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Introduction

We shall present here the motivation and a general description of a method
dealing with a class of problems in mathematical physics. The method
is, essentially, a statistical approach to the study of differential equations,
or more generally, of integro-differential equations that occur in various
branches of the natural sciences.

(N.Metropolis, S.Ulam, ”The Monte Carlo method”, J. Am. Stat. Ass., 1949.)
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Monte Carlo methods

Nowadays Monte Carlo methods find application in a wide field of areas,
including many subfields of physics, like statistical physics or high energy
physics, and ranging to areas like biology, chemistry, finance, computer
graphics and video games.

Classical mathematical applications of Monte Carlo involves the computation
of multidimensional integrals, the solution of partial differential equations,
Markov chains and optimization problems.

Monte Carlo methods are often used when other methods fail, since they are
much less sensitive to the course of dimensionality, which plagues
deterministic methods in problems with a large number of variables.

Despite the widespread use of the methods, and numerous descriptions of
them in articles and monographs1, it is virtually impossible to find a unique
notion of Monte Carlo method in the literature and the term Monte Carlo is
often used to denote any numerical technique based on some kind of
stochastic simulation.

1J.M.Hammersley, D.C.Handscomb, Monte Carlo Methods, 1964. N.Madras, Lectures on
Monte Carlo methods, 2002.
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Monte Carlo integration

Consider the simple integral

I[f ] =

∫
[0,1]d

f(x)dx, d ≥ 1,

if x is a random vector uniformly distributed in [0, 1]d we have I[f ] = E[f(x)], where E[·]
denotes the expectation. If {xn} is a sequence of pseudo-random vectors uniform in [0, 1]d then

IN [f ] =
1

N

N∑
n=1

f(xn), E[IN [f ]] = I[f ].

For the law of large numbers it converges in probability2

lim
N→∞

IN [f ] = I[f ],

and
I[f ]− IN [f ] ≈ σfN−1/2w, E[(I[f ]− IN [f ])2] = σfN

−1/2,

where σ2
f is the variance of f and w is a normal random variable. Note that there is no

dependence on the dimension.
Remark: The convergence rate for a deterministic grid based quadrature is O(N−k/d) for an
order k method. Thus Monte Carlo is ”better” if k/d ≤ 1/2.

2W.Feller ’71, R.E.Caflisch ’98
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Reconstruction
Given a set of N samples ξ1, ξ2, . . . , ξN the probability density is defined by

f(x) =
1

N

N∑
k=1

δ(x− ξk).

The simplest method, which produces a piecewise constant reconstruction, is based on
evaluating the histogram of the samples at the cell centers of a grid

f(xj+1/2) =
1

N

N∑
k=1

Ψ(ξk − xj+1/2), j = . . . ,−2,−1, 0, 1, 2, . . .

where Ψ(x) = 1/∆x if |x| ≤ ∆x/2 and Ψ(x) = 0 elsewhere.
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DSMC basics
Example: Flow past a sphere

Initialize system with particles (xi, vi), i = 1, . . . , N (sampling).

Loop over time steps of size ∆t.

Create particles at open boundaries.

Move all the particles xi = xi + vi∆t (transport step).

Process any interactions of particle and boundaries (Maxwell’s b.c.).

Sort particles into cells.

Select and execute random collisions (collision step).

Compute average statistical values.
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BGK equations

We discuss a Monte Carlo method for the case of kinetic equations of relaxation
type 

∂f

∂t
+ v · ∇xf =

1

ε
(M [f ]− f), v, x ∈ Rd, t > 0

f(x, v, 0) = f0(x, v),

where f = f(x, v, t) ≥ 0 is the number density of particles having velocity v in
position x at time t and M [f ] is the equilibrium Maxwellian function, namely a
multivariate Gaussian with the same first three moments of f∫

Rd

f(x, v, t)φ(v) dv =

∫
Rd

M [f ](x, v, t)φ(v) dv, φ(v) = 1, v, |v|2.

Here ε > 0 is the relaxation time. In particular as ε→ 0 we have f = M [f ] and
thus the solution depends only on the evolution of the first three moments of f
which satisfy the compressible Euler equations.
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The solution is approximated by means of an operator splitting based on
alternating the solution of the convection

∂f∗

∂t
+ v∇xf∗ = 0

f∗(x, v, 0) = f0(x, v)

and homogeneous relaxation steps
∂f

∂t
=

1

ε
(M [f ]− f)

f(x, v, 0) = f∗(x, v, t)

Note that both steps can be again solved exactly and yield the approximation

f∗(x, v, t) = f0(x− vt),
f(x, v, t) = e−t/εf∗(x, v, t) + (1− e−t/ε)M [f∗](x, v, t).

