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Motivation I: Metastatic spreading

Metastases: a major cause of death in cancer

m Metastatic state of the patient is often difficult to evaluate, as

micro-tumors are hardly detectable from imagery.

Questions

m Can we design a new ‘in silico” metastatic index?

m Can we infer the metastatic agrressivity from biomarkers?
Mathematic tools

m McKendrick-Von Foerster equation for a simple emission

m Growth-fragmentation equation for general emission




Motivation II: Microtubules

Microtubules: a therapeutic target in oncology
m MTs play a crucial role in cell division, in cell migration
~ MTs are a favorite target of Microtubule Targeting Agents
(MTASs), successfully used as antimitotic more recently as
antiangiogenic agent or antimigratory agent in cancer treatments.
m MTs are polymers highly dynamic.

Questions
m Can we model the effect of MTAs on the MT dynamical
instabilities?
m Can we better understand the low dose effect of MTAs?
Mathematical tools
m Complex models using Growth-fragmentation equations




Renewal equation vs growth-fragmentation equation

McKendrick-Von Foerster equation or renewal equation

+—2——D()( a),t>0,a>0
fo p(t,y)dy, t >0
(0,a>—p0( )7a>0

Typically, p is the density of a population structured by the age a and
B is the birth rate and D the death rate.

Growth-fragmentation equation
%+ & (9(@)p) = =B(@)p(t,x) + [y By)k(z,y)p(t,y)dy, t >0,z >0
p(t,0)=0,t>0
p(0,2) = po(z), >0

Typically, p is the density of a cell population structured by its size z

and B is the division rate and k(x,y) is the probability that the
division of a cell of size y leads to a cell of size x.




The McKendrick-Von Foerster equation
m Model for mitosis - structuration by age
m Model of metastases - single cell emission

Growth-fragmention equation
m Model for Mitosis - structuration by size
m Model of metatases - emission by cluster
m Model for prion disease
m Model for the MTs dynamical instabilities




The McKendrick-Von Foerster equation




Mitosis - structuration by age

Population of cells structured by age that divide at a rate B giving 2
cells of age 0.
o 5 plt+ rl;.u +dt)  p(t+ (h.:+ da+ dr.)nm“ .
5§+5§:—B()( a),t>0,a>0 .
,0) = f p(t,y)dy, t >0 ' 7w
0 »Y)ay, )

a)p(t,a)

(%)

plt.a) plt.a+ da)

Theorem

Assume that B € L>®(RT) with B > 0 and f B(y) dy = oo, then (*)
admits a unique solution p € C(R*; LY(R*, ¢(a )da)) and if there
exists po > 0 such that 2B(a) > /‘Of(ﬁ% then

| et - N @lo(a)da 2, 0

where (Ao, N, @) are the eigenelements associated to the problem and

p- = rnoo ¢(a)p0(a) da




Mitosis - Structuration by age

p(ta ) ~ eADtﬁON(')
o+ G = ~Bl@p(t.). p(t.0) =2 [ B () du. (0. = pofc)

The eigenvalue problem
m Eigenvalue problem:

XoN(a) + N'(a) + B(a)N(a) = 0, N(0) = 2/000 B(a)N(a)da (%)

= Adjoint problem
Xog(a) = ¢'(a) + B(a)p(a) = 26(0)B(a)  (x*)

~ If B is a positive continuous function 3!(NV, ¢, \g) taking positive
values solution to (x) — (%) such that

/OOON(a)da:/OOOQS(a)N(a)da: 1




Mitosis - Structuration by age

o = —Blap(ta). p0.0) =2 [ B(u)plt.n) . p(0.0) = po(a)
Eigenelements
{Aon) +N'(@) = ~B@)N(a), NO) = [ BN@da ()
Noola) — & (a) + B@)o(@) = 6(0)B(a) (=2

Method of generalised entropy

[
/ ¢(a) efkotp (t,a)da = / o(a) p0 (a)da := 2°

m Let m(t,a) = e Mot ’;\([t( a)), then for all convex function H

%A ¢(G)N(G)H (m(t, a,)) da = A <0

and applied it for H(m) = |m — po|. If
Juo > 0, Va € RY, x(a) := 2%‘3;“) > po then
A < —po [ ¢NH(m).




