)}$ best response against $\mu^{(k)}$
- $\mu^{(k+1)}$ induced by $\alpha^{(k+1)}$
- → Convergence typically relies on strict contraction [Caines et al.; Guo et al.; . . .]

Approximate Fictitious Play

- ullet $\widetilde{lpha}^{(k+1)}$ approximate best response against $\bar{\mu}^{(k)}$
- $\mu^{(k+1)}$ induced by $\widetilde{\alpha}^{(k+1)}$
- $\bullet \; \bar{\mu}^{(k+1)} = \tfrac{k}{k+1} \bar{\mu}^{(k)} + \tfrac{1}{k+1} \mu^{(k+1)} = \tfrac{1}{k+1} \sum_{\ell=1}^{k+1} \mu^{(\ell)}$
- ightarrow Convergence typically under monotonicity condition

Theorem: Error propagation

[Elie, Pérolat, L., Geist, Pietquin, AAAI'20]

Under Lasry-Lions monotonicity condition,

$$(\widetilde{\alpha}^{(k)}, \overline{\mu}^{(k)}) \xrightarrow[k \to +\infty]{} (\epsilon, \delta)$$
-Nash equilibrium

RL for $\widetilde{\alpha}^{(k+1)}$: standard MDP parameterized by $\bar{\mu}^{(k)}$

Continuous Time Fictitious Play

Fictitious Play [Cardaliaguet, Hadikhanloo'15]: $\bar{\mu}^{(k)} \mapsto \alpha^{(k+1)} \mapsto \mu^{(k+1)} \mapsto \bar{\mu}^{(k+1)}$, with

$$\frac{\bar{\mu}^{(k+1)} - \bar{\mu}^{(k)}}{k+1} = \frac{1}{k+1} \left(\mu^{(k+1)} - \bar{\mu}^{(k)} \right)$$

Continuous Time Fictitious Play

• averaged distribution dynamics: $t \ge 1$,

$$\frac{d}{dt}\bar{\mu}^{(t)} = \frac{1}{t} \left(\mu^{(t)} - \bar{\mu}^{(t)} \right)$$

where $\mu^{(t)} = \text{induced by BR against } \bar{\mu}^{(t)}$

- averaged (mixed) policy dynamics: $\bar{\pi}^{(t)}$ generating $\bar{\mu}^{(t)}$
- $\rightarrow \textit{Rate of convergence}$

Continuous Time Fictitious Play

Fictitious Play [Cardaliaguet, Hadikhanloo'15]: $\bar{\mu}^{(k)} \mapsto \alpha^{(k+1)} \mapsto \mu^{(k+1)} \mapsto \bar{\mu}^{(k+1)}$, with

$$\frac{\bar{\mu}^{(k+1)} - \bar{\mu}^{(k)}}{k+1} = \frac{1}{k+1} \left(\mu^{(k+1)} - \bar{\mu}^{(k)} \right)$$

Continuous Time Fictitious Play

• averaged distribution dynamics: $t \ge 1$,

$$\frac{d}{dt}\bar{\mu}^{(t)} = \frac{1}{t} \left(\mu^{(t)} - \bar{\mu}^{(t)} \right)$$

where $\mu^{(t)} = \text{induced by BR against } \bar{\mu}^{(t)}$

- ullet averaged (mixed) policy dynamics: $ar{\pi}^{(t)}$ generating $\bar{\mu}^{(t)}$
- → Rate of convergence

Theorem: Convergence Rate [Perrin, Pérolat, L., Geist, Elie, Pietquin, NeurlPS'20]

Under Lasry-Lions monotonicity condition,

$$\mathcal{E}(\bar{\boldsymbol{\pi}^{(t)}}) = O(1/t)$$

Exploitability:
$$\mathcal{E}(\pi) = \max_{\pi'} J(\pi'; \mu^{\pi}) - J(\pi; \mu^{\pi})$$

Example: Systemic Risk

Systemic risk model of [Carmona, Fouque, Sun] with LQ structure & common noise:

$$J(\mathbf{a};(m_n)_n) = -\mathbb{E}\bigg[\sum_{n=0}^{N_T} \left(\underbrace{a_n^2}_{\text{borrow if } X_n < m_n} - qa_n(m_n - X_n) + \kappa(m_n - X_n)^2 \right) + c(m_{N_T} - X_{N_T})^2 \bigg]$$
 borrow if $X_n < m_n$ lend if $X_n > m_n$

Subj. to:
$$X_{n+1} = X_n + [K(m_n - X_n) + a_n] + \epsilon_{n+1} + \epsilon_{n+1}^0$$

At equilibrium: $m_n = \mathbb{E}[X_n | \epsilon^0], n \ge 0$

Example: Systemic Risk

Systemic risk model of [Carmona, Fouque, Sun] with LQ structure & common noise:

$$J(\mathbf{a};(m_n)_n) = -\mathbb{E}\bigg[\sum_{n=0}^{N_T} \bigg(\mathbf{a}_n^2 \underbrace{-q\mathbf{a}_n(m_n - X_n)}_{\text{borrow if } X_n < m_n} + \kappa(m_n - X_n)^2\bigg) + c(m_{N_T} - X_{N_T})^2\bigg]$$
 borrow if $X_n < m_n$ lend if $X_n > m_n$

Subj. to:
$$X_{n+1} = X_n + [K(m_n - X_n) + a_n] + \epsilon_{n+1} + \epsilon_{n+1}^0$$

At equilibrium: $m_n = \mathbb{E}[X_n | \epsilon^0], n > 0$

Backward Induction

Outline

Introduction

Part 1: Solving Mean Field Problems with Deep Learning

Part 2: Reinforcement Learning with Mean-Field Interactions

Conclusion

Summary

Q1: How can we solve large games with complex structures?

Part 1: Solving mean-field problems with deep learning

- Direct approach
- FB systems of SDEs
- FB systems of PDEs

Q2: How can large populations learn to coordinate?

Part 2: Reinforcement learning with mean-field interactions

- Learning with cooperation: PG / mean-field Q-learning
- Learning with competition: Fictitious Play & RL

Perspectives and future work

Main directions for future research:

- 1. Bidirectional links with machine learning
 - Machine learning for large population games
 - Mean field view on machine learning
- 2. Breaking the barrier of homogeneity & symmetry
 - Variety of agents
 - Networked interactions
 - PDEs on the Wasserstein space

One last example of MFG: Walk for the climate, Paris

Thank you