A Monte Carlo method is then derived by direct sampling from the above
solutions of the two splitting steps.
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Monte Carlo approximation

Let us assume f0 a multivariate probability density. Given a set of samples
(ξ0

1 , υ
0
1), . . . , (ξ0

N , υ
0
N ), where ξi, υi ∈ Rd we can sample directly from the exact

solutions of the operator splitting steps.
A new set of samples (ξ1, υ1), . . . , (ξN , υN ) is obtained as follows

1 First compute ξi = ξ0
i + υ0

i t, i = 1, . . . , N

2 On a space grid of M points reconstruct the first three moments∫
Rd

f∗(xj , v, t)φ(v) dv, φ(v) = 1, v, |v|2 j = 1, . . . ,M.

3 In each space cell j given a sample (ξi, υ
0
i )

I with probability 1− e−t/ε replace υ0
i with a velocity sample from M [f∗] (for

example using Box-Muller algorithm),

4 otherwise set υi = υ0
i .
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Lax shock tube
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Solution at t = 0.05 for Lax shock tube, M = 200 and 500 particles per cell with
∆t = 0.1. Left: density for ε = 0.01. Right: density for ε = 0.0005.
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The kinetic model

In the Boltzmann description of RGD, the density f = f(x, v, t) of particles follows the equation

∂f

∂t
+ v · ∇xf =

1

ε
Q(f, f), x ∈ Ω ⊂ R

3, v ∈ R3,

The parameter ε > 0 is called Knudsen number and it is proportional to the mean free path
between collisions. The bilinear collisional operator Q(f, f) is given by

Q(f, f)(v) =

∫
R3

∫
S2
B(|v − v∗|, ω)(f(v′)f(v′∗)− f(v)f(v∗))dv∗dω,

where ω is a vector of the unitary sphere S2 ⊂ R
3 and for simplicity the dependence of f on x

and t has been omitted.
The collisional velocities (v′, v′∗) are given by the relations

v′ =
1

2
(v + v∗ + |q|ω), v′∗ =

1

2
(v + v∗ + |q|ω),

where q = v − v∗ is the relative velocity.

Giacomo Dimarco (University of Ferrara) Numerical methods and UQ for kinetic equations #5 CEMRACS, 18-22 July, 2022 13 / 56



Introduction and Direct Simulation Monte Carlo methods The DSMC method

DSMC for the collision step

We will describe the classical DSMC methods due to Nanbu in the case of spatially
homogeneous Boltzmann equations3.

We assume that the kinetic equations can be written in the form

∂f

∂t
=

1

ε
[P (f, f)− µf ],

where µ > 0 is a constant and P (f, f) is a non negative bilinear operator s.t.

1

µ

∫
R

P (f, f)(v)φ(v) dv =

∫
R

f(v)φ(v) dv, φ(v) = 1, v, v2.

For the BGK equation P (f, f) = µM(ρ, u, T )(v), for the Boltzmann equation in the
Maxwellian case

P (f, f) = Q+(f, f)(v) =

∫
R3

∫
S2
b0(cos z)f(v′)f(v′∗) dω dv∗,

and µ = 4πρ.

The case of general VHS kernels is different and it will not discussed.

3G.Bird ’63, K.Nanbu ’83
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Nanbu’s method (DSMC no time counter)

We assume that f is a probability density, i.e. ρ =
∫+∞
−∞ f(v, t) dv = 1.

Consider a time interval [0, tmax], and discretize it in nTOT intervals of size ∆t.

Let fn(v) be an approximation of f(v, n∆t). The forward Euler scheme writes

fn+1 =

(
1−

µ∆t

ε

)
fn +

µ∆t

ε

P (fn, fn)

µ
.

Clearly if fn is a probability density both P (fn, fn)/µ and fn+1 are probability densities.
Thus the equation has the following probabilistic interpretation.

Physical level: a particle with velocity vi will not collide with probability (1− µ∆t/ε), and
it will collide with probability µ∆t/ε, according to the collision law described by
P (fn, fn)(v).