Metastase model

The original model of metastases Iwata & al (2000)

Ty infraclinic time t> T,

plt+dt,x + g(x)dt) pl(t+ dt,x + do + g(x + dx)dt)
———————————————>+ Timet+dt

L Growth

} Time ¢
p(t,x) Pl + dz)

m p(t,z) density of metastases at time ¢ of size x.
A transport equation for the growth of metastases

Op(z,t) + 0 (g(z)p(x, 1)) =0,t >0, 2 > 1

A boundary condition for the emission

b
9(Vplt,1) = Bl (1)) + [ B@ptds L t>0
N—— 1
Emission by the primary tumor: f(t) —_—

Emission by the metastases

Growth law

x, = g(zp) with g(z) = azln (g) ~» Gompertz law
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Metastases model

{@p(azt)—l—@m( g(z)p(z, ))—Ot>0x>1
g(Vp(t, 1) = f(t) + [} Blx)p(t, o) da

Existence and uniqueness Barbolosi, Benabdallah, FH, Verga 2008
m If pg € L1(1,b), there exists a unique weak solution
p € C([0,00[; L' (1,1)).
m Existence of strong solution for more regular pg and
compatibility condition between py and 5(z,(0)).
ASyInptOtiC behaviour Barbolosi, Benabdallah, FH, Verga 2008
m There exists (Ao, V, ¢) and v > 0 such that

t
[ttty —pov] THleollgan + [ eI ar

L, b)

~~ Proof thanks to the semi-group approach
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Metastases model

{&p(a:t)—l-aw( g(x)p(x, )):0t>0x>1
g(Mp(t, 1) = f(t) + [ B(x)p(t, =

Inverse problem

m The observables F(t) f1 p(t, x) dt are solution of a
Volterra equation

Fy(t) = [f(2p) % B(xp)](t) + [Fy * B(xp)](1)

Theorem

If Fy € CY,F§(0) =0 and Fy + f € C', Fy + £(0) £0,
then 8 can be identified from F¢(t) and x,.

11



Metastases model

g(V)p(t,

{atp(x )+ 0, (g(z)p (as t))—O t>0,2>1

1) = ft)—}-fl p(t,x) dz

Confrontation to the data
= Extension on the model

{ (t x) +
gm
p(0, x) ()

[gm( ) (
= [ B@)p(t, z)dz + Blay(t))

where g, and g,,, are one of the classical

growth speed:

)] =0, z€[1,b), t>0

Gompertz model (1825)

g(z) = azln (%)

Hybrid Gompertz (HG)

g(z) = min( Hrpaitren T ln (%))

Logistic model (1838)

g(z) = ax (1 =

Von Bertalanffy (1949)

g(m):am( E

West& al (1997)

g(w):am( £

B
D

Hybrid West (HW)

l
3
_1
4
g(xz) = min <aznv1tr0 (2 ( %

I

)

= Good estimates for

B HG
H HW
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Growth-fragmention equation

12




Growth fragmention equation

% + 2 (g(x)p) = —B(x)p(t, ) + [3° By)k(z,y)p(t,y) dy, t > 0, 2 >0
p(t,0) =0, ¢ >0
p(0,z) = po(z), = >0

m p is the density of a population structured by a variable (trait) =
at time ¢

m g is the growth rate
m B is the total division/fragmentation rate

m k(x,y) is the fragmentation kernel: rate at which individuals of
trait x are obtained from an individual of trait y.

13



Growth fragmentation equation

Oep + 0x(9(x)p) = —B(x + [ By)k(z, y)p(t, y) dy,
p(t,0) =0, p(0,z) = Po(x)

Properties of the kernel
= No fragmentation to a bigger size: k(z,y) =0if 2 >y
m Conservation of the total size: [ xk(z,y)dz =y
m For division into a fixed number p of pieces: [/ k(z,y)dzr =p
Classical examples
m Division into 2 cells of equal size - equal mitosis
Op + 0:(9(x)p) = —B(x)p(t, z) + 4B(22)p(t, 2x), > 0, t > 0,
p(t,0) =0, p(0,z) = po(x)
with k(z,y) = 2d,_y, so that IS k(z,y) dy = 2.
m Division into 2 cells with different sizes
0ip + 02(9(x)p) = —B(@)p(t,x) + 2 7 Bly)r(z,y)p(t,y) dy,
p(t,0) = 0, p(0,2) = po(x)
here k(x,y) = 2k(z, y)

14




Growth fragmentation equation

Oip + 02(g(x)p) = —B(z + [.7° By)k(z, y)p(t, ) dy,
p(t) O) =0, p(O) ) = PO(x)

Properties of the kernel

= No fragmentation to a bigger size: k(z,y) =0if z >y

u Conservation of the total size: [ xk(x,y)dr =y

m For division into a fixed number p of pieces: [} k(z,y)dz =p
Classical examples

= Renewal equation: k(z,y) = $(6(z =0) + 6(z = y))

m Autosimilar case: k(z,y) = l/10 (z) with fo sko(s)ds = 1.

