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Motivation I: Metastatic spreading

Metastases: a major cause of death in cancer

Metastatic state of the patient is often difficult to evaluate, as
micro-tumors are hardly detectable from imagery.

Questions

Can we design a new ‘in silico” metastatic index?

Can we infer the metastatic agrressivity from biomarkers?

Mathematic tools

McKendrick-Von Foerster equation for a simple emission

Growth-fragmentation equation for general emission
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Motivation II: Microtubules

Microtubules: a therapeutic target in oncology

MTs play a crucial role in cell division, in cell migration
 MTs are a favorite target of Microtubule Targeting Agents

(MTAs), successfully used as antimitotic more recently as
antiangiogenic agent or antimigratory agent in cancer treatments.
MTs are polymers highly dynamic.

Questions

Can we model the effect of MTAs on the MT dynamical
instabilities?
Can we better understand the low dose effect of MTAs?

Mathematical tools

Complex models using Growth-fragmentation equations
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Renewal equation vs growth-fragmentation equation

Perthame, Transport equation in biology, 2006

McKendrick-Von Foerster equation or renewal equation
∂ρ
∂t + ∂ρ

∂a = −D(a)ρ(t, a), t > 0, a > 0

ρ(t, 0) =
∫∞
0
B(y) ρ(t, y) dy, t > 0

ρ(0, a) = ρ0(a), a > 0

Typically, ρ is the density of a population structured by the age a and
B is the birth rate and D the death rate.

Growth-fragmentation equation
∂ρ
∂t + ∂

∂x (g(x)ρ) = −B(x)ρ(t, x) +
∫∞
0
B(y)k(x, y)ρ(t, y) dy, t > 0, x > 0

ρ(t, 0) = 0, t > 0

ρ(0, x) = ρ0(x), x > 0

Typically, ρ is the density of a cell population structured by its size x
and B is the division rate and k(x, y) is the probability that the
division of a cell of size y leads to a cell of size x.
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Outline

1 The McKendrick-Von Foerster equation
Model for mitosis - structuration by age
Model of metastases - single cell emission

2 Growth-fragmention equation
Model for Mitosis - structuration by size
Model of metatases - emission by cluster
Model for prion disease
Model for the MTs dynamical instabilities
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Mitosis - structuration by age

Population of cells structured by age that divide at a rate B giving 2
cells of age 0.

(∗)


∂ρ
∂t + ∂ρ

∂a = −B(a)ρ(t, a), t > 0, a > 0

ρ(t, 0) = 2
∫∞
0
B(y) ρ(t, y) dy, t > 0

ρ(0, a) = ρ0(a), a > 0 Time t

Time t+ dt

ρ(t, a) ρ(t, a+ da)

ρ(t+ dt, a+ dt) ρ(t+ dt, a+ da+ dt)

Division

−dt daB(a)ρ(t, a)

ρ(t, a) density at time t with an age a
B(a) is the division rate

Theorem

Assume that B ∈ L∞(R+) with B > 0 and
∫∞
0
B(y) dy =∞, then (*)

admits a unique solution ρ ∈ C(R+;L1(R+, φ(a)da)) and if there

exists µ0 > 0 such that 2B(a) ≥ µ0
φ(a)
φ(0) then∫ ∞

0

|e−λ0tρ(t, a)− ρ̄0N(a)|φ(a)da −→
t→∞

0

where (λ0, N, φ) are the eigenelements associated to the problem and
ρ̄0 =

∫∞
0
φ(a)ρ0(a) da.

The theorem holds for more general B, eg for B(a) = b(a > a∗ > 0)
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Mitosis - Structuration by age

ρ(t, .) ∼ eλ0tρ̄0N(.)