Monte Carlo level: to sample vi from fn+1 with probability (1− µ∆t/ε) we sample from
fn, and with probability µ∆t/ε we sample from P (fn, fn)(v)/µ.

Note that ∆t ≤ ε/µ to have the probabilistic interpretation. For the BGK model the algorithm is
straightforward since sampling from P (f, f)/µ is simply sampling from a Maxwellian.
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Maxwellian case
We consider the case where the collision kernel does not depend on the relative velocity.

Algorithm[Nanbu for Maxwell molecules]:

1. compute the initial velocity of the particles, {v0i , i = 1, . . . , N},
by sampling them from the initial density f0(v)

2. for n = 1 to ntot
for i = 1 to N

with probability 1− µ∆t/ε
◦ set vn+1

i = vni
with probability µ∆t/ε

◦ select a random particle j
◦ compute v′i by performing the collision

between particle i and particle j
◦ assign vn+1

i = v′i
end for

end for

Nanbu’s algorithm is not conservative, i.e. momentum and energy are conserved only in the
mean, but not at each collision. A conservative algorithm is obtained selecting independent
particle pairs, instead of single particles.
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Uncertainty in kinetic equations

Kinetic equations play a major rule in modeling large
interacting particles systems. Uncertainty may be due to
various reasons, like lack of knowledge on the microscopic
interactions or incomplete informations at the boundaries.

Recently, kinetic equations have found new applications in socio-economy
and life-sciences4. In all these emerging fields the derivation from first
principles is not possible and the models are based on empirical observations.

The development of numerical methods presents several difficulties due to the
high dimensionality and the intrinsic structural properties of the solution5.
These aspects are even more challenging in presence of uncertainties which
contribute to the curse of dimensionality.

4J.A. Carrillo, M. Fornasier, G. Toscani, F. Vecil,’10; S.-Y. Ha, E. Tadmor ’08; P. Degond, S.
Motsch ’07; L.P., G. Toscani ’13

5G.D., L.Pareschi, M.Zanella ’17; J.Hu, S.Jin, R. Shu ’16,’17,’19; L.Liu, S.Jin ’17; Y.Zhu,
S.Jin ’17; S.Jin, H.Lu ’17; J.A. Carrillo, L.Pareschi, M. Zanella ’18; J. Hu, E. Daus, J. Shi, L. Liu
’21; L.Pareschi, W. Yubo ’21 . . .

Giacomo Dimarco (University of Ferrara) Numerical methods and UQ for kinetic equations #5 CEMRACS, 18-22 July, 2022 18 / 56



Uncertainty in kinetic equations Uncertainty in kinetic equations

Kinetic equations with uncertain parameters
We consider kinetic equations with uncertainties of the general form

∂tf + v · ∇xf =
1

ε
Q(f, f),

where f = f(z, x, v, t), t ≥ 0, x ∈ D ⊂ Rdx , v ∈ Rdv , ε > 0 is the Knudsen
number and z ∈ Ω ⊆ Rdz is a r.v.. Examples are the Boltzmann equation

Q(f, f)(z, x, v, t) =

∫
Sdv−1×Rdv

B(v, v∗, ω, z)(f(v′)f(v′∗)∗ − f(v)f(v∗)) dv∗ dω

or by Vlasov-Fokker-Planck type models

Q(f, f) = ∇v · [P[f ]f +∇v(Df)]

where P[·] is a non–local operator of the form

P[f ](z, x, v, t) =

∫
Rdx

∫
Rdv

P (x, x∗; v, v∗, z)(v − v∗)f(z, x∗, v∗, t)dv∗dx∗,

and D(z, v) ≥ 0 describes the local relevance of the diffusion.
Giacomo Dimarco (University of Ferrara) Numerical methods and UQ for kinetic equations #5 CEMRACS, 18-22 July, 2022 19 / 56



Uncertainty in kinetic equations Uncertainty in kinetic equations

Notations

We denote by p(z) the probability density function (PDF) of the random input z.
The expectation of f(z, x, v, t) with respect to the random field is then defined as

E[f ](x, v, t) =

∫
Ω

f(z, x, v, t)p(z) dz.

