Asymptotics behaviour of structured population models and growth fragmentation models arising in biology

Florence Hubert
Institut de Mathématiques de Marseille (I2M), FRANCE

CEMRACS, July 18th 2022

Motivation I: Metastatic spreading

Metastases: a major cause of death in cancer

- Metastatic state of the patient is often difficult to evaluate, as micro-tumors are hardly detectable from imagery.

Questions

- Can we design a new 'in silico" metastatic index?

■ Can we infer the metastatic agrressivity from biomarkers?

Mathematic tools

- McKendrick-Von Foerster equation for a simple emission
- Growth-fragmentation equation for general emission

Motivation II: Microtubules

Microtubules: a therapeutic target in oncology

- MTs play a crucial role in cell division, in cell migration
\rightsquigarrow MTs are a favorite target of Microtubule Targeting Agents (MTAs), successfully used as antimitotic more recently as antiangiogenic agent or antimigratory agent in cancer treatments.
- MTs are polymers highly dynamic.

Questions

- Can we model the effect of MTAs on the MT dynamical instabilities?
- Can we better understand the low dose effect of MTAs?

Mathematical tools
■ Complex models using Growth-fragmentation equations

Renewal equation vs growth-fragmentation equation

Perthame, Transport equation in biology, 2006
McKendrick-Von Foerster equation or renewal equation

$$
\left\{\begin{array}{l}
\frac{\partial \rho}{\partial t}+\frac{\partial \rho}{\partial a}=-D(a) \rho(t, a), t>0, a>0 \\
\rho(t, 0)=\int_{0}^{\infty} B(y) \rho(t, y) d y, t>0 \\
\rho(0, a)=\rho_{0}(a), a>0
\end{array}\right.
$$

Typically, ρ is the density of a population structured by the age a and B is the birth rate and D the death rate.

Growth-fragmentation equation

$$
\left\{\begin{array}{l}
\frac{\partial \rho}{\partial t}+\frac{\partial}{\partial x}(g(x) \rho)=-B(x) \rho(t, x)+\int_{0}^{\infty} B(y) k(x, y) \rho(t, y) d y, t>0, x>0 \\
\rho(t, 0)=0, t>0 \\
\rho(0, x)=\rho_{0}(x), x>0
\end{array}\right.
$$

Typically, ρ is the density of a cell population structured by its size x and B is the division rate and $k(x, y)$ is the probability that the division of a cell of size y leads to a cell of size x.

Outline

1 The McKendrick-Von Foerster equation

- Model for mitosis - structuration by age
- Model of metastases - single cell emission

2 Growth-fragmention equation
■ Model for Mitosis - structuration by size

- Model of metatases - emission by cluster
- Model for prion disease

■ Model for the MTs dynamical instabilities

Outline

1 The McKendrick-Von Foerster equation

- Model for mitosis - structuration by age
- Model of metastases - single cell emission

2 Growth-fragmention equation

- Model for Mitosis - structuration by size
- Model of metatases - emission by cluster
- Model for prion disease
- Model for the MTs dynamical instabilities

Mitosis - structuration by age

Population of cells structured by age that divide at a rate B giving 2 cells of age 0 .

$$
(*)\left\{\begin{array}{l}
\frac{\partial \rho}{\partial t}+\frac{\partial \rho}{\partial a}=-B(a) \rho(t, a), t>0, a>0 \\
\rho(t, 0)=2 \int_{0}^{\infty} B(y) \rho(t, y) d y, t>0 \\
\rho(0, a)=\rho_{0}(a), a>0
\end{array}\right.
$$

- $\rho(t, a)$ density at time t with an age a
- $B(a)$ is the division rate

Theorem

Assume that $B \in L^{\infty}\left(\mathbb{R}^{+}\right)$with $B>0$ and $\int_{0}^{\infty} B(y) d y=\infty$, then $\left({ }^{*}\right)$ admits a unique solution $\rho \in \mathcal{C}\left(\mathbb{R}^{+} ; L^{1}\left(\mathbb{R}^{+}, \phi(a) d a\right)\right)$ and if there exists $\mu_{0}>0$ such that $2 B(a) \geq \mu_{0} \frac{\phi(a)}{\phi(0)}$ then

$$
\int_{0}^{\infty}\left|e^{-\lambda_{0} t} \rho(t, a)-\bar{\rho}_{0} N(a)\right| \phi(a) d a \underset{t \rightarrow \infty}{\longrightarrow} 0
$$

where $\left(\lambda_{0}, N, \phi\right)$ are the eigenelements associated to the problem and $\bar{\rho}^{0}=\int_{0}^{\infty} \phi(a) \rho^{0}(a) d a$.