∂ρ

∂t
+
∂ρ

∂a
= −B(a)ρ(t, a), ρ(t, 0) = 2

∫ ∞
0

B(y) ρ(t, y) dy, ρ(0, a) = ρ0(a)

The eigenvalue problem Sketch of proof

Eigenvalue problem:

λ0N(a) +N ′(a) +B(a)N(a) = 0, N(0) = 2

∫ ∞
0

B(a)N(a) da (∗)

Adjoint problem

λ0φ(a)− φ′(a) +B(a)φ(a) = 2φ(0)B(a) (∗∗)

 If B is a positive continuous function ∃!(N,φ, λ0) taking positive
values solution to (∗)− (∗∗) such that∫ ∞

0

N(a) da =

∫ ∞
0

φ(a)N(a) da = 1
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Mitosis - Structuration by age

∂ρ

∂t
+
∂ρ

∂a
= −B(a)ρ(t, a), ρ(t, 0) = 2

∫ ∞
0

B(y) ρ(t, y) dy, ρ(0, a) = ρ0(a)

Eigenelements{
λ0N(a) +N ′(a) = −B(a)N(a), N(0) =

∫∞
0
B(a)N(a) da (∗)

λ0φ(a)− φ′(a) +B(a)φ(a) = φ(0)B(a) (∗∗)

Method of generalised entropy Sketch of proof∫ ∞
0

φ(a)e−λ0tρ(t, a) da =

∫ ∞
0

φ(a)ρ0(a) da := ρ̄0

Let m(t, a) = e−λ0t ρ(t,a)
N(a) , then for all convex function H

d

dt

∫ ∞
0

φ(a)N(a)H (m(t, a)) da := ∆ ≤ 0

and applied it for H(m) = |m− ρ̄0|. If
∃µ0 > 0, ∀a ∈ R+, χ(a) := 2φ(0)B(a)

φ(a)
≥ µ0 then

∆ ≤ −µ0

∫
φNH(m).
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Metastase model

The original model of metastases Iwata & al (2000)

one cell

Growth g

Gompertz

gPrimary

tumor cell

Primary

tumor cell

g
meta

Emission β(xp)

Emission β(xm)

Emission β(xp) = mxαp

T0 infraclinic time t > T0

Time t

Time t+ dt

ρ(t, x) ρ(t, x+ dx)

ρ(t+ dt, x+ g(x)dt) ρ(t+ dt, x+ dx+ g(x+ dx)dt)

Growth

ρ(t, x) density of metastases at time t of size x.
A transport equation for the growth of metastases

∂tρ(x, t) + ∂x(g(x)ρ(x, t)) = 0, t > 0, x > 1

A boundary condition for the emission

g(1)ρ(t, 1) = β(xp(t))︸ ︷︷ ︸
Emission by the primary tumor: f(t)

+

∫ b

1

β(x)ρ(t, x) dx︸ ︷︷ ︸
Emission by the metastases

, t > 0

Growth law

x′p = g(xp) with g(x) = ax ln

(
b

x

)
 Gompertz law
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Metastases model

{
∂tρ(x, t) + ∂x(g(x)ρ(x, t)) = 0, t > 0, x > 1

g(1)ρ(t, 1) = f(t) +
∫ b
1
β(x)ρ(t, x) dx

Existence and uniqueness Barbolosi, Benabdallah, FH, Verga 2008

If ρ0 ∈ L1(1, b), there exists a unique weak solution
ρ ∈ C([0,∞[;L1(1, b)).

Existence of strong solution for more regular ρ0 and
compatibility condition between ρ0 and β(xp(0)).

Asymptotic behaviour Barbolosi, Benabdallah, FH, Verga 2008

There exists (λ0, V, φ) and γ > 0 such that∥∥∥e−λ0tρ(t) − ρ̄0V
∥∥∥
L1
φ
(1,b)
≤ e−γt ‖ρ0‖L1

φ
(1,b) +

∫ t

0

e−λ0τ |f(τ)| dτ.