~ general mitosis: kg =, + d1_,, 7 € [0, 2]
~~ homogeneous fragmentation: ro(s) = (1 + a) (s* + s'7%),
a>—1

14




Growth fragmentation equation

{atp +8a(g(x)p) = —B(@)p(t,z) + [ B(y)k(z,y)p(t,y) dy,
p(t,0) =0, p(0,z) = po(x)

Many references on this topic, e.g.
m Perthame, 2007: Study for g = 1 of the eigenvalue problem via
the Krein-Rutman problem. Hints for the proof of convergence.

m Doumic-Gabriel, 2013: existence of a solution to the eigenvalue
problem (direct and dual) given with many details for the case
J K(z,y)dy = 2 and for B and g general.

m Gabriel & al, 2021: Asymptotic behaviour p(t,z) ~ e N(z) for
quite general assumption on k£ and B using a probabilistic
approach namely Harry’s theorem.
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Growth fragmentation equation

Oep+ 0x(g(x)p) = —B(x + [ By)k(z, y)p(t,y) dy,
p(t,0) =0, p(0,2) = po(w)

Results from Gabriel & al, 2021
Assumptions (H.,)
m Assumptions on the kernel.

B Autosimilar kernel such that rg(s) > ¢ > 0 and [§ kg < oo.
B k5 =257 (can be relax)
2

m Asumptions on the growth term :
[ ] fol é < oo
B Asumption on H defined by H(z) = [§ 1 < co eg H < 0o on RT, H invertible, H ™1

9
does not grow too fast

= Asumptions on the relation between B and g

zB(z) _
g(z) —

] f1€<<x> hmom((z)) =0, limy o +oo
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Growth fragmentation equation

Oup + 0u(g(x)p) = —B(x)p(t, x) + [ B(y)k(z,y)p(t,y) dy,
p(t,0) =0, p(0,z) = po(x)

Results from Gabriel & al, 2021

Theorem

Under asumptions (H,), the eigenvalue problem

—(gN)' — BN + [ B(y)k(z,y)N(y) dy = XoN, (gN)(0) =0, [N =1
—g9¢' — Bo+ [ B(y)k(z,y)p(y) dy = Moo, [N =1

admits a unique solution (Ao, N, ®).
If lpollv < oo,

le="o(t,.) = poN |, < Ce™ |lpo = poN ||y, ¥t = 0

where V is a weight depending on the data.

15




General emission of metastases

Each tumor (primary or secondary) can emit several tumors of
different size !

T infraclinic time t> T

Emission k(xp,

Growth gp Primary ap Primary
)———m— R ——
Gompertz tumor cell tumor cell
one cell

Emission k(y,

lmessw\n R(ap, @)

O gm

Emission k(zp, x)

Emission k(y, ©

‘ =

Caracterisation of the emission
» [(z) emision rate
» k(y,z) probability for a tumor of size x to emmit a metastase of size y.

~ a growth-fragmentation equation with source term

Schlicke, 2018. FH & al, Ongoing work
16




General emission of metastases

Each tumor (primary or secondary) can emit several tumors of
different size !

T infraclinic time t> T

“+oo
D o(t,3) + g (@)plt, 2)) = Ry (1) = Bt ) + [ Bk )olt,v) dy

Few results on this equation and still open questions on this equation
!

Schlicke, 2018. FH & al, Ongoing work 16




odel for prion

Prion diseases, a family of progressive neurodegenerative disorders
The prion protein can appear in two forms: the normal one PrP¢ and
and the infectious one PrP%¢. They form polymers also called
amiloyd fibers.