Similarly we define the other statistical quantities of interest with respect to the
random field, like variance

Var(f)(x, v, t) =

∫
Ω

(f(z, x, v, t)− E[f ](x, v, t))2p(z) dz,

and covariance

Cov(f, g)(x, v, t) =

∫
Ω

(f(z, x, v, t)−E[f ](x, v, t))(g(z, x, v, t)−E[g](x, v, t))p(z) dz.
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Standard Monte-Carlo (MC)

We consider deterministic interaction operator Q(f, f) and random initial data
f(z, x, v, 0) = f0(z, v, v). We assume a deterministic discretization in v, x and t.

Algorithm (Standard Monte Carlo method)

1 Sampling: Sample M independent identically distributed (i.i.d.) initial data
fk0 , k = 1, . . . ,M from the random field f0 and approximate these over the
grid characterized by ∆v and ∆x.

2 Solving: For each realization fk0 the underlying kinetic equation is solved by

the deterministic solver. We denote the solutions at time tn by fk,n∆v,∆x,
k = 1, . . . ,M .

3 Estimating: Estimate the expected value of the random solution field E[fn]
by its arithmetic average

EM [fn∆v,∆x] =
1

M

M∑
k=1

fk,n∆v,∆x.
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Multifidelity control variate methods

Computational considerations

The only (data) interaction between different samples is in step 3, when
ensemble averages are computed. The MC algorithm is non-intrusive and
easily parallelizable.

The typical error estimate that one obtains is of the type

‖E[f ](x, v, tn)− EM [fn∆v,∆x]‖L2(Ω;B) ≤ C
(
σfM

−1/2 + ∆vq + ∆xp
)

where σ2
f = ‖Var(f)‖B, C > 0 depends on time and on the initial data, and

q, p characterize the accuracy of the discretizations in the phase-space (time
error is neglected).

It is possible to equilibrate the discretization and the sampling errors in the
a-priori estimate taking

M = O(∆x−2p), ∆v = O(∆xp/q).

In order to have comparable errors the number of samples should be
extremely large.
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Micro-macro decomposition and variance reduction

The idea is to take advantage of the large time behavior of the kinetic
equation.We describe the method in the space homogeneous case f = f(z, v, t).
We introduce the micro–macro decomposition 6

f(z, v, t) = f∞(z, v) + g(z, v, t),

where f∞(z, v) is the steady state solution Q(f∞, f∞) = 0 and g(z, v, t) is s.t.

mφ(g) :=

∫
Rdv

φ(v)g(z, v, t)dv = 0, φ(v) = 1, v, |v|2/2.

We consider the micro-macro decomposition applied to the homogeneous problem

∂f

∂t
= Q(f, f),

with initial data f(z, x, v, 0) = f0(z, x, v).

6T.-P. Liu, S.-H. Yu ’04; M. Lemou, L. Mieussens ’08
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Micro-macro decomposition and variance reduction

Under suitable assumptions, f(z, v, t) exponentially decays to the equilibrium
solution f∞(z, v), therefore g(z, v, t) exponentially decays to g∞(z, v) ≡ 0.
We can decompose the expected value of the solution as

E[f ](v, t) =

∫
Ω

f∞(z, v)p(z)dz +

∫
Ω

g(z, v, t)p(z)dz = E[f∞](v) + E[g](v, t).

Using a Monte Carlo estimator directly on E[f ] based on M samples we have

‖E[f ](v, t)− EM [f ](v, t)‖L2(Ω;B) ' σfM−1/2.

However, since f∞(z, v) is known, we can assume that E[f∞](v) is evaluated
with a negligible error and use the Monte Carlo estimator only on E[g] to get

‖E[f ](v, t)− E[f∞](v)− EM [g](v, t)‖L2(Ω;B)

= ‖E[g](v, t)− EM [g](v, t)‖L2(Ω;B) ' σgM−1/2.
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Equilibrium as control variate

Therefore, we can use this property taking f∞ as a control variate of f . Given M
samples fk(v, t), k = 1, . . . ,M we can write 7

E[f ](v, t) ≈ EλM [f ](v, t) =
1

M

M∑
k=1

fk(v, t)− λ

(
1

M

M∑
k=1

f∞,k(v)− f∞(v)

)
,

where f∞(v) = E[f∞(·, v)] or an approximation with a negligible error. EλM [f ] is
clearly an unbiased estimator for any choice of λ ∈ R, with E0

M [f ] = EM [f ] being
the standard MC estimator and

E1
M [f ](v, t) = f∞(v) +

1

M

M∑
k=1

(fk(v, t)− f∞,k(v)) = f∞(v) + EM [g](v, t),

the micro-macro MC estimator 8.