 Proof thanks to the semi-group approach
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Metastases model

{
∂tρ(x, t) + ∂x(g(x)ρ(x, t)) = 0, t > 0, x > 1

g(1)ρ(t, 1) = f(t) +
∫ b
1
β(x)ρ(t, x) dx

Inverse problem Hartung, 2015

The observables Ff (t) =
∫ b
1
f(x)ρ(t, x) dt are solution of a

Volterra equation

Ff (t) = [f(xp) ∗ β(xp)](t) + [Ff ∗ β(xp)](t)

Theorem

If Ff ∈ C1, Ff (0) = 0 and Ff + f ∈ C1, Ff + f(0) 6= 0,
then β can be identified from Ff (t) and xp.
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Metastases model

{
∂tρ(x, t) + ∂x(g(x)ρ(x, t)) = 0, t > 0, x > 1

g(1)ρ(t, 1) = f(t) +
∫ b
1
β(x)ρ(t, x) dx

Confrontation to the data Hartung & al, 2014

Extension on the model
∂
∂t
ρ(t, x) + ∂

∂x
[gm(x)ρ(t, x)] = 0, x ∈ [1, b), t ≥ 0

gm(1)ρ(t, 1) =
∫ b
1
β(x)ρ(t, x)dx + β(xp(t))

ρ(0, x) = 0,

where gp and gm are one of the classical
growth speed:

Gompertz model (1825) g(x) = ax ln
(
b
x

)
Hybrid Gompertz (HG) g(x) = min

(
ainvitro, ax ln

(
b
x

))
Logistic model (1838) g(x) = ax

(
1 − x

b

)
Von Bertalanffy (1949) g(x) = ax

((
x
b

)− 1
3 − 1

)

West& al (1997) g(x) = ax

((
x
b

)− 1
4 − 1

)

Hybrid West (HW) g(x) = min

(
ainvitro, ax

((
x
b

)− 1
4 − 1

))

Use SAEM algorithm

.

Good estimates for

HG
HW
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Growth fragmention equation


∂ρ
∂t

+ ∂
∂x

(g(x)ρ) = −B(x)ρ(t, x) +
∫∞
0
B(y)k(x, y)ρ(t, y) dy, t > 0, x > 0

ρ(t, 0) = 0, t > 0

ρ(0, x) = ρ0(x), x > 0

ρ is the density of a population structured by a variable (trait) x
at time t

g is the growth rate

B is the total division/fragmentation rate

k(x, y) is the fragmentation kernel: rate at which individuals of
trait x are obtained from an individual of trait y.

13



Growth fragmentation equation
{
∂tρ+ ∂x(g(x)ρ) = −B(x)ρ(t, x) +

∫ +∞
x

B(y)k(x, y)ρ(t, y) dy,

ρ(t, 0) = 0, ρ(0, x) = ρ0(x)

Properties of the kernel

No fragmentation to a bigger size: k(x, y) = 0 if x > y

Conservation of the total size:
∫ y
0
xk(x, y) dx = y

For division into a fixed number p of pieces:
∫ y
0
k(x, y) dx = p

Classical examples
Division into 2 cells of equal size - equal mitosis{

∂tρ+ ∂x(g(x)ρ) = −B(x)ρ(t, x) + 4B(2x)ρ(t, 2x), x > 0, t > 0,

ρ(t, 0) = 0, ρ(0, x) = ρ0(x)

with k(x, y) = 2δx= y
2
, so that

∫ y
0
k(x, y) dy = 2.

Division into 2 cells with different sizes{
∂tρ+ ∂x(g(x)ρ) = −B(x)ρ(t, x) + 2

∫ +∞
x

B(y)κ(x, y)ρ(t, y) dy,

ρ(t, 0) = 0, ρ(0, x) = ρ0(x)

here k(x, y) = 2κ(x, y)
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Growth fragmentation equation

{
∂tρ+ ∂x(g(x)ρ) = −B(x)ρ(t, x) +

∫ +∞
x

B(y)k(x, y)ρ(t, y) dy,

ρ(t, 0) = 0, ρ(0, x) = ρ0(x)

Properties of the kernel

No fragmentation to a bigger size: k(x, y) = 0 if x > y

Conservation of the total size:
∫ y
0
xk(x, y) dx = y

For division into a fixed number p of pieces:
∫ y
0
k(x, y) dx = p

Classical examples

Renewal equation: k(x, y) = 1
2 (δ(x = 0) + δ(x = y))