Source &

QQlegmda(ion 1 “ 5 4
‘/ 7

X< —_yx)xa -

metabolic dcgrada ion
S L] b @
+ +
0 e . 0 fous PrP Sc

= Infectious PrP Sc

+
[+ Y ? = Non-Infectious PrP C

= Metabolic Degradation|

Y
a
— v
PrP sc
“Top View

A polymer of size x can divide into two polymers of size y and = — y, as
soon as a polymer has a too small size it depolymerizes.

Greer et al (2006)
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Model for prion disease

Prion diseases, a family of progressive neurodegenerative disorders
m A polymer of size x can divide into two polymers of size y and = — v,
as soon as a polymer has a too small size it depolymerizes.
m Polymerisation speed depends on the total number of PrP¢ avalaible.

Aep+ 0 (TV (t)p) = — (1 + B(x))p(t,x) +2 [ B(y)k(z, y)p(t,y) dy
V() =A==V (t)—7V(t) [;° p(t,z) de +2 [;° :::f;oo Byk(x, y)u(y,t) dydx

p(t,x) density of polymers at time t of size z.

V(t) number of PrP¢ monomers

B(x) = Bx division rate

k(y,x) = 1 (xo < 2)(y < x) probability that a polymer of size x
divides into a polymer of size y.

1 elimination rate

Greer et al (2006)
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Model for prion disease

Prion diseases, a family of progressive neurodegenerative disorders

Bep + 0x(TV (t)p) = —(p + B(x))p(t, x) +2 [7 By)k(z,y)p(t, y) dy
V()= XA—yV () =TV (L fo (t,z) dz + 2f0w° xf:: Byk(z,y)u(y,t) dydx

Macroscopic asymptotic behaviour: derivation of an ODE system in
= Moments of p: U(t) = f:: p(t,z)dz, P(t) = f:; zp(t, z) dz

= V(t) number of PrP° monomers

= BP — pU — 2Bx0U
V' =X=AV —1VU + B2iU
P'=7VU — puP — BagU

~ Existence of a stable of a disease steady state if (BA7/ 7)% > z0f + p.
= Open problem: long time behaviour of the density p.

Greer et al (2006
reer et al ( 3) 17




Microtubule dynamical instabilities

MT in the cell

m MTs are part of the
cytosqueleton.

m MTs are caracterized
by their instabilities.

Protein structure

m Each MT is a long (up to 50pm) hollow cylinder of 25nm
diameter built from about 13 protofilaments.

m Each protofilament is composed by an assembly of |8 tubulin
dimers.

m The assembly is polarized with different dynamics at the + end

(highly dynamic) OI - end (fixed in cells).
m Dimers can be in two energy states :

B 7P : Guanosine triphosphate - active form
B cor: Guanosine diphosphate - inactive form

18



Dynamics of one MT at its + end

Dimers of tubulin
m Dimers can be in two energy states :

M crr: Guanosine triphosphate - active form
M cpor: Guanosine diphosphate - inactive form

m Dimers can be polymerized or not. In fine,

GTP polymerized in MTs
GDP polymerized in MTs
Free cTp
Free Gpp

m Biological observations:

B Existence of a GTP-stabilizing cap
B Disparition of the cap at the catastrophe

m Four reactions

Hydrolysis Polymerisation

Stabilizing cap’\ )
o9

o9
o o
Recycling

Fragmentation

19



MTs dynamical instabilities

A structured population approach as in Hinow et al. (2009)
u(t, z,z) density of MT in polymerisation

M ¢ time, = length, = length of the cap.

v(t, z) density of the population of MT in depolymerisation
B ¢ time, = length.

p = p(t) Free GTP tubulin
B ¢ time.

q = q(t) Free GDP tubulin

B ¢ time.
~+ Two transport equations (for both polymerisation and
depolymerisation) coupled to two ODEs.
~> Several extensions
New issue for the depolymerisation: ~~ fragmentation process

20




MTs dynamical instabilities

FH, M. Tournus, D. White, JTB (2017)

Hydolysis speed igaro  Growth specd vy (r)

Polymen;xnon
Stablllzmg uip mgnmmm Vepot

Recycling &

Equation for u
Oru + Ypot (p(1)) 0zt + (Ypor (P(1)) — Yhydro)Fzu = 0
Equation for v

v = —R(®)ult, 0, 2)+Yaepor (— /0 " ka, #)o(t, ) di + / =k, 2ot ) di)