7J.M. Hammersley, D.C. Handscomb ’94
8G. D., L. Pareschi, M. Zanella ’18
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Main properties
Let us consider the random variable

fλ(z, v, t) = f(v, z, t)− λ(f∞(z, v)− f∞(v)).

We have E[fλ] = E[f ], EλM [f ](v, t) = EM [fλ](v, t) and its variance is

Var(fλ) = Var(f) + λ2Var(f∞)− 2λCov(f, f∞).

Proposition 2

The quantity λ∗ =
Cov(f, f∞)

Var(f∞)
minimizes Var(fλ) at (v, t) and gives

Var(fλ
∗
) = (1− ρ2

f,f∞)Var(f),

where ρf,f∞ ∈ [−1, 1] is the correlation coefficient of f and f∞. We have

lim
t→∞

λ∗(v, t) = 1, lim
t→∞

Var(fλ
∗
)(v, t) = 0 ∀ v ∈ Rdv .
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Time dependent control variate
To improve the MC estimate we consider as control variate a time dependent
approximation f̃(z, v, t), whose evaluation is cheaper than f(z, v, t), s.t.
mφ(f̃) = mφ(f) for some moments and that f̃ → f∞ as t→∞. For example,
using the BGK model

∂f̃

∂t
= (f∞ − f̃).

In terms of function decomposition this would correspond to write

f(z, v, t) = f̃(z, v, t) + g̃(z, v, t),

with mφ(g̃) = 0 for the same moments and g̃(z, v, t)→ 0 as t→∞.
The control variate estimate then reads

E[f ](v, t) ≈ ẼλM [f ](v, t) =
1

M

M∑
k=1

fk(v, t)− λ

(
1

M

M∑
k=1

f̃k(v, t)− f̃(v, t)

)
,

with f̃(v, t) = E[f̃ ] or an accurate approximation, and where the optimal value for
λ in terms of variance reduction is λ∗ = Cov(f, f̃)/Var(f̃).
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Multifidelity control variate methods Bifidelity control variate methods

Numerical examples:2D homogeneous Boltzmann equation

We use the fast spectral method with N = 64 in the velocity space9.
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Test 1: Uncertain initial data

f0(z, v) =
ρ0

2π

(
exp

(
−
|v − (2 + sz)|2

σ

)
+ exp

(
−
|v + (1 + sz)|2

σ

))
with s = 0.2, ρ0 = 0.125, σ = 0.5 and z uniform in [0, 1].
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Test 2: Uncertain collision kernel

f0(z, v) =
1

2π2
|v|2 exp

(
−
|v|2

2

)
.

The uncertainty is in the frequency of collision B(z) = 1 + sz with

s = 0.2 and z uniform in [0, 1].

9C.Mouhot, L.Pareschi ’05; F.Filbet, L.Pareschi, T. Rey ’15
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Multifidelity control variate methods Bifidelity control variate methods

Test 1: L2 error in time
MSCV with various control variates

Evolution of the L2 norm of the error over time with M = 10.
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Multifidelity control variate methods Bifidelity control variate methods

Test 1: Optimal value λ∗(v, t)
MSCV with BGK
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1

Optimal value λ∗(v, t) at t = 10 and t = 50. MSCV with BGK as control variate.
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Multifidelity control variate methods Multifidelity control variates methods

Multiple control variates

Given f̃1, . . . , f̃L approximations of f(z, v, t) we can consider the random variable

fλ1,...,λL(z, v, t) = f(z, v, t)−
L∑
h=1

λh(f̃h(z, v, t)− f̃h(v, t)),

where f̃h(v, t) = E[f̃h(z, v, t)] and variance given by

Var(fλ1,..,λL) = Var(f) +

L∑
h=1

λ2
hVar(f̃h)

+ 2

L∑
h=1

λh

 L∑
k=1
k 6=h

λkCov(f̃h, f̃k)− Cov(f, f̃h)

 ,

or in vector form

Var(fΛ) = Var(f) + ΛTCΛ− 2ΛT b

where Λ = (λ1, . . . , λL)T , b = (Cov(f, f1), . . . ,Cov(f, fL))T and C = (cij),
cij = Cov(fi, fj) is the symmetric L× L covariance matrix.
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Multifidelity control variate methods Multifidelity control variates methods

Minimizing the variance

The optimal values λ∗h, h = 1, . . . , L minimizing the above variance are found by
equating to zero the partial derivatives with respect to λh

∂Var(fλ1,...,λL)

∂λh
= 0, h = 1, . . . , L.