Autosimilar case: k(x, y) = 1
yκ0

(
x
y

)
with

∫ 1

0
sκ0(s) ds = 1.

 general mitosis: κ0 = δr + δ1−r, r ∈ [0, 12 ]
 homogeneous fragmentation: κ0(s) = (1 + α)

(
sα + s1−α

)
,

α > −1
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Growth fragmentation equation

{
∂tρ+ ∂x(g(x)ρ) = −B(x)ρ(t, x) +

∫ +∞
x

B(y)k(x, y)ρ(t, y) dy,

ρ(t, 0) = 0, ρ(0, x) = ρ0(x)

Many references on this topic, e.g.

Perthame, 2007: Study for g = 1 of the eigenvalue problem via
the Krein-Rutman problem. Hints for the proof of convergence.

Doumic-Gabriel, 2013: existence of a solution to the eigenvalue
problem (direct and dual) given with many details for the case∫
κ(x, y)dy = 2 and for B and g general.

Gabriel & al, 2021: Asymptotic behaviour ρ(t, x) ∼ eλtN(x) for
quite general assumption on k and B using a probabilistic
approach namely Harry’s theorem.
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Growth fragmentation equation

{
∂tρ+ ∂x(g(x)ρ) = −B(x)ρ(t, x) +

∫ +∞
x

B(y)k(x, y)ρ(t, y) dy,

ρ(t, 0) = 0, ρ(0, x) = ρ0(x)

Results from Gabriel & al, 2021
Assumptions (H∗)

Assumptions on the kernel.
Autosimilar kernel such that κ0(s) ≥ c > 0 and

∫ 1
0 κ0 < ∞.

κ0 = 2δ 1
2

(can be relax)

Asumptions on the growth term :∫ 1
0

1
g
< ∞

Asumption on H defined by H(z) =
∫ z
0

1
g
< ∞ eg H < ∞ on R+, H invertible, H−1

does not grow too fast

Asumptions on the relation between B and g∫ 1
0
B
g
< ∞, lim0

xB(x)
g(x)

= 0, lim+∞
xB(x)
g(x)

= +∞
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Growth fragmentation equation

{
∂tρ+ ∂x(g(x)ρ) = −B(x)ρ(t, x) +

∫ +∞
x

B(y)k(x, y)ρ(t, y) dy,

ρ(t, 0) = 0, ρ(0, x) = ρ0(x)

Results from Gabriel & al, 2021

Theorem

1 Under asumptions (H∗), the eigenvalue problem{
−(gN)′ −BN +

∫∞
x
B(y)k(x, y)N(y) dy = λ0N, (gN)(0) = 0,

∫
N = 1

−gφ′ −Bφ+
∫∞
x
B(y)k(x, y)φ(y) dy = λ0φ,

∫
Nφ = 1

admits a unique solution (λ0, N, φ).

2 If ‖ρ0‖V <∞,∥∥e−λ0tρ(t, .)− ρ̄0N
∥∥
V
≤ Ce−γt ‖ρ0 − ρ̄0N‖V , ∀t ≥ 0

where V is a weight depending on the data.
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General emission of metastases

Each tumor (primary or secondary) can emit several tumors of
different size !

one cell

Growth gp

Gompertz

gpPrimary

tumor cell

Primary

tumor cell

gm
meta

Emission k̄(xp, x)

Emission k(y, x)

Emission k̄(xp, x)

T0 infraclinic time t > T0

gm
meta

Emission k(y, x)

Emission k̄(xp, x)

Caracterisation of the emission

I β(x) emision rate

I k(y, x) probability for a tumor of size x to emmit a metastase of size y.

 a growth-fragmentation equation with source term
Schlicke, 2018. FH & al, Ongoing work
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General emission of metastases

Each tumor (primary or secondary) can emit several tumors of
different size !

one cell

Growth gp

Gompertz

gpPrimary

tumor cell

Primary

tumor cell

gm
meta

Emission k̄(xp, x)

Emission k(y, x)

Emission k̄(xp, x)

T0 infraclinic time t > T0

gm
meta

Emission k(y, x)

Emission k̄(xp, x)

∂

∂t
ρ(t, x) +

∂

∂x
[gm(x)ρ(t, x)] = k̄(x, xp(t))− β(x)ρ(t, x) +

∫ +∞

x

β(y)k(x, y)ρ(t, y) dy

Few results on this equation and still open questions on this equation
!