Mitosis - Structuration by age

$$
\begin{gathered}
\rho(t, .) \sim e^{\lambda_{0} t} \bar{\rho}_{0} N(.) \\
\frac{\partial \rho}{\partial t}+\frac{\partial \rho}{\partial a}=-B(a) \rho(t, a), \rho(t, 0)=2 \int_{0}^{\infty} B(y) \rho(t, y) d y, \rho(0, a)=\rho_{0}(a)
\end{gathered}
$$

The eigenvalue problem

- Eigenvalue problem:

$$
\begin{equation*}
\lambda_{0} N(a)+N^{\prime}(a)+B(a) N(a)=0, N(0)=2 \int_{0}^{\infty} B(a) N(a) d a \tag{*}
\end{equation*}
$$

- Adjoint problem

$$
\lambda_{0} \phi(a)-\phi^{\prime}(a)+B(a) \phi(a)=2 \phi(0) B(a) \quad(* *)
$$

\rightsquigarrow If B is a positive continuous function $\exists!\left(N, \phi, \lambda_{0}\right)$ taking positive values solution to $(*)-(* *)$ such that

$$
\int_{0}^{\infty} N(a) d a=\int_{0}^{\infty} \phi(a) N(a) d a=1
$$

Mitosis - Structuration by age

$$
\frac{\partial \rho}{\partial t}+\frac{\partial \rho}{\partial a}=-B(a) \rho(t, a), \rho(t, 0)=2 \int_{0}^{\infty} B(y) \rho(t, y) d y, \rho(0, a)=\rho_{0}(a)
$$

Eigenelements

$$
\left\{\begin{array}{l}
\lambda_{0} N(a)+N^{\prime}(a)=-B(a) N(a), N(0)=\int_{0}^{\infty} B(a) N(a) d a \tag{*}\\
\lambda_{0} \phi(a)-\phi^{\prime}(a)+B(a) \phi(a)=\phi(0) B(a) \quad(* *)
\end{array}\right.
$$

Method of generalised entropy

$$
\int_{0}^{\infty} \phi(a) e^{-\lambda_{0} t} \rho(t, a) d a=\int_{0}^{\infty} \phi(a) \rho^{0}(a) d a:=\bar{\rho}^{0}
$$

- Let $m(t, a)=e^{-\lambda_{0} t} \frac{\rho(t, a)}{N(a)}$, then for all convex function \mathcal{H}

$$
\frac{d}{d t} \int_{0}^{\infty} \phi(a) N(a) \mathcal{H}(m(t, a)) d a:=\Delta \leq 0
$$

and applied it for $\mathcal{H}(m)=\left|m-\bar{\rho}_{0}\right|$. If
$\exists \mu_{0}>0, \forall a \in \mathbb{R}^{+}, \chi(a):=2 \frac{\phi(0) B(a)}{\phi(a)} \geq \mu_{0}$ then
$\Delta \leq-\mu_{0} \int \phi N \mathcal{H}(m)$.

Metastase model

The original model of metastases

■ $\rho(t, x)$ density of metastases at time t of size x.
A transport equation for the growth of metastases

$$
\partial_{t} \rho(x, t)+\partial_{x}(g(x) \rho(x, t))=0, t>0, x>1
$$

A boundary condition for the emission

$$
g(1) \rho(t, 1)=\underbrace{\beta\left(x_{p}(t)\right)}_{\text {Emission by the primary tumor: } f(t)}+\underbrace{\int_{1}^{b} \beta(x) \rho(t, x) d x}_{\text {Emission by the metastases }}, t>0
$$

Growth law

$$
x_{p}^{\prime}=g\left(x_{p}\right) \text { with } g(x)=a x \ln \left(\frac{b}{x}\right) \rightsquigarrow \text { Gompertz law }
$$

Metastases model

$$
\left\{\begin{array}{l}
\partial_{t} \rho(x, t)+\partial_{x}(g(x) \rho(x, t))=0, t>0, x>1 \\
g(1) \rho(t, 1)=f(t)+\int_{1}^{b} \beta(x) \rho(t, x) d x
\end{array}\right.
$$

Existence and uniqueness

- If $\rho_{0} \in L^{1}(1, b)$, there exists a unique weak solution $\rho \in \mathcal{C}\left(\left[0, \infty\left[; L^{1}(1, b)\right)\right.\right.$.
- Existence of strong solution for more regular ρ_{0} and compatibility condition between ρ_{0} and $\beta\left(x_{p}(0)\right)$.

Asymptotic behaviour

Barbolosi, Benabdallah, FH, Verga 2008

- There exists $\left(\lambda_{0}, V, \phi\right)$ and $\gamma>0$ such that

$$
\left\|e^{-\lambda_{0} t} \rho(t)-\bar{\rho}_{0} V\right\|_{L_{\phi}^{1}(1, b)} \leq e^{-\gamma t}\left\|\rho_{0}\right\|_{L_{\phi}^{1}(1, b)}+\int_{0}^{t} e^{-\lambda_{0} \tau}|f(\tau)| d \tau
$$

\rightsquigarrow Proof thanks to the semi-group approach

Metastases model

$$
\left\{\begin{array}{l}
\partial_{t} \rho(x, t)+\partial_{x}(g(x) \rho(x, t))=0, t>0, x>1 \\
g(1) \rho(t, 1)=f(t)+\int_{1}^{b} \beta(x) \rho(t, x) d x
\end{array}\right.
$$

Inverse problem
Hartung, 2015

- The observables $F_{f}(t)=\int_{1}^{b} f(x) \rho(t, x) d t$ are solution of a Volterra equation

$$
F_{f}(t)=\left[f\left(x_{p}\right) * \beta\left(x_{p}\right)\right](t)+\left[F_{f} * \beta\left(x_{p}\right)\right](t)
$$

Theorem

If $F_{f} \in \mathcal{C}^{1}, F_{f}(0)=0$ and $F_{f}+f \in \mathcal{C}^{1}, F_{f}+f(0) \neq 0$, then β can be identified from $F_{f}(t)$ and x_{p}.

