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Motivation: thin film CIGS solar cell production

Collaboration with IPVF (Institut
Photovoltaique de France).

Optimal control of the production
process of thin film CIGS (Copper,
Indium, Gallium, Selenium) solar
cell devices
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Typical composition of a CIGS solar cell
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Production process: Physical Vapor Decomposition (PVD)
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Modelisation

5 different chemical species: Cu, In, Ga, Se, Mo

Physical phenomena to take into account in the model:

* the evolution of the surface of the thin film surface during the fabrication
process

e the diffusion of the different chemical species within the bulk of the film,
due to the high temperature of the chamber

Talk of today: only the second point
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Modelisation on the atomistic scale
Multi-species symmetric exclusion process on a grid

Lattice-based stochastic hopping model

For the sake of simplicity:
® only two chemical species red and blue
® Atoms are clamped on an infinite periodic grid (sites of the crystalline
solid): z¢
@
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Modelisation on the atomistic scale

Multi-species symmetric exclusion process on a grid

Lattice-based stochastic hopping model

® At some given random times (following an exponential law), one random
particle may jump to a neighbouring site.

® letK e N*.
Let (Vk)1<k<k C Z%\ {0} be the set of K possible jump directions of
each particle.
Let (px)1<k<k C (0, 1) be the probability rate of each jump direction.

® Let us assume that the selected random particle is located at the site
x € Z°. A jump direction vy is randomly selected with probability px.

® |f the site located at position x + vy is already occupied by another particle,
nothing happens
® Otherwise, the particle jumps at the new site located at x + vy.

e Select another random time, another random particle...
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Modelisation on the atomistic scale

Multi-species symmetric exclusion process on a grid

Lattice-based stochastic hopping model
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Hydrodynamic limit: deterministic cross-diffusion system

[Quastel, 1992], [Erignoux, 2016]

Limit as
® the number of particles grows to infinity
¢ the distance between neighbouring sites decreases to 0

For the sake of simplicity, on the torus T¢ := R9/Z? (periodic boundary
conditions)

* p..4(x, t) density of red particles at time ¢ > 0 and point x € T¢
® po1ue(X, t) density of blue particles at time t > 0 and point x € T¢

pblue prec prec
—D —D —(D-D
(o) + 2 0 =Ds0)) \ [ vy,
VxpPolue

2 (pred) _ 1V .

Of \ Poiue o VX E(D — Ds(p)) @Ds(p) + Polue
P P P

Where p(x7 t) = pred(x7 t) + pblue(x, t)
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Definition of D and Ds(p)

It holds that there exists a unique solution to the previous system provided
that

ch(x7 t= 0) >0, pblue(x7 t= 0) >0, p(X, t= O) = pw(?(x: t= 0)+pblue(x7 t= 0) <
Then, it holds that for all t > 0,

plec(x7 t) 2 07 pblue(x7 t) 2 07 p(x7 t) = ple(?(xz t) + pblue(x7 t) S 1
* Definition of D ¢ R9*%: D := 3K pevev]

* Definition of Ds(p) € R?*? for a given p € [0, 1]: The matrix Ds(p) is
symmetric, non-negative and called the auto-diffusion matrix of the
system.
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Auto-diffusion matrix: probabilistic interpretation

Tagged particle process

* We consider a system of (identical) particles
@® located on some sites of the lattice Z¢

® Attimet=0:
0 @ 0 ® there is one particle at the site 0: the tagged
particle
. o ® all the other sites of the grid are
independently occupied with a probability p

@ ® ® e the system of particles evolves following the
same jumping rules as the original blue/red
@® particle system

Forall t > 0, let w; € Z? be the position at time t of the tagged particle.
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Auto-diffusion matrix: probabilistic interpretation

Forallu € RY,
uDs(pu=2 li = [(u~W,)2]
s(p)u= zz—llinoo t
Remark: Since Ds(p) is symmetric, by polarization, it is sufficient to know the
value of
u'Ds(p)u
for all u € R? to know the value of the whole matrix Ds(p).

Computation in practice:
¢ Introduce a finite-size grid with periodic boundary conditions
® Exponential convergence with respect to the size of the finite grid
[Landim, Olla, Varadhan, 2022]
* Approximate the expectation E [(u . w[)z} with Monte-Carlo simulations

® Very high variance leads to very large statistical noise
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Auto-diffusion matrix: optimization interpretation

For a given vector u € R? and p € [0, 1], the auto-diffusion coefficient
u’Ds(p)u can be equivalently expressed as the solution of a
high-dimensional optimization problem.

e LetS:=7%)\ {0}.

* Anelement n := (1s)scs € {0,1}° denotes a possible environment
around the tagged particle.

 LetH:= {w:{0,1}° — R} the set of real-valued functions defined on
the set of possible environments

u'Ds(p)u = 2 inf B, [Ju(n)]

where
* Jy: {0,1}5 = R (see next slide)
® [, denotes the expectation on all possible environments n so that each
site is independently occupied with probability p.
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Auto-diffusion matrix: optimization interpretation
Let n := (1s)ses € {0,1}°
e Forally #z € S, n¥* := (nY%)scs is the element of {0, 1}° such that

Ts if s ;ﬁ Y.z,
Wg’z = Ty ifs = z,
n. ifs=y.

e Forallw e S, n®" := (n2")ses is the element of {0, 1}° such that

ow . __ Ns+w ifS# —W,
s TV 0 ifs=—w.