Schlicke, 2018. FH & al, Ongoing work
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Model for prion disease

Prion diseases, a family of progressive neurodegenerative disorders
The prion protein can appear in two forms: the normal one PrP c and
and the infectious one PrPSc. They form polymers also called
amiloyd fibers.

A polymer of size x can divide into two polymers of size y and x− y, as

soon as a polymer has a too small size it depolymerizes.

Greer et al (2006)
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Model for prion disease

Prion diseases, a family of progressive neurodegenerative disorders

A polymer of size x can divide into two polymers of size y and x− y,

as soon as a polymer has a too small size it depolymerizes.

Polymerisation speed depends on the total number of PrP c avalaible.

{
∂tρ+ ∂x(τV (t)ρ) = −(µ+ β(x))ρ(t, x) + 2

∫∞
x
β(y)k(x, y)ρ(t, y) dy

V ′(t) = λ− γV (t)− τV (t)
∫∞
0
ρ(t, x) dx+ 2

∫ x0

0
x
∫∞
x0
βyk(x, y)u(y, t) dydx

ρ(t, x) density of polymers at time t of size x.

V (t) number of PrP c monomers

β(x) = β̄x division rate

k(y, x) = 1
x (x0 < x)(y < x) probability that a polymer of size x

divides into a polymer of size y.

µ elimination rate

Greer et al (2006)
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Model for prion disease

Prion diseases, a family of progressive neurodegenerative disorders

{
∂tρ+ ∂x(τV (t)ρ) = −(µ+ β(x))ρ(t, x) + 2

∫∞
x
β(y)k(x, y)ρ(t, y) dy

V ′(t) = λ− γV (t)− τV (t)
∫∞
0
ρ(t, x) dx+ 2

∫ x0

0
x
∫∞
x0
βyk(x, y)u(y, t) dydx

Macroscopic asymptotic behaviour: derivation of an ODE system in

Moments of ρ: U(t) =
∫∞
x0
ρ(t, x) dx, P (t) =

∫∞
x0
xρ(t, x) dx

V (t) number of PrP c monomers
U ′ = βP − µU − 2βx0U

V ′ = λ− γV − τV U + βx20U

P ′ = τV U − µP − βx20U

 Existence of a stable of a disease steady state if (β̄λτ/γ)
1
2 > x0β̄ + µ.

Open problem: long time behaviour of the density ρ.

Greer et al (2006)
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Microtubule dynamical instabilities

MT in the cell

MTs are part of the
cytosqueleton.

MTs are caracterized
by their instabilities.

Protein structure

Each MT is a long (up to 50µm) hollow cylinder of 25nm
diameter built from about 13 protofilaments.
Each protofilament is composed by an assembly of α|β tubulin
dimers.
The assembly is polarized with different dynamics at the + end
(highly dynamic) or - end (fixed in cells).
Dimers can be in two energy states :

gtp : Guanosine triphosphate - active form
gdp : Guanosine diphosphate - inactive form
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Dynamics of one MT at its + end

Dimers of tubulin
Dimers can be in two energy states :

gtp : Guanosine triphosphate - active form
gdp : Guanosine diphosphate - inactive form

Dimers can be polymerized or not. In fine,
gtp polymerized in MTs
gdp polymerized in MTs
Free gtp
Free gdp

Biological observations:
Existence of a GTP-stabilizing cap
Disparition of the cap at the catastrophe

Four reactions

Hydrolysis Polymerisation

Stabilizing cap
Fragmentation

Recycling
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MTs dynamical instabilities

A structured population approach as in Hinow et al. (2009)

1 u(t, z, x) density of MT in polymerisation
t time, x length, z length of the cap.