Metastases model

$$
\left\{\begin{array}{l}
\partial_{t} \rho(x, t)+\partial_{x}(g(x) \rho(x, t))=0, t>0, x>1 \\
g(1) \rho(t, 1)=f(t)+\int_{1}^{b} \beta(x) \rho(t, x) d x
\end{array}\right.
$$

Confrontation to the data

- Extension on the model

$$
\left\{\begin{array}{l}
\frac{\partial}{\partial t} \rho(t, x)+\frac{\partial}{\partial x}\left[g_{m}(x) \rho(t, x)\right]=0, x \in[1, b), t \geq 0 \\
g_{m}(1) \rho(t, 1)=\int_{1}^{b} \beta(x) \rho(t, x) d x+\beta\left(x_{p}(t)\right) \\
\rho(0, x)=0
\end{array}\right.
$$

where g_{p} and g_{m} are one of the classical
 growth speed:

Gompertz model (1825)	$g(x)=a x \ln \left(\frac{b}{x}\right)$
Hybrid Gompertz (HG)	$g(x)=\min \left(a_{\text {invitro }}, a x \ln \left(\frac{b}{x}\right)\right)$
Logistic model (1838)	$g(x)=a x\left(1-\frac{x}{b}\right)$
Von Bertalanffy (1949)	$g(x)=a x\left(\left(\frac{x}{b}\right)^{-\frac{1}{3}}-1\right)$
West\& al (1997)	$g(x)=a x\left(\left(\frac{x}{b}\right)^{-\frac{1}{4}}-1\right)$
Hybrid West (HW)	$g(x)=\min \left(a_{\text {invitro }}, a x\left(\left(\frac{x}{b}\right)^{-\frac{1}{4}}-1\right)\right)$

- Use SAEM algorithm
- Good estimates for
- HG

HW

Outline

1 The McKendrick-Von Foerster equation

- Model for mitosis - structuration by age
- Model of metastases - single cell emission

2 Growth-fragmention equation

- Model for Mitosis - structuration by size
- Model of metatases - emission by cluster
- Model for prion disease
- Model for the MTs dynamical instabilities

Growth fragmention equation

$$
\left\{\begin{array}{l}
\frac{\partial \rho}{\partial t}+\frac{\partial}{\partial x}(g(x) \rho)=-B(x) \rho(t, x)+\int_{0}^{\infty} B(y) k(x, y) \rho(t, y) d y, t>0, x>0 \\
\rho(t, 0)=0, t>0 \\
\rho(0, x)=\rho_{0}(x), x>0
\end{array}\right.
$$

$\square \rho$ is the density of a population structured by a variable (trait) x at time t

- g is the growth rate
- B is the total division/fragmentation rate
$■ k(x, y)$ is the fragmentation kernel: rate at which individuals of trait x are obtained from an individual of trait y.

Growth fragmentation equation

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x}(g(x) \rho)=-B(x) \rho(t, x)+\int_{x}^{+\infty} B(y) k(x, y) \rho(t, y) d y \\
\rho(t, 0)=0, \rho(0, x)=\rho_{0}(x)
\end{array}\right.
$$

Properties of the kernel
■ No fragmentation to a bigger size: $k(x, y)=0$ if $x>y$

- Conservation of the total size: $\int_{0}^{y} x k(x, y) d x=y$
- For division into a fixed number p of pieces: $\int_{0}^{y} k(x, y) d x=p$

Classical examples
■ Division into 2 cells of equal size - equal mitosis

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x}(g(x) \rho)=-B(x) \rho(t, x)+4 B(2 x) \rho(t, 2 x), x>0, t>0 \\
\rho(t, 0)=0, \rho(0, x)=\rho_{0}(x)
\end{array}\right.
$$

with $k(x, y)=2 \delta_{x=\frac{y}{2}}$, so that $\int_{0}^{y} k(x, y) d y=2$.

- Division into 2 cells with different sizes

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x}(g(x) \rho)=-B(x) \rho(t, x)+2 \int_{x}^{+\infty} B(y) \kappa(x, y) \rho(t, y) d y \\
\rho(t, 0)=0, \rho(0, x)=\rho_{0}(x)
\end{array}\right.
$$

here $k(x, y)=2 \kappa(x, y)$

Growth fragmentation equation

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x}(g(x) \rho)=-B(x) \rho(t, x)+\int_{x}^{+\infty} B(y) k(x, y) \rho(t, y) d y \\
\rho(t, 0)=0, \rho(0, x)=\rho_{0}(x)
\end{array}\right.
$$

Properties of the kernel

- No fragmentation to a bigger size: $k(x, y)=0$ if $x>y$
- Conservation of the total size: $\int_{0}^{y} x k(x, y) d x=y$
- For division into a fixed number p of pieces: $\int_{0}^{y} k(x, y) d x=p$