This corresponds to solve the following linear system

Cov(f, f̃h) =

L∑
k=1

λkCov(f̃h, f̃k), h = 1, . . . , L,

As an example, let us consider the case L = 2, where f̃1 = f0 and f̃2 = f∞.
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Multifidelity control variate methods Multifidelity control variates methods

An example: L = 2
The optimal values λ∗1 and λ∗2 are readily found and are given by

λ∗1 =
Var(f∞)Cov(f, f0)− Cov(f0, f

∞)Cov(f, f∞)

∆
,

λ∗2 =
Var(f0)Cov(f, f∞)− Cov(f0, f

∞)Cov(f, f0)

∆
,

where ∆ = Var(f0)Var(f∞)− Cov(f0, f
∞)2.

Using M samples for both control variates the optimal estimator reads

Ẽ
λ∗1 ,λ

∗
2

M (v, t) = EM [f ](v, t)− λ∗1 (EM [f0](v)− f0(v))− λ∗2 (EM [f∞](v)− f∞(v))

with EM [·] the standard MC estimator with M samples.
By the same arguments as in Proposition 2, since lim

t→∞
f(v, t) = f∞(v) we get

lim
t→∞

λ∗1 = 0, lim
t→∞

λ∗2 = 1,

and thus, the variance of the estimator vanishes asymptotically in time

lim
t→∞

Ẽ
λ∗1 ,λ

∗
2

M (v, t) = f∞(v).
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Test 2: L2 error in time
Multiple MSCV with L = 2
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Multifidelity control variate methods Hierarchical methods

Hierarchical methods
Now, the control variates f1, . . . , fL represent kinetic models with increasing level
of fidelity. We estimate E[f ] with ML samples using fL as control variate

E[f ] ≈ EML
[f ]− λ̂L (EML

[fL]− E[fL]) .

Next, to estimate E[fL] we use ML−1 �ML samples and consider fL−1 as
control variate

E[fL] ≈ EML−1
[fL]− λ̂L−1

(
EML−1

[fL−1]− E[fL−1]
)
.

Recursively we can construct estimators for the remaining expectations of the
control variates E[fL−2],E[fL−3], . . . ,E[f2] using ML−3 �ML−4 � . . .�M1

E[f2] ≈ EM1 [f2]− λ̂1 (EM1 [f1]− E[f1]) ,

and we stop with the final estimate

E[f1] ≈ EM0
[f1],

with M0 �M1.
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Multifidelity control variate methods Hierarchical methods

Optimality conditions

The total variance of the resulting estimator is

Var(EΛ̂
L [f ]) = λ2

1M
−1
0 Var(f1)

+

L∑
h=1

M−1
h

{
λ2
h+1Var(fh+1) + λ2

hVar(fh)− 2λh+1λhCov(fh+1, fh)
}
.

By direct differentiation we get the tridiagonal system for h = 1, . . . , L

M−1
h−1 {λhVar(fh)− λh−1Cov(fh, fh−1)}

+M−1
h {λhVar(fh)− λh+1Cov(fh+1, fh)} = 0,

which under the assumption Mh �Mh−1 leads to solutions

λ∗h =

L∏
j=h

λ̂∗j , λ̂∗j =
Cov(fj+1, fj)

Var(fj)
.
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Multifidelity control variate methods Hierarchical methods

Test 3. Hierarchical MSCV with L = 2. Sod Test.

Figure: Boltzmann M = 10, BGK ME1 = 100, Euler system ME2 = 105.
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Micro-Macro Stochastic Galerkin methods

Fokker-Planck models with uncertain parameters

We consider a distribution function f(z, x, v, t), t ≥ 0, v ∈ V ⊆ Rdv , dx, dv ≥ 1,
and z ∈ IZ ⊆ Rdz a random vector with distribution p(z) representing the the
density of particles/agents whose evolution is given by the following model

∂

∂t
f(z, x, v, t) + v · ∇xf(z, x, v, t) = J (f, f)(z, x, v, t)

where J (·, ·) is a nonlinear operator describing the interaction:

J (f, f)(z, x, v, t) = ∇v · [B[f ](z, v, t)f(z, x, v, t) +∇v(D(z, v)f(z, x, v, t))]

where B[·] is a nonlocal operator of the form

B[f ](z, v, t) =

∫
V

P (z, v, v∗)(v − v∗)f(z, v∗, t)dv∗.

with P ≥ 0 whereas D(z, v) ≥ 0 such that D(z, v) = 0 if v ∈ ∂V .