2 v(t, x) density of the population of MT in depolymerisation
t time, x length.

3 p = p(t) Free GTP tubulin
t time.

4 q = q(t) Free GDP tubulin
t time.

 Two transport equations (for both polymerisation and
depolymerisation) coupled to two ODEs.

 Several extensions Barlukova PHD

New issue for the depolymerisation:  fragmentation process
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MTs dynamical instabilities

FH, M. Tournus, D. White, JTB (2017)

Hydrolysis speed γhydro Growth speed γpol(p)

Stabilizing cap
Fragmentation γdepol

Recycling κ

Polymerisation

Equation for u

∂tu+ γpol(p(t))∂xu+ (γpol(p(t))− γhydro)∂zu = 0

Equation for v

∂tv = −R(t)u(t, 0, x)+γdepol

(
−
∫ x

0

k(x, x̃)v(t, x) dx̃+

∫ ∞
x

k(x̃, x)v(t, x̃) dx̃

)
Equation for p

d

dt
p = −γpol(p(t))

∫ ∞
0

∫ x

0

u(t, z, x) dzdx+κq

Equation for q

d

dt
q = γdepol

∫ ∞
0

∫ x

0

(x− x̃)k(x, x̃)v(t, x) dx̃ dx−κq
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MTs dynamical instabilities

Macroscopic level

1 Mu : t 7→
∫∞
0

∫ x
0
xu(t, z, x) dzdx Total amount of MT in

polymerisation
2 Mv : t 7→

∫∞
0
xv(t, x) dx Total amount of MT in depolymerisation

3 p = p(t) Free GTP tubulin
4 q = q(t) Free GDP tubulin

 Conservation of the tubulin

Mu(t) +Mv(t) + p(t) + q(t) = Cte

Asymptotic behaviour at the macroscopic level

 Damped oscillations at the macroscopic level !
20



Simplified models to understand the asymptotics

The population of polymer represented by w :  w(t, x)
The model reduces to evolution of w, p, q

Model should nevertheless reflects
The role of the balance between hydrolysis and growth rate.

γpol(p(t)) < γhydro ⇒ period of catastrophe
γpol(p(t)) > γhydro ⇒ period of rescue

We introduce a threshold  ph such that γpol(ph) = γhydro

p < ph ⇒ period of catastrophe
p > ph ⇒ period of rescue
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Simplified models to understand the asymptotics

Equation for w

∂tw + γpol(p(t))∂xw =

+γdepol(p(t) < ph)

(
−
∫ x

0

k(x̃, x)w(t, x) dx̃+

∫ ∞
x

k(x, x̃)w(t, x̃) dx̃

)
Equation for p

d

dt
p = −γpol(p(t))

∫ ∞
0

∫ x

0

w(t, z, x) dzdx+κq

Equation for q

d

dt
q = γdepol(p(t) < ph)

∫ ∞
0

∫ x

0

(x− x̃)k(x̃, x)w(t, x) dx̃ dx−κq
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Simplified models to understand the asymptotics

The fragmentation terms

−γdepol
∫ x

0

k(x̃, x)w(t, x) dx̃+ γdepol

∫ ∞
x

k(x, x̃)w(t, x̃) dx̃

with k(x̃, x) the probability for a MT of size x to reach the size x̃ < x
Two types of kernel identified from the experiments

k0(y, x) = G(y − x): depolymerisation length is almost fixed

k1(y, x) = G(x): size of the MTs after a depolymerisation is
almost fixed

here G(z) = 1

σ
√
2π

exp −(z−x0)
2

2σ2 , x0 > 0, σ > 0 Properties

 Reduction to ODE system is impossible
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Simplified models to understand the asymptotics