Classical examples

- Renewal equation: $k(x, y)=\frac{1}{2}(\delta(x=0)+\delta(x=y))$
- Autosimilar case: $k(x, y)=\frac{1}{y} \kappa_{0}\left(\frac{x}{y}\right)$ with $\int_{0}^{1} s \kappa_{0}(s) d s=1$.
\rightsquigarrow general mitosis: $\kappa_{0}=\delta_{r}+\delta_{1-r}, r \in\left[0, \frac{1}{2}\right]$
\rightsquigarrow homogeneous fragmentation: $\kappa_{0}(s)=(1+\alpha)\left(s^{\alpha}+s^{1-\alpha}\right)$, $\alpha>-1$

Growth fragmentation equation

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x}(g(x) \rho)=-B(x) \rho(t, x)+\int_{x}^{+\infty} B(y) k(x, y) \rho(t, y) d y \\
\rho(t, 0)=0, \rho(0, x)=\rho_{0}(x)
\end{array}\right.
$$

Many references on this topic, e.g.
■ Perthame, 2007: Study for $g=1$ of the eigenvalue problem via the Krein-Rutman problem. Hints for the proof of convergence.
■ Doumic-Gabriel, 2013: existence of a solution to the eigenvalue problem (direct and dual) given with many details for the case $\int \kappa(x, y) d y=2$ and for B and g general.
■ Gabriel \& al, 2021: Asymptotic behaviour $\rho(t, x) \sim e^{\lambda t} N(x)$ for quite general assumption on k and B using a probabilistic approach namely Harry's theorem.

Growth fragmentation equation

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x}(g(x) \rho)=-B(x) \rho(t, x)+\int_{x}^{+\infty} B(y) k(x, y) \rho(t, y) d y \\
\rho(t, 0)=0, \rho(0, x)=\rho_{0}(x)
\end{array}\right.
$$

Results from Gabriel \& al, 2021
Assumptions (H_{*})

- Assumptions on the kernel.
\square Autosimilar kernel such that $\kappa_{0}(s) \geq \underline{c}>0$ and $\int_{0}^{1} \kappa_{0}<\infty$.
- $\kappa_{0}=2 \delta_{\frac{1}{2}}$ (can be relax)
- Asumptions on the growth term :
- $\int_{0}^{1} \frac{1}{g}<\infty$
- Asumption on H defined by $H(z)=\int_{0}^{z} \frac{1}{g}<\infty$ eg $H<\infty$ on \mathbb{R}^{+}, H invertible, H^{-1} does not grow too fast
- Asumptions on the relation between B and g
$\square \int_{0}^{1} \frac{B}{g}<\infty, \lim _{0} \frac{x B(x)}{g(x)}=0, \lim _{+\infty} \frac{x B(x)}{g(x)}=+\infty$

Growth fragmentation equation

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x}(g(x) \rho)=-B(x) \rho(t, x)+\int_{x}^{+\infty} B(y) k(x, y) \rho(t, y) d y \\
\rho(t, 0)=0, \rho(0, x)=\rho_{0}(x)
\end{array}\right.
$$

Results from Gabriel \& al, 2021

Theorem

1 Under asumptions $\left(H_{*}\right)$, the eigenvalue problem

$$
\left\{\begin{array}{l}
-(g N)^{\prime}-B N+\int_{x}^{\infty} B(y) k(x, y) N(y) d y=\lambda_{0} N,(g N)(0)=0, \int N=1 \\
-g \phi^{\prime}-B \phi+\int_{x}^{\infty} B(y) k(x, y) \phi(y) d y=\lambda_{0} \phi, \int N \phi=1
\end{array}\right.
$$

admits a unique solution $\left(\lambda_{0}, N, \phi\right)$.
2. If $\left\|\rho_{0}\right\|_{V}<\infty$,

$$
\left\|e^{-\lambda_{0} t} \rho(t, .)-\bar{\rho}_{0} N\right\|_{V} \leq C e^{-\gamma t}\left\|\rho_{0}-\bar{\rho}_{0} N\right\|_{V}, \forall t \geq 0
$$

where V is a weight depending on the data.

General emission of metastases

Each tumor (primary or secondary) can emit several tumors of different size!

Caracterisation of the emission

- $\beta(x)$ emision rate
- $k(y, x)$ probability for a tumor of size x to emmit a metastase of size y. \rightsquigarrow a growth-fragmentation equation with source term

General emission of metastases

Each tumor (primary or secondary) can emit several tumors of different size!

$\frac{\partial}{\partial t} \rho(t, x)+\frac{\partial}{\partial x}\left[g_{m}(x) \rho(t, x)\right]=\bar{k}\left(x, x_{p}(t)\right)-\beta(x) \rho(t, x)+\int_{x}^{+\infty} \beta(y) k(x, y) \rho(t, y) d y$
Few results on this equation and still open questions on this equation !

Model for prion disease

Prion diseases, a family of progressive neurodegenerative disorders The prion protein can appear in two forms: the normal one $\operatorname{Pr} P^{c}$ and and the infectious one $\operatorname{Pr} P^{S c}$. They form polymers also called amiloyd fibers.

A polymer of size x can divide into two polymers of size y and $x-y$, as soon as a polymer has a too small size it depolymerizes.