Equation for p

d
P —Ypot (P / / (t,z,z) dzdz+kKq

Equation for ¢
iq = Ydepol / / (x — 2)k(z, z)v(t, x) dT de—Kq

20




MTs dynamical instabilities

Macroscopic level

Myt [J7 [ wult,z,2) dzdz Total amount of MT in
polymerisation

M, : t — [;° zv(t,z) dz Total amount of MT in depolymerisation

p = p(t) Free GTP tubulin

q = q(t) Free GDP tubulin

~~ Conservation of the tubulin
My (t) + My (t) + p(t) + q(t) = Cte

Asymptotic behaviour at the macroscopic level

Tutuin Cancertiason M)

O 0 g
(€) Time (minutes)

~~ Damped oscillations at the macroscopic level !

20



Simplified models to understand the asymptotics

m The population of polymer represented by w : ~ w(t, )

B The model reduces to evolution of w, p, g
m Model should nevertheless reflects
B The role of the balance between hydrolysis and growth rate.

B Y00 (P(t)) < Yhydro = period of catastrophe
B Yot (P(t)) > Yhydro = period of rescue

We introduce a threshold ~ pj such that v,,1(Pr) = Yhydro

® p <pp = period of catastrophe
® p>pp = period of rescue

21




Simplified models to understand the asymptotics

Equation for w
Ovw + Ypor (p(t))Oow =
Ftepot(p(t) < 1) (— | raatdas [ ks dfs)
0 x

Equation for p

d o0 x
2 = e (p()) / / wit, z,x) dzde-+ g
dt o 0

Equation for ¢

%q = Ydepot (P(t) < pr) /000 /Oz(:c — 2)k(Z, x)w(t, ) di dz—rq

21




Simplified models to understand the asymptotics

The fragmentation terms

—wepol/ k(fc,x)w(t,x)di—I—“ydepoz/ k(z, 2)w(t,z) dx
0 T

with k(Z, z) the probability for a MT of size x to reach the size & < x
Two types of kernel identified from the experiments

m ko(y,z) = G(y — z): depolymerisation length is almost fixed

m ki (y,x) = G(z): size of the MTs after a depolymerisation is
almost fixed

here G(z) =

—(z—20)?

U\}ﬁexp 5oz T0>0,0>0
~» Reduction to ODE system is impossible

22



Simplified models to understand the asymptotics

Asymptotics for the kernel kg

Length distribution of MTs ()
X0=0.4, t=272.855

Gt p

— Total polymer

oo \ X0=15, t=85.487

Tubulin concentration (1)

Asymptotics for the kernel ky

Length distribution of MTs (um)
x1=0.4, t=21.586
x1=1.6, t=19.567

Tubulin concentration (1)

0 0
Time (minutes)

~ Rapid convergence at the macroscopic level, slow convergence of
the distribution profil
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Simplified models to understand the asymptotics

The most simplified model
Equation for w

Ovw + Ypot (p(1)) Oew = ()N (p(t))
+  Bp(t)) (f /0 k(z,Z)w(t, z) dT + / k(Z, z)w(t, T) di)
~Ydepol (P(t)<Ph)

Equation for p

Gp==a0(0) [ [tz dede - Ko0)

+8(p(t)) /000 /Ox(:t — 2)k(z, T)w(t,z) dz dx

~~» Wellpossness of the system with conservation properties
/°° zw(t, ) dz + p(t) = /°° 2w(0, %) dz + p(0) 1= MY
0 0

~+ Numerical observations p(t) — p™, w(t,.) — W for large time

~ Existence and uniqueness of the asymptotic profile (W, p>)

~~ Convergence

22




Conclusion

» Transport equations with eventually fragmentation terms are a
powerfull tool to model biological issues.
» Advertisement
~~ Summer school on domain decomposition method for
optimal control problems September 5-9, 2022
Part of the chair Jean Morlet hold by Martin Gander

CIRM - Jean-Morlet Chair

Thank you for your attention !
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Mitosis - structured by age

XoN(a) + N'(a) = —B(a)N(a), N(0) =2 fooo B(a)N(a)da ()

We have N(a) = N(0)e~ Jo QotB())ds with
N(0) = 2/ B(a)N(a)da = 2N(O)/ B(a)e " da
0 0
~ Existence of N < Existence of A\g such that F'(A\g) = 1 where
(o)
F(\) = 2/ B(a)e™ Jo O+B@) qq
0

If B € L* with [;° B = +o0, F is a decreasing function and

lim F(A\) =2 and lim F(A\) =0

A—0 A—00
Therefore, there exists a unique (Mg, V) solution of (*) such that

1S N(a)da =1.
The parameter \q is called the the Malthus parameter.