K

Jw('r]) = Zpk |:(1 — 77Vk) (U “ Vi + \Il(no,vk) _ W(TI))Z

k=1
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Deterministic interpretation: finite-size grid approximation

Computation in practice:

¢ Introduce a finite-size grid with periodic boundary conditions
Exponential convergence with respect to the size of the finite grid [Landim, Olla,
Varadhan, 2022]

Let M € N* and Sy := {—M, --- ,M}?\ {0} so that |Sy| = (2M + 1) —1.
Let Hy = {v : {0,1}5 — R}

Forallu e R?and p = s with ¢ € {0,1,--- ,|Sul},
T ~ 1T mM L .
u'Ds(p)u = u'DY(O)u = ZW'Q;EM > Ju(n)
n = (ns)ses,, € {0, 1}
ZSGSM ns = [

High-dimensional optimization problem — Curse of dimensionality
HM ~ (R2)SM
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Numerical approach investigated here

Tensor methods + greedy algorithms
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First step: reformulation of the optimization problem

Let us introduce W' ¢ Hy, solution to

WP = argmin Z Ju(n)

VEM  —(n)se 5y, €40.1}M
Then, forall 2 € {0,1,--- ,|Sul},

u DY (=2 > Jyept (1)

n = (1s)ses, € {0, 1}
sesy ls = 4

We are going to present a numerical approach in order to obtain a numerical

approximation of WPt which circumvents the curse of dimensionality
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Second step: definition of a pure rank-1 tensor

Foralls € Sy, let R®: {0,1} = R Remark: R® ~ R?

The pure rank-1 tensor associated to the family (R®)scs,, is the function
®scs,, R® € Hy defined as follows:

for all n = (ns)ses,,,
(®seSM Rs) (77) = nseSM Rs(ﬁs)

Note that the knowledge of ®scs,, R® only requires the knowledge of |Sy|
vectors of R2.

We are going to compute a numerical approximation of WPt under the form
n
YoPt Y, = Z@seSMR:
k=1

with n small and where for all sc Sy and all1 < k <n, R;: {0,1} - R

The number of terms n is then called the rank of the tensor approximation of
\UOPt
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Third step: greedy algorithm

Let us denote by £ : Hy — R the (quadratic) functional defined by
YW e Hy, E&(V):= > Ju(n)
m:=(ns)sesy, €{0,1}°M
so that

WP = argmin & (V).
WeHy

Greedy algorithm:
¢ |nitialization : Start from Wy =0
e lteration n > 1: Select (R} )scs,, solution to
(R)sesy, € argmin E (Vo1 + ®sesy, R®)
(R®%)sesy
Vs e Sy, R°:{0,1} - R

Set W, = V,_1 + Qscs,, An-
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Theoretical results on greedy algorithm for tensor approximation

Theorem (Canceés, VE, Leliévre, 2011)
The sequence (W,)nen converges to WP exponentially fast with respect to n.
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In practice? Fixed-point algorithm

(RM)sesy € argmin E (Vi1 + ®ses, R°)

(RS)SESM
Vs € Sy, R°:{0,1} - R

Alternating Least Square (ALS) algorithm
Define some ordering of the sites of Sy so that

Sy ={s1,---,S|s,}
Finding a family (R®)scs,, then amounts to finding a family (H,s,")gpgsw

V0 = (0sy)1<p<iSul> ®sesy A (M) = MM A% (s,)

e Initialization: Start from (szo)@pgsm which are randomly chosen
e lteration m > 1: Forall 1 < p < |Su|, find

. — S
Fitm = argmin & (Wo_1(n) + M Rn(ns, )R01s, IR0 ity (1s,)))
R:{0,1} =R
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In practice? Fixed-point algorithm

Since €& is quadratic, computing

Rifm = argmin & (Wo—1(n) + N Rm(s, )A(1s, IR RlF o (s,)))
R:{0,1} =R

also amounts to solving a quadratic problem to find a two-dimensional vector.

Resolution of a two-dimensional linear problem

Because of the particular structure of the functional £, the assembly of this
two-dimensional linear problem can be done with complexity which evolves
linearly with n|Sy|.
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Variance of the naive Monte-Carlo method

d=2,M=2u=(1,0),(=
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Convergence as of the greedy algorithm

Convergence of £(V,) to £(V°') as a function of n

1072}
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Numerical results
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e Tensor method: 3 minutes
® Monte-Carlo method: 15 minutes
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What next?

Perspectives:

e Couple this tensor/greedy approach together with domain decomposition
method to solve larger problems

® Develop a finite-volume scheme in order to solve the original
cross-diffusion system.

Poiue Pred Pred(my _
5 (p) BN Bs(p) + 255D L22(D —Dilp)) (vp)
= 5V

ot LoD - D(p))  ZoDs(p) + 222D | \ Ve
p p p

Polue

Jad Dabaghi, Virginie Ehrlacher, Christoph Stréssner, Tensor approximation of the self-diffusion matrix of tagged
particle processes, 2022, arXiv:2204.03943
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CEMRACS 2022 project: tensor/greedy approach for Mean-Field
Games systems

Crowd motion applications: [achdou, Lauriére, 2020]

o —vAu+ H(x,m,Vu) =0

orm — vAm — div(mHp(x,m,Vu)) =0
m(0, x) = mo(x)

u(T,x) = ¢(x,m(T, x))

with Luca Nenna, Laila Baroukh, Damien Prel and Léopold Trémant.

More on Thursday!

Thank you for your attention!
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