Model for prion disease

Prion diseases, a family of progressive neurodegenerative disorders

■ A polymer of size x can divide into two polymers of size y and $x-y$, as soon as a polymer has a too small size it depolymerizes.
■ Polymerisation speed depends on the total number of Pr^{c} avalaible.

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x}(\tau V(t) \rho)=-(\mu+\beta(x)) \rho(t, x)+2 \int_{x}^{\infty} \beta(y) k(x, y) \rho(t, y) d y \\
V^{\prime}(t)=\lambda-\gamma V(t)-\tau V(t) \int_{0}^{\infty} \rho(t, x) d x+2 \int_{0}^{x_{0}} x \int_{x_{0}}^{\infty} \beta y k(x, y) u(y, t) d y d x
\end{array}\right.
$$

■ $\rho(t, x)$ density of polymers at time t of size x.
■ $V(t)$ number of Pr^{c} monomers

- $\beta(x)=\bar{\beta} x$ division rate

■ $k(y, x)=\frac{1}{x}\left(x_{0}<x\right)(y<x)$ probability that a polymer of size x divides into a polymer of size y.

- μ elimination rate

Model for prion disease

Prion diseases, a family of progressive neurodegenerative disorders

$$
\left\{\begin{array}{l}
\partial_{t} \rho+\partial_{x}(\tau V(t) \rho)=-(\mu+\beta(x)) \rho(t, x)+2 \int_{x}^{\infty} \beta(y) k(x, y) \rho(t, y) d y \\
V^{\prime}(t)=\lambda-\gamma V(t)-\tau V(t) \int_{0}^{\infty} \rho(t, x) d x+2 \int_{0}^{x_{0}} x \int_{x_{0}}^{\infty} \beta y k(x, y) u(y, t) d y d x
\end{array}\right.
$$

Macroscopic asymptotic behaviour: derivation of an ODE system in

- Moments of $\rho: U(t)=\int_{x_{0}}^{\infty} \rho(t, x) d x, P(t)=\int_{x_{0}}^{\infty} x \rho(t, x) d x$
- $V(t)$ number of $\operatorname{Pr} P^{c}$ monomers

$$
\left\{\begin{array}{l}
U^{\prime}=\beta P-\mu U-2 \beta x_{0} U \\
V^{\prime}=\lambda-\gamma V-\tau V U+\beta x_{0}^{2} U \\
P^{\prime}=\tau V U-\mu P-\beta x_{0}^{2} U
\end{array}\right.
$$

\rightsquigarrow Existence of a stable of a disease steady state if $(\bar{\beta} \lambda \tau / \gamma)^{\frac{1}{2}}>x_{0} \bar{\beta}+\mu$.

- Open problem: long time behaviour of the density ρ.

Microtubule dynamical instabilities

MT in the cell

- MTs are part of the cytosqueleton.
- MTs are caracterized by their instabilities.

Protein structure

■ Each MT is a long (up to $50 \mu \mathrm{~m}$) hollow cylinder of 25 nm diameter built from about 13 protofilaments.

- Each protofilament is composed by an assembly of $\alpha \mid \beta$ tubulin dimers.
■ The assembly is polarized with different dynamics at the + end (highly dynamic) or - end (fixed in cells).
- Dimers can be in two energy states :
- GTP : Guanosine triphosphate - active form
- GDP : Guanosine diphosphate - inactive form

Dynamics of one MT at its + end

Dimers of tubulin

- Dimers can be in two energy states :

■ GTP: Guanosine triphosphate - active form

- GDP: Guanosine diphosphate - inactive form
- Dimers can be polymerized or not. In fine,
- GTP polymerized in MTs
\square GDP polymerized in MTs
- Free GTP
- Free GDP
- Biological observations:
- Existence of a GTP-stabilizing cap
- Disparition of the cap at the catastrophe

- Four reactions

MTs dynamical instabilities

A structured population approach as in Hinow et al. (2009)
$1 u(t, z, x)$ density of MT in polymerisation
$2 v(t, x)$ density of the population of MT in depolymerisation

- t time, x length.
$3 p=p(t)$ Free GTP tubulin
$4 q=q(t)$ Free GDP tubulin
- t time.
\rightsquigarrow Two transport equations (for both polymerisation and depolymerisation) coupled to two ODEs.
\rightsquigarrow Several extensions
New issue for the depolymerisation: \rightsquigarrow fragmentation process

MTs dynamical instabilities

FH, M. Tournus, D. White, JTB (2017)

Equation for u

$$
\partial_{t} u+\gamma_{p o l}(p(t)) \partial_{x} u+\left(\gamma_{p o l}(p(t))-\gamma_{\text {hydro }}\right) \partial_{z} u=0
$$

Equation for v
$\partial_{t} v=-R(t) u(t, 0, x)+\gamma_{\text {depol }}\left(-\int_{0}^{x} k(x, \tilde{x}) v(t, x) d \tilde{x}+\int_{x}^{\infty} k(\tilde{x}, x) v(t, \tilde{x}) d \tilde{x}\right)$
Equation for p

$$
\frac{d}{d t} p=-\gamma_{p o l}(p(t)) \int_{0}^{\infty} \int_{0}^{x} u(t, z, x) d z d x+\kappa q
$$