Giacomo Dimarco (University of Ferrara) Numerical methods and UQ for kinetic equations #5 CEMRACS, 18-22 July, 2022 40 / 56



Micro-Macro Stochastic Galerkin methods

Example 1: The classical Fokker-Planck equation
We focus on the space homogeneous case and we take V = R

dv with

D(z, v) =
σ(z)2

2
, and P (z, v, v∗) = 1

B[f ](z, v, t) = (v − u), u(z) =

∫
Rdv

vf(z, v, 0)dv,

with u which is a conserved quantity in the system. The stationary distribution is
the Maxwellian distribution with uncertain momentum and temperature

f∞(z, v) =

(
1

2πσ(z)2

)dv/2
exp

{
−|v − u(z)|2

2σ(z)2

}
.

The trends to equilibrium are then determined in terms of the Boltzmann
H-functional H(f) =

∫
Rdv

f log fdv, and f(z, v, t) converges in relative entropy
K(f) = H(f)− H(f∞) to the equilibrium f∞(z, v) exponentially fast

K(f(z, v, t)) ≤ e−2t/σ(z)2
K(f(z, v, 0)), t ≥ 0,
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Micro-Macro Stochastic Galerkin methods

Quasi equilibrium states

For FP with nonlocal drift analytical insights on the large time behavior are
often lost together with sharp trends to equilibrium.

One way to tackle the problem consists in considering the solution of the
vanishing flux condition

D(v)∂vf(z, v, t) = (B[f ](z, v, t) +D′(z, v))f(z, v, t),

which is not in general solvable due to nonlinearity on the rhs.

This problem can be faced through the notion of quasi steady-state that is

fq(z, v, t) = Cz exp

{
−
∫ v

−∞

B[f ](z, v∗, t) +D′(z, v∗)

D(z, v∗)
dv∗

}
,

Therefore, fq is not the global in time equilibrium of the problem but it
enjoys the nice property to annihilate the flux for each time t ≥ 0.

If B[·] does not depend on time the quasi-equilibrium coincides with the
steady state distribution of the nonlinear FP of interest.
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Micro-Macro Stochastic Galerkin methods Stochastic Galerkin methods for Fokker-Planck equations

Preliminaries on stochastic Galerkin methods
Let (Ω,F , P ) be a probability space and let us define a random variable

z : (Ω,F)→ (Iz,BRdz ),

with Iz ⊆ Rdz and BRdz the Borel set.Let PM be the orthogonal polynomial space
of degree M

PM = {g : Iz → R : g ∈ span{Φh}Mh=0},

where {Φh}Mh=0 is a set of polynomials of z with degree up to M ≥ 0, forming an
orthonormal basis of L2(Ω), i.e.∫

Iz

Φh(z)Φk(z) p(z) dz = δhk,

The solution can be represented in L2(Ω) as follows

f(z, v, t) =
∞∑
k=0

∫
Iz

f(z, v, t)Φk(z)p(z)dzΦk(z) =

∞∑
k=0

f̂k(v, t)Φk(z),
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Micro-Macro Stochastic Galerkin methods Stochastic Galerkin methods for Fokker-Planck equations

Preliminaries on stochastic Galerkin methods II

The generalized polynomial chaos method approximates the solution of the
differential problem f(z, v, t) in PM with the finite sum

fM (z, v, t) =

M∑
k=0

f̂k(v, t)Φk(z),

solution of the differential problem
∂

∂t
fM (z, v, t) = JM (fM , fM )(z, v, t). (1)

To derive an equation for the coefficients f̂h(v, t) of the expansion, one multiplies
equation (1) by Φh(z), h = 1, ..,M and integrate over Iz. This gives

∂t

∫
Iz

fM (z, v, t)Φh(z)p(z)dz =

∫
Iz

J (fM , fM )(z, v, t)Φh(z)p(z)dz

Hence, from the orthogonality of the polynomial basis, one obtains a coupled
system of (M + 1) equations describing the evolution of the projection coefficients.

