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Motivation: thin film CIGS solar cell production

Collaboration with IPVF (Institut

Photovoltaı̈que de France).

Optimal control of the production

process of thin film CIGS (Copper,

Indium, Gallium, Selenium) solar

cell devices
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Typical composition of a CIGS solar cell
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Production process: Physical Vapor Decomposition (PVD)
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Modelisation

5 different chemical species: Cu, In, Ga, Se, Mo

Physical phenomena to take into account in the model:

• the evolution of the surface of the thin film surface during the fabrication

process

• the diffusion of the different chemical species within the bulk of the film,

due to the high temperature of the chamber

Talk of today: only the second point
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Modelisation on the atomistic scale

Multi-species symmetric exclusion process on a grid

Lattice-based stochastic hopping model

For the sake of simplicity:

• only two chemical species red and blue

• Atoms are clamped on an infinite periodic grid (sites of the crystalline

solid): Zd
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Modelisation on the atomistic scale

Multi-species symmetric exclusion process on a grid

Lattice-based stochastic hopping model

• At some given random times (following an exponential law), one random

particle may jump to a neighbouring site.

• Let K ∈ N
∗.

Let (vk )1≤k≤K ⊂ Z
d \ {0} be the set of K possible jump directions of

each particle.

Let (pk )1≤k≤K ⊂ (0, 1) be the probability rate of each jump direction.
• Let us assume that the selected random particle is located at the site

x ∈ Z
d . A jump direction vk is randomly selected with probability pk .

• If the site located at position x + vk is already occupied by another particle,
nothing happens

• Otherwise, the particle jumps at the new site located at x + vk .

• Select another random time, another random particle...
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Modelisation on the atomistic scale

Multi-species symmetric exclusion process on a grid

Lattice-based stochastic hopping model
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Hydrodynamic limit: deterministic cross-diffusion system

[Quastel, 1992], [Erignoux, 2016]

Limit as

• the number of particles grows to infinity

• the distance between neighbouring sites decreases to 0

For the sake of simplicity, on the torus T
d := R

d/Zd (periodic boundary

conditions)

• ρred(x, t) density of red particles at time t > 0 and point x ∈ T
d

• ρblue(x, t) density of blue particles at time t > 0 and point x ∈ T
d

∂

∂t

(

ρred
ρblue

)

=
1

2
∇x·









ρblue
ρ

Ds(ρ) +
ρred
ρ

D
ρred
ρ

(D− Ds(ρ))

ρblue
ρ

(D− Ds(ρ))
ρred
ρ

Ds(ρ) +
ρblue
ρ

D





(

∇xρred
∇xρblue

)





where ρ(x, t) := ρred(x, t) + ρblue(x, t).
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Definition of D and Ds(ρ)

It holds that there exists a unique solution to the previous system provided

that

ρred(x, t = 0) ≥ 0, ρblue(x, t = 0) ≥ 0, ρ(x, t = 0) = ρred(x, t = 0)+ρblue(x, t = 0) ≤

Then, it holds that for all t > 0,

ρred(x, t) ≥ 0, ρblue(x, t) ≥ 0, ρ(x, t) = ρred(x, t) + ρblue(x, t) ≤ 1.

• Definition of D ∈ R
d×d : D :=

∑K
k=1 pk vkvT

k

• Definition of Ds(ρ) ∈ R
d×d for a given ρ ∈ [0, 1]: The matrix Ds(ρ) is

symmetric, non-negative and called the auto-diffusion matrix of the

system.
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Auto-diffusion matrix: probabilistic interpretation

Tagged particle process

• We consider a system of (identical) particles

located on some sites of the lattice Z
d

• At time t = 0:
• there is one particle at the site 0: the tagged

particle
• all the other sites of the grid are

independently occupied with a probability ρ

• the system of particles evolves following the

same jumping rules as the original blue/red

particle system

For all t > 0, let wt ∈ Z
d be the position at time t of the tagged particle.
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Auto-diffusion matrix: probabilistic interpretation

For all u ∈ R
d ,

u
T
Ds(ρ)u = 2 lim

t→+∞

E

[

(u · wt )
2
]

t

Remark: Since Ds(ρ) is symmetric, by polarization, it is sufficient to know the

value of

u
T
Ds(ρ)u

for all u ∈ R
d to know the value of the whole matrix Ds(ρ).