Equation for q

$$
\frac{d}{d t} q=\gamma_{\text {depol }} \int_{0}^{\infty} \int_{0}^{x}(x-\tilde{x}) k(x, \tilde{x}) v(t, x) d \tilde{x} d x-\kappa q
$$

MTs dynamical instabilities

Macroscopic level

$1 M_{u}: t \mapsto \int_{0}^{\infty} \int_{0}^{x} x u(t, z, x) d z d x$ Total amount of MT in polymerisation
$2 M_{v}: t \mapsto \int_{0}^{\infty} x v(t, x) d x$ Total amount of MT in depolymerisation
$3 p=p(t)$ Free GTP tubulin
$4 q=q(t)$ Free GDP tubulin
\rightsquigarrow Conservation of the tubulin

$$
M_{u}(t)+M_{v}(t)+p(t)+q(t)=C t e
$$

Asymptotic behaviour at the macroscopic level

\rightsquigarrow Damped oscillations at the macroscopic level!

Simplified models to understand the asymptotics

- The population of polymer represented by $w: \rightsquigarrow w(t, x)$
- The model reduces to evolution of w, p, q
- Model should nevertheless reflects
- The role of the balance between hydrolysis and growth rate.
$\square \gamma_{\text {pol }}(p(t))<\gamma_{\text {hydro }} \Rightarrow$ period of catastrophe
- $\gamma_{\text {pol }}(p(t))>\gamma_{h y d r o} \Rightarrow$ period of rescue

We introduce a threshold $\rightsquigarrow p_{h}$ such that $\gamma_{p o l}\left(p_{h}\right)=\gamma_{h y d r o}$

- $p<p_{h} \quad \Rightarrow$ period of catastrophe

■ $p>p_{h} \quad \Rightarrow$ period of rescue

Simplified models to understand the asymptotics

Equation for w

$$
\begin{array}{r}
\partial_{t} w+\gamma_{p o l}(p(t)) \partial_{x} w= \\
+\gamma_{\text {depol }}\left(p(t)<p_{h}\right)\left(-\int_{0}^{x} k(\tilde{x}, x) w(t, x) d \tilde{x}+\int_{x}^{\infty} k(x, \tilde{x}) w(t, \tilde{x}) d \tilde{x}\right)
\end{array}
$$

Equation for p

$$
\frac{d}{d t} p=-\gamma_{p o l}(p(t)) \int_{0}^{\infty} \int_{0}^{x} w(t, z, x) d z d x+\kappa q
$$

Equation for q

$$
\frac{d}{d t} q=\gamma_{\text {depol }}\left(p(t)<p_{h}\right) \int_{0}^{\infty} \int_{0}^{x}(x-\tilde{x}) k(\tilde{x}, x) w(t, x) d \tilde{x} d x-\kappa q
$$

Simplified models to understand the asymptotics

The fragmentation terms

$$
-\gamma_{\text {depol }} \int_{0}^{x} k(\tilde{x}, x) w(t, x) d \tilde{x}+\gamma_{\text {depol }} \int_{x}^{\infty} k(x, \tilde{x}) w(t, \tilde{x}) d \tilde{x}
$$

with $k(\tilde{x}, x)$ the probability for a MT of size x to reach the size $\tilde{x}<x$ Two types of kernel identified from the experiments

- $k_{0}(y, x)=G(y-x)$: depolymerisation length is almost fixed
- $k_{1}(y, x)=G(x)$: size of the MTs after a depolymerisation is almost fixed
here $G(z)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \frac{-\left(z-x_{0}\right)^{2}}{2 \sigma^{2}}, \quad x_{0}>0, \sigma>0$
\rightsquigarrow Reduction to ODE system is impossible

Simplified models to understand the asymptotics

Asymptotics for the kernel k_{0}

Asymptotics for the kernel k_{1}

\rightsquigarrow Rapid convergence at the macroscopic level, slow convergence of the distribution profil

Simplified models to understand the asymptotics

The most simplified model
Equation for w

$$
\partial_{t} w+\gamma_{p o l}(p(t)) \partial_{x} w=\psi(x) \mathcal{N}(p(t))
$$

$$
+\underbrace{\beta(p(t))}_{\sim \gamma_{\text {depol }}\left(p(t)<p_{h}\right)}\left(-\int_{0}^{x} k(x, \tilde{x}) w(t, x) d \tilde{x}+\int_{x}^{\infty} k(\tilde{x}, x) w(t, \tilde{x}) d \tilde{x}\right)
$$

Equation for p

$$
\begin{aligned}
\frac{d}{d t} p= & -\gamma_{p o l}(p(t)) \int_{0}^{\infty} \int_{0}^{x} w(t, z, x) d z d x-\overline{\mathcal{N}}(p(t)) \\
& +\beta(p(t)) \int_{0}^{\infty} \int_{0}^{x}(x-\tilde{x}) k(x, \tilde{x}) w(t, x) d \tilde{x} d x
\end{aligned}
$$

\rightsquigarrow Wellpossness of the system with conservation properties

$$
\int_{0}^{\infty} x w(t, x) d x+p(t)=\int_{0}^{\infty} x w(0, x) d x+p(0):=M_{1}^{0}
$$

\rightsquigarrow Numerical observations $p(t) \rightarrow p^{\infty}, w(t,.) \rightarrow W$ for large time ${ }_{\mathrm{FH}}$,
Tournus, White, 2017
\rightsquigarrow Existence and uniqueness of the asymptotic profile $\left(W, p^{\infty}\right)$
\rightsquigarrow Convergence

Conclusion

- Transport equations with eventually fragmentation terms are a powerfull tool to model biological issues.
- Advertisement
\rightsquigarrow Summer school on domain decomposition method for optimal control problems September 5-9, 2022 Part of the chair Jean Morlet hold by Martin Gander

Thank you for your attention!