24




Mitosis - structured by age

AoN(a) + N'(a) = —B(a)N(a), N(0) =2 [;° B(a)N(a) da (*)

Adjoint problem

Xod(a)—¢'(a)+B(a)p(a) = 26(0)B(a) f  (+)

To find the adjoint problem, multiply () by ¢ and integrate
0= /O°°<A0N+N'+BN>¢ da = /O°° N(rg¢—¢'+B) da—p(0)N(0) = /O°° N(a)(hgd — &' + B — 2B6(0)) da

The solution of (xx) is given by

p(a) = 2¢(0) / B(a')e™ Ja CFBED s g47 with ¢(0) such that / N¢ = 1.
a 0

24




Mitosis - structured by age

m Conservation properties
W0 = [ ol ot ayda = [ oa)p(a)dai= g
0 0
Indeed,

d —
Suw = /O°° be TNt (“xgp + Oyp) da = /0°° $e "0t (~(Ag + B)p — dap) da
—Apot © ’ _
. (/0 p(=(30 + BYw + 8/) da = p(t,0)6(0))

= P0tg(0) (/0°° 208 = p(t,0)) = 0
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Mitosis - structur

m Let m(t,a) = e—kot%, then for all convex function H

% /0°° P(a)N(a)H (m(t,a)) da:= A <0

Indeed,
— a — N’ DY — — N/
atm+aam:e*>\0t( Xop +0tp+dap)N — N'p _ Xt (TN - BN )p o
N2 N2

with o)

oo a a

m(t,0) = m(t, a)dp(a), du(a) = 2—————=

(t,0) /0 (t, a)du(a), du(a) )

d
ZON = —24(0)B(a)N(a)
da

Thus, for m(t,a) = ¢(a)N(a)H(m(t,a)), we have
_ _ _ , ooy B
9ym(t,a) + 8gm(t,a) = —x(a)m(t, a) with x(a) = ¢(O)%
and thus

d oo
— m(t,a) da
dt JO

M, 0) — /OOO x(a)m(t, a) da
= ¢(0)N(0)H(m(t,0)) — /Ooo 2¢(0)B(a)N(a)H(m(t, a)) da

—  $(0)N(0) (’H (/Ooo m(t, a)du(a)) - /O°° H(m(t, a)du(a)) <o
25




Mitosis - structured by age

m If 30 > 0 such that Va € R, x(a) := % > po for a
H(m) = |m — po| we have A < —pg [ ¢NH(m).
Recall that
m(t,a) = efMp(t’a) and p° = /00 e Mp(t,a)d(a) da
(t,a) N(a) = p(t, a)p(a)

so if m(t,a) = ¢(a)N(a)(m(t,a) — p°) we have [°m(t,a)da =0
Now,

m(t,0) = ¢(0)(e Mp(t,0) — (0>ﬁ°>
— 2(0) ( /0 Bla)e ™ p(t, a) — 5° /0 ooB(a)N(a)da)
= 20) ([ BNt - ) = [ x(@ilo) da

The entropy estimate then gives (7 = |m|)

d o0 B ~ o0 B o0 B o0 _
o [l = o)~ [ x|m|=\ / xm‘— i
dt 0 0 0 0

‘/Owu—uo)m\—/ownm <o [ 1l
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Properties of the fragmentation kernels

B(z)k(z,y) with [k(z,y)dy =1, k(z,y) =0ify > =
The kernel ko(z,y) = G(z — y)(x > y) with [~ G < 400
B = ["G@-way= [Tcway, [T Buxwm = [T ew-nay= [T 6=)dz < o0
The kernel ki (z,y) = G(y)(z > y) with [[° G < 400

B@) = [ cway, [F Bwkw 2 dy = [T 6w ay < oo
In both cases, G is a non negative function with
B(z) < Ba if /0oo Gly) dy < +oo

B is an increasing function such that B(0) = 0,

Jz_ > 0 such that B(z) > By, > 0Vz > z_ if / Gly)dy #0
0
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