Computation in practice:

• Introduce a finite-size grid with periodic boundary conditions
• Exponential convergence with respect to the size of the finite grid

[Landim, Olla, Varadhan, 2022]

• Approximate the expectation E

[

(u · wt)
2
]

with Monte-Carlo simulations

• Very high variance leads to very large statistical noise
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Auto-diffusion matrix: optimization interpretation

For a given vector u ∈ R
d and ρ ∈ [0, 1], the auto-diffusion coefficient

uT
Ds(ρ)u can be equivalently expressed as the solution of a

high-dimensional optimization problem.

• Let S := Z
d \ {0}.

• An element η := (ηs)s∈S ∈ {0, 1}S denotes a possible environment

around the tagged particle.

• Let H :=
{

Ψ : {0, 1}S → R
}

the set of real-valued functions defined on

the set of possible environments

u
T
Ds(ρ)u := 2 inf

Ψ∈H
Eρ [JΨ(η)]

where

• JΨ : {0, 1}S → R (see next slide)

• Eρ denotes the expectation on all possible environments η so that each

site is independently occupied with probability ρ.
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Auto-diffusion matrix: optimization interpretation

Let η := (ηs)s∈S ∈ {0, 1}S

• For all y 6= z ∈ S, ηy,z := (ηy,z
s )s∈S is the element of {0, 1}S such that

ηy,z
s :=







ηs if s 6= y, z,
ηy if s = z,
ηz if s = y.

• For all w ∈ S, η0,w := (η0,w
s )s∈S is the element of {0, 1}S such that

η0,w
s :=

{

ηs+w if s 6= −w,
0 if s = −w.

JΨ(η) =
K
∑

k=1

pk

[

(1 − ηvk
)
(

u · vk +Ψ(η0,vk )−Ψ(η)
)2

+
1

2

∑

y ∈ S
y + vk 6= 0

(

Ψ(ηy+vk ,y)−Ψ(η)
)2








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Deterministic interpretation: finite-size grid approximation

Computation in practice:

• Introduce a finite-size grid with periodic boundary conditions

Exponential convergence with respect to the size of the finite grid [Landim, Olla,

Varadhan, 2022]

Let M ∈ N
∗ and SM := {−M, · · · ,M}d \ {0} so that |SM | = (2M + 1)d − 1.

Let HM :=
{

Ψ : {0, 1}SM → R
}

For all u ∈ R
d and ρ = ℓ

|SM |
with ℓ ∈ {0, 1, · · · , |SM |},

u
T
Ds(ρ)u ≈ u

T
D

M
s (ℓ)u := 2 inf

Ψ∈HM

∑

η := (ηs)s∈SM
∈ {0, 1}SM

∑

s∈SM
ηs = ℓ

JΨ(η)

High-dimensional optimization problem →֒ Curse of dimensionality

HM ≈ (R2)SM
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Numerical approach investigated here

Tensor methods + greedy algorithms

16 / 27



First step: reformulation of the optimization problem

Let us introduce Ψopt ∈ HM solution to

Ψopt := argmin
Ψ∈HM

∑

η:=(ηs)s∈SM
∈{0,1}SM

JΨ(η)

Then, for all ℓ ∈ {0, 1, · · · , |SM |},

u
T
D

M
s (ℓ)u = 2

∑

η := (ηs)s∈SM
∈ {0, 1}SM

∑

s∈SM
ηs = ℓ

JΨopt(η)

We are going to present a numerical approach in order to obtain a numerical

approximation of Ψopt which circumvents the curse of dimensionality
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Second step: definition of a pure rank-1 tensor

For all s ∈ SM , let Rs : {0, 1} → R Remark: Rs ≈ R
2

The pure rank-1 tensor associated to the family (Rs)s∈SM
is the function

⊗s∈SM
Rs ∈ HM defined as follows:

for all η = (ηs)s∈SM
,

(

⊗s∈SM
R

s
)

(η) = Πs∈SM
R

s(ηs)

Note that the knowledge of ⊗s∈SM
Rs only requires the knowledge of |SM |

vectors of R2.

We are going to compute a numerical approximation of Ψopt under the form

Ψopt ≈ Ψn :=
n

∑

k=1

⊗s∈SM
Rs

k

with n small and where for all s∈SM and all 1 ≤ k ≤ n, Rs
k : {0, 1} → R

The number of terms n is then called the rank of the tensor approximation of

Ψopt
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Third step: greedy algorithm

Let us denote by E : HM → R the (quadratic) functional defined by

∀Ψ ∈ HM , E(Ψ) :=
∑

η:=(ηs)s∈SM
∈{0,1}SM

JΨ(η)

so that

Ψopt = argmin
Ψ∈HM

E (Ψ) .