Mitosis - structured by age

4 Return

$$
\begin{equation*}
\lambda_{0} N(a)+N^{\prime}(a)=-B(a) N(a), N(0)=2 \int_{0}^{\infty} B(a) N(a) d a \tag{*}
\end{equation*}
$$

We have $N(a)=N(0) e^{-\int_{0}^{a}\left(\lambda_{0}+B(s)\right) d s}$ with

$$
N(0)=2 \int_{0}^{\infty} B(a) N(a) d a=2 N(0) \int_{0}^{\infty} B(a) e^{-\lambda_{0} a} d a
$$

\rightsquigarrow Existence of $N \Leftrightarrow$ Existence of λ_{0} such that $F\left(\lambda_{0}\right)=1$ where

$$
F(\lambda)=2 \int_{0}^{\infty} B(a) e^{-\int_{0}^{a}(\lambda+B(a))} d a
$$

If $B \in L^{\infty}$ with $\int_{0}^{\infty} B=+\infty, F$ is a decreasing function and

$$
\lim _{\lambda \rightarrow 0} F(\lambda)=2 \text { and } \lim _{\lambda \rightarrow \infty} F(\lambda)=0
$$

Therefore, there exists a unique $\left(\lambda_{0}, N\right)$ solution of $(*)$ such that $\int_{0}^{\infty} N(a) d a=1$.
The parameter λ_{0} is called the the Malthus parameter.

Mitosis - structured by age

4 Return

$$
\begin{equation*}
\lambda_{0} N(a)+N^{\prime}(a)=-B(a) N(a), N(0)=2 \int_{0}^{\infty} B(a) N(a) d a \tag{*}
\end{equation*}
$$

Adjoint problem

$$
\lambda_{0} \phi(a)-\phi^{\prime}(a)+B(a) \phi(a)=2 \phi(0) B(a)
$$

$$
(* *)
$$

To find the adjoint problem, multiply ($*$) by ϕ and integrate
$0=\int_{0}^{\infty}\left(\lambda_{0} N+N^{\prime}+B N\right) \phi d a=\int_{0}^{\infty} N\left(\lambda_{0} \phi-\phi^{\prime}+B\right) d a-\phi(0) N(0)=\int_{0}^{\infty} N(a)\left(\lambda_{0} \phi-\phi^{\prime}+B-2 B \phi(0)\right) d a$
The solution of $(* *)$ is given by
$\phi(a)=2 \phi(0) \int_{a}^{\infty} B\left(a^{\prime}\right) e^{-\int_{a}^{a^{\prime}}(\lambda+B(s)) d s} d a^{\prime}$ with $\phi(0)$ such that $\int_{0}^{\infty} N \phi=1$.

Mitosis - structured by age

■ Conservation properties

$$
\Psi(t)=\int_{0}^{\infty} \phi(a) e^{-\lambda_{0} t} \rho(t, a) d a=\int_{0}^{\infty} \phi(a) \rho^{0}(a) d a:=\bar{\rho}^{0}
$$

Indeed,

$$
\begin{aligned}
\frac{d}{d t} \Psi(t) & =\int_{0}^{\infty} \phi e^{-\lambda_{0} t}\left(-\lambda_{0} \rho+\partial_{t} \rho\right) d a=\int_{0}^{\infty} \phi e^{-\lambda_{0} t}\left(-\left(\lambda_{0}+B\right) \rho-\partial_{a} \rho\right) d a \\
& =e^{-\lambda_{0} t}\left(\int_{0}^{\infty} \rho\left(-\left(\lambda_{0}+B\right) \psi+\phi^{\prime}\right) d a-\rho(t, 0) \phi(0)\right) \\
& =e^{-\lambda_{0} t} \phi(0)\left(\int_{0}^{\infty} 2 \rho B-\rho(t, 0)\right)=0
\end{aligned}
$$

Mitosis - structured by age

- Let $m(t, a)=e^{-\lambda_{0} t \frac{\rho(t, a)}{N(a)} \text {, then for all convex function } \mathcal{H}, ~(t)}$

$$
\frac{d}{d t} \int_{0}^{\infty} \phi(a) N(a) \mathcal{H}(m(t, a)) d a:=\Delta \leq 0
$$