Asymptotics for the kernel k0

Asymptotics for the kernel k1

 Rapid convergence at the macroscopic level, slow convergence of
the distribution profil
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Simplified models to understand the asymptotics

The most simplified model
Equation for w

∂tw + γpol(p(t))∂xw = ψ(x)N (p(t))

+ β(p(t))︸ ︷︷ ︸
∼γdepol(p(t)<ph)

(
−
∫ x

0

k(x, x̃)w(t, x) dx̃+

∫ ∞
x

k(x̃, x)w(t, x̃) dx̃

)

Equation for p

d

dt
p = −γpol(p(t))

∫ ∞
0

∫ x

0

w(t, z, x) dzdx− N̄ (p(t))

+β(p(t))

∫ ∞
0

∫ x

0

(x− x̃)k(x, x̃)w(t, x) dx̃ dx

 Wellpossness of the system with conservation properties∫ ∞
0

xw(t, x) dx + p(t) =

∫ ∞
0

xw(0, x) dx + p(0) := M
0
1

 Numerical observations p(t)→ p∞, w(t, .)→W for large time FH,

Tournus, White, 2017

 Existence and uniqueness of the asymptotic profile (W, p∞)

 Convergence Work in progress with M. Potomkin, S. D. Ryan, M. Tournus
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Conclusion

I Transport equations with eventually fragmentation terms are a
powerfull tool to model biological issues.
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Mitosis - structured by age

Return

λ0N(a) +N ′(a) = −B(a)N(a), N(0) = 2
∫∞
0
B(a)N(a) da (∗)

We have N(a) = N(0)e−
∫ a
0
(λ0+B(s)) ds with

N(0) = 2

∫ ∞
0

B(a)N(a) da = 2N(0)

∫ ∞
0

B(a)e−λ0a da

 Existence of N ⇔ Existence of λ0 such that F (λ0) = 1 where

F (λ) = 2

∫ ∞
0

B(a)e−
∫ a
0
(λ+B(a)) da.

If B ∈ L∞ with
∫∞
0
B = +∞, F is a decreasing function and

lim
λ→0

F (λ) = 2 and lim
λ→∞

F (λ) = 0

Therefore, there exists a unique (λ0, N) solution of (∗) such that∫∞
0
N(a) da = 1.

The parameter λ0 is called the the Malthus parameter.
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Mitosis - structured by age

Return

λ0N(a) +N ′(a) = −B(a)N(a), N(0) = 2
∫∞
0
B(a)N(a) da (∗)

Adjoint problem

λ0φ(a)−φ′(a)+B(a)φ(a) = 2φ(0)B(a) (∗∗)

To find the adjoint problem, multiply (∗) by φ and integrate

0 =

∫ ∞
0

(λ0N+N
′
+BN)φ da =

∫ ∞
0

N(λ0φ−φ
′
+B) da−φ(0)N(0) =

∫ ∞
0

N(a)(λ0φ − φ
′

+ B − 2Bφ(0)) da

The solution of (∗∗) is given by

φ(a) = 2φ(0)

∫ ∞
a

B(a′)e−
∫ a′
a (λ+B(s)) ds da′ with φ(0) such that

∫ ∞
0

Nφ = 1.
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Mitosis - structured by age

Return

Conservation properties

Ψ(t) =

∫ ∞
0

φ(a)e−λ0tρ(t, a) da =

∫ ∞
0

φ(a)ρ0(a) da := ρ̄0

Indeed,

d

dt
Ψ(t) =

∫ ∞
0

φe
−λ0t(−λ0ρ + ∂tρ) da =

∫ ∞
0

φe
−λ0t(−(λ0 + B)ρ − ∂aρ) da

= e
−λ0t

(∫ ∞
0

ρ(−(λ0 + B)ψ + φ
′
) da − ρ(t, 0)φ(0)

)
= e

−λ0tφ(0)

(∫ ∞
0

2ρB − ρ(t, 0)

)
= 0
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Mitosis - structured by age