Greedy algorithm:

• Initialization : Start from Ψ0 = 0

• Iteration n ≥ 1: Select (Rs
n)s∈SM

solution to

(Rs
n)s∈SM

∈ argmin

(Rs)s∈SM

∀s ∈ SM , Rs : {0, 1} → R

E
(

Ψn−1 +⊗s∈SM
R

s
)

Set Ψn := Ψn−1 +⊗s∈SM
Rs

n .
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Theoretical results on greedy algorithm for tensor approximation

Theorem (Cancès, VE, Lelièvre, 2011)

The sequence (Ψn)n∈N converges to Ψopt exponentially fast with respect to n.
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In practice? Fixed-point algorithm

(Rs
n)s∈SM

∈ argmin

(Rs)s∈SM

∀s ∈ SM , Rs : {0, 1} → R

E
(

Ψn−1 +⊗s∈SM
R

s
)

Alternating Least Square (ALS) algorithm

Define some ordering of the sites of SM so that

SM = {s1, · · · , s|SM |}

Finding a family (Rs)s∈SM
then amounts to finding a family (R

sp
n )1≤p≤|SM |

∀η = (ηsp)1≤p≤|SM |, ⊗s∈SM
R

s(η) = Π
|SM |
p=1 R

sp(ηsp )

• Initialization: Start from (R
sp

n,0)1≤p≤|SM | which are randomly chosen

• Iteration m ≥ 1: For all 1 ≤ p ≤ |SM |, find

R
sp
n,m = argmin

R:{0,1}→R

E
(

Ψn−1(η) + Πp−1

p′=1
R

sp
n,m(ηsp′

)R(ηsp)Π
|SM |

p′=p+1
R

sp

n,m−1(ηsp′
)
)
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In practice? Fixed-point algorithm

Since E is quadratic, computing

R
sp
n,m = argmin

R:{0,1}→R

E
(

Ψn−1(η) + Πp−1

p′=1
R

sp
n,m(ηsp′

)R(ηsp)Π
|SM |

p′=p+1
R

sp

n,m−1(ηsp′
)
)

also amounts to solving a quadratic problem to find a two-dimensional vector.

Resolution of a two-dimensional linear problem

Because of the particular structure of the functional E , the assembly of this

two-dimensional linear problem can be done with complexity which evolves

linearly with n|SM |.
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Variance of the naive Monte-Carlo method

u
T
Ds

(

ℓ

|SM |

)

u = 2 lim
t→+∞

E

[

(u · wt)
2
]

t

d = 2, M = 2, u = (1,0), ℓ = 0
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Convergence as of the greedy algorithm

Convergence of E(Ψn) to E(Ψopt) as a function of n
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Numerical results

n = 10

• Tensor method: 3 minutes

• Monte-Carlo method: 15 minutes
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What next?

Perspectives:

• Couple this tensor/greedy approach together with domain decomposition

method to solve larger problems

• Develop a finite-volume scheme in order to solve the original

cross-diffusion system.

∂

∂t

(

ρred
ρblue

)

=
1

2
∇x·









ρblue
ρ

Ds(ρ) +
ρred
ρ

D
ρred
ρ

(D− Ds(ρ))

ρblue
ρ

(D− Ds(ρ))
ρred
ρ

Ds(ρ) +
ρblue
ρ

D





(

∇xρred
∇xρblue

)





Jad Dabaghi, Virginie Ehrlacher, Christoph Strössner, Tensor approximation of the self-diffusion matrix of tagged

particle processes, 2022, arXiv:2204.03943
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CEMRACS 2022 project: tensor/greedy approach for Mean-Field
Games systems

Crowd motion applications: [Achdou, Laurière, 2020]















∂tu − ν∆u + H(x ,m,∇u) = 0

∂tm − ν∆m − div (mHp(x ,m,∇u)) = 0

m(0, x) = m0(x)
u(T , x) = φ(x ,m(T , x))

with Luca Nenna, Laı̈la Baroukh, Damien Prel and Léopold Trémant.

More on Thursday!

Thank you for your attention!
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