Indeed,

$$
\partial_{t} m+\partial_{a} m=e^{-\lambda_{0} t} \frac{\left(-\lambda_{0} \rho+\partial_{t} \rho+\partial_{a} \rho\right) N-N^{\prime} \rho}{N^{2}}=e^{-\lambda_{0} t} \frac{\left(-\lambda_{0} N-B N-N^{\prime}\right) \rho}{N^{2}}=0
$$

with

$$
\begin{gathered}
m(t, 0)=\int_{0}^{\infty} m(t, a) d \mu(a), d \mu(a)=2 \frac{B(a) N(a)}{N(0)} \\
\frac{d}{d a} \phi N=-2 \phi(0) B(a) N(a)
\end{gathered}
$$

Thus, for $\bar{m}(t, a)=\phi(a) N(a) \mathcal{H}(m(t, a))$, we have

$$
\partial_{t} \bar{m}(t, a)+\partial_{a} \bar{m}(t, a)=-\chi(a) \bar{m}(t, a) \text { with } \chi(a)=2 \phi(0) \frac{B(a)}{\phi(a)}
$$

and thus

$$
\begin{aligned}
\frac{d}{d t} \int_{0}^{\infty} \bar{m}(t, a) d a & =\bar{m}(t, 0)-\int_{0}^{\infty} \chi(a) \bar{m}(t, a) d a \\
& =\phi(0) N(0) \mathcal{H}(m(t, 0))-\int_{0}^{\infty} 2 \phi(0) B(a) N(a) \mathcal{H}(m(t, a)) d a \\
& =\phi(0) N(0)\left(\mathcal{H}\left(\int_{0}^{\infty} m(t, a) d \mu(a)\right)-\int_{0}^{\infty} \mathcal{H}(m(t, a) d \mu(a)) \leq 0\right.
\end{aligned}
$$

Mitosis - structured by age

- If $\exists \mu_{0}>0$ such that $\forall a \in \mathbb{R}^{+}, \chi(a):=\frac{2 \phi(0) B(a)}{\phi(a)} \geq \mu_{0}$ for a
$\mathcal{H}(m)=\left|m-\bar{\rho}_{0}\right|$ we have $\Delta \leq-\mu_{0} \int \phi N \mathcal{H}(m)$.
Recall that

$$
m(t, a)=e^{-\lambda t} \frac{\rho(t, a)}{N(a)} \text { and } \bar{\rho}^{0}=\int_{0}^{\infty} e^{-\lambda t} \rho(t, a) \phi(a) d a
$$

so if $\tilde{m}(t, a)=\phi(a) N(a)\left(m(t, a)-\bar{\rho}^{0}\right)$ we have $\int_{0}^{\infty} \tilde{m}(t, a) d a=0$ Now,

$$
\begin{aligned}
\tilde{m}(t, 0) & =\phi(0)\left(e^{-\lambda t} \rho(t, 0)-N(0) \bar{\rho}^{0}\right) \\
& =2 \phi(0)\left(\int_{0}^{\infty} B(a) e^{-\lambda t} \rho(t, a)-\bar{\rho}^{0} \int_{0}^{\infty} B(a) N(a) d a\right) \\
& =2 \phi(0)\left(\int_{0}^{\infty} B(a) N(a)\left(m(t, a)-\bar{\rho}^{0}\right)\right)=\int_{0}^{\infty} \chi(a) \tilde{m}(t, a) d a
\end{aligned}
$$

The entropy estimate then gives $(\bar{m}=|\tilde{m}|)$

$$
\begin{aligned}
\frac{d}{d t} \int_{0}^{\infty}|\tilde{m}(t, a)| d a & =|\tilde{m}(t, 0)|-\int_{0}^{\infty} \chi|\tilde{m}|=\left|\int_{0}^{\infty} \chi \tilde{m}\right|-\int_{0}^{\infty} \chi|\tilde{m}| \\
& =\left|\int_{0}^{\infty}\left(\chi-\mu_{0}\right) \tilde{m}\right|-\int_{0}^{\infty} \chi|\tilde{m}| \leq-\mu_{0} \int_{0}^{\infty}|\tilde{m}|
\end{aligned}
$$

Properties of the fragmentation kernels

$$
k(x, y)=B(x) \kappa(x, y) \text { with } \int \kappa(x, y) d y=1, \kappa(x, y)=0 \text { if } y>x
$$

The kernel $k_{0}(x, y)=G(x-y)(x>y)$ with $\int_{0}^{\infty} G<+\infty$ $B(x)=\int_{0}^{x} G(x-y) d y=\int_{0}^{x} G(y) d y, \int_{x}^{\infty} B(y)\left(\kappa(y, x) d y=\int_{x}^{\infty} G(y-x) d y=\int_{0}^{\infty} G(z) d z<\infty\right.$ The kernel $k_{1}(x, y)=G(y)(x>y)$ with $\int_{0}^{\infty} G<+\infty$

$$
B(x)=\int_{0}^{x} G(y) d y, \int_{x}^{\infty} B(y) \kappa(y, x) d y=\int_{x}^{\infty} G(y) d y<\infty
$$

In both cases, G is a non negative function with

$$
B(x) \leq B_{M} \text { if } \int_{0}^{\infty} G(y) d y<+\infty
$$

B is an increasing function such that $B(0)=0$,

$$
\exists x_{-}>0 \text { such that } B(x) \geq B_{m}>0 \forall x>x_{-} \text {if } \int_{0}^{\infty} G(y) d y \neq 0
$$