Return

Let m(t, a) = e−λ0t ρ(t,a)
N(a) , then for all convex function H

d

dt

∫ ∞
0

φ(a)N(a)H (m(t, a)) da := ∆ ≤ 0

Indeed,

∂tm + ∂am = e
−λ0t

(−λ0ρ + ∂tρ + ∂aρ)N − N′ρ

N2
= e
−λ0t

(−λ0N − BN − N
′)ρ

N2
= 0

with
m(t, 0) =

∫ ∞
0

m(t, a)dµ(a), dµ(a) = 2
B(a)N(a)

N(0)

d

da
φN = −2φ(0)B(a)N(a)

Thus, for m̄(t, a) = φ(a)N(a)H(m(t, a)), we have

∂tm̄(t, a) + ∂am̄(t, a) = −χ(a)m̄(t, a) with χ(a) = 2φ(0)
B(a)

φ(a)

and thus
d

dt

∫ ∞
0

m̄(t, a) da = m̄(t, 0) −
∫ ∞
0

χ(a)m̄(t, a) da

= φ(0)N(0)H(m(t, 0)) −
∫ ∞
0

2φ(0)B(a)N(a)H(m(t, a)) da

= φ(0)N(0)

(
H
(∫ ∞

0
m(t, a)dµ(a)

)
−
∫ ∞
0
H(m(t, a)dµ(a)

)
≤ 0

25



Mitosis - structured by age

Return

If ∃µ0 > 0 such that ∀a ∈ R+, χ(a) := 2φ(0)B(a)
φ(a)

≥ µ0 for a

H(m) = |m− ρ̄0| we have ∆ ≤ −µ0

∫
φNH(m).

Recall that

m(t, a) = e−λt
ρ(t, a)

N(a)
and ρ̄0 =

∫ ∞
0

e−λtρ(t, a)φ(a) da

so if m̃(t, a) = φ(a)N(a)(m(t, a)− ρ̄0) we have
∫∞
0
m̃(t, a) da = 0

Now,

m̃(t, 0) = φ(0)(e−λtρ(t, 0)−N(0)ρ̄0)

= 2φ(0)

(∫ ∞
0

B(a)e−λtρ(t, a)− ρ̄0
∫ ∞
0

B(a)N(a) da

)
= 2φ(0)

(∫ ∞
0

B(a)N(a)(m(t, a)− ρ̄0)

)
=

∫ ∞
0

χ(a)m̃(t, a) da

The entropy estimate then gives (m̄ = |m̃|)
d

dt

∫ ∞
0

|m̃(t, a)| da = |m̃(t, 0)| −
∫ ∞
0

χ|m̃| =
∣∣∣∣∫ ∞

0

χm̃

∣∣∣∣− ∫ ∞
0

χ|m̃|

=

∣∣∣∣∫ ∞
0

(χ− µ0)m̃

∣∣∣∣− ∫ ∞
0

χ|m̃| ≤ −µ0

∫ ∞
0

|m̃|
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Properties of the fragmentation kernels

Return

k(x, y) = B(x)κ(x, y) with
∫
κ(x, y) dy = 1, κ(x, y) = 0 if y > x

The kernel k0(x, y) = G(x− y)(x > y) with
∫∞
0
G < +∞

B(x) =

∫ x
0
G(x − y) dy =

∫ x
0
G(y) dy,

∫ ∞
x

B(y)(κ(y, x) dy =

∫ ∞
x

G(y − x) dy =

∫ ∞
0

G(z) dz < ∞

The kernel k1(x, y) = G(y)(x > y) with
∫∞
0
G < +∞

B(x) =

∫ x
0
G(y) dy,

∫ ∞
x

B(y)κ(y, x) dy =

∫ ∞
x

G(y) dy < ∞

In both cases, G is a non negative function with

B(x) ≤ BM if

∫ ∞
0

G(y) dy < +∞

B is an increasing function such that B(0) = 0,

∃x− > 0 such that B(x) ≥ Bm > 0 ∀x > x− if

∫ ∞
0

G(y) dy 6= 0
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