Giacomo Dimarco (University of Ferrara) Numerical methods and UQ for kinetic equations #5 CEMRACS, 18-22 July, 2022 44 / 56



Micro-Macro Stochastic Galerkin methods Stochastic Galerkin methods for Fokker-Planck equations

Preliminaries on stochastic Galerkin methods III
The stochastic Galerkin approximation is given by the following coupled system of
partial differential equations

∂tf̂h(v, t) = ∇v ·

[
M∑
k=0

Bhk[fM ]f̂k(v, t) +∇v

(
M∑
k=0

Dhk(v)f̂k(v, t)

)]
,

where

Bhk[fM ](v, t) =

∫
Iz

B[fM ]Φk(z)Φh(z) p(z) dz

=

∫
Iz

∫
V

P (z, v, v∗)|v − v∗|fM (z, v∗, t)dv∗Φk(z)Φh(z) p(z) dz.

and

Dhk(v) =

∫
Iz

D(z, v)Φk(z)Φh(z) p(z) dz.

Or in vector notations as follows

∂tf̂(v, t) = ∇v ·
[
B[fM ](v, t)̂f(v, t) +∇vD(v)̂f(v, t)

]
.
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Stochastic Galerkin methods: properties
Indicating now with ‖̂f‖L2 the standard L2 norm of the vector f̂

‖̂f‖L2 =

(∫
V

M∑
k=0

f̂2
kdv

)1/2

,

we have ‖fM‖L2(Ω) = ‖̂f‖L2 . Furthermore, B, D are symmetric.

The resulting problem can be then solved with suitable numerical methods.

Insights on statistical quantities like the expected value and variance of the
differential problem are defined in terms of the projections.

In particular, one gets spectral approximations of

Ez[f(z, v, t)] ≈ f̂0(v, t).

and

Varz[f(z, v, t)] ≈
∫
Iz

(
M∑
k=0

f̂k(v, t)Φk(z)− f̂0(v, t)

)2

p(z)dz.
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Micro-Macro Stochastic Galerkin methods Stochastic Galerkin methods for Fokker-Planck equations

Stochastic Galerkin methods: properties II

If we consider dv = 1 the following stability result holds true

Theorem

If ‖∂vBhk‖L∞ ≤ CB with CB > 0 for all h, k = 0, . . . ,M and if the diffusion
functions are such that Dhk ≤ CD for all h, k = 0, . . . ,M , hence we have

‖̂f(t)‖2L2 ≤ et(CB+2CD)‖̂f(0)‖2L2

hence stability of the SG expansion.

We describe the micro-macro reformulation by relying on the notion of
quasi-equilibrium fq satisfying J(fq, fq)(z, v, t) = 0.

The idea consists in decomposing the solution of the F-P model in

f(z, v, t) = fq(z, v, t) + g(z, v, t),

with g(z, v, t) a distribution such that
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Micro-Macro Stochastic Galerkin methods Stochastic Galerkin methods for Fokker-Planck equations

Micro-macro stochastic Galerkin scheme

∫
Rdv

ϕ(v)g(z, v, t)dv = 0 if

∫
Rdv

ϕ(v)f(z, v, t)dv =

∫
Rdv

ϕ(v)fq(z, v, t)dv,

Proposition 1

Let us consider the nonlinear F-P model. For each time t ≥ 0 and z ∈ Iz the
operator J (f, f) can be rewritten as

J (f, f) = J (g, g) + G(fq, g),

where G(fq, g)(z, v, t) = B[fq](z, v, t)g(z, v, t) +B[g](z, v, t)fq(z, v, t). Moreover,
if fq → f∞ for t→ +∞ the only admissible steady state solution of the problem

∂tf(z, v, t) = J (g, g)(z, v, t) + B[fq](z, v, t)g(z, v, t) + B[g](z, v, t)fq(z, v, t),

is g∞(z, v) ≡ 0.
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Micro-macro stochastic Galerkin scheme II

Now, introducing the following decomposition for all coefficients M ≥ 0

fM (z, v, t) = fqM (z, v, t) + gM (z, v, t), v ∈ Rdv , t ≥ 0,

being

fqM (z, v, t) =

M∑
k=0

f̂qk (v, t)Φk(z), f̂qk (v, t) =

∫
Iz

fq(z, v, t)Φk(z)p(z)dz,

the resulting gPC-SG problem reads

∂

∂t
fM (z, v, t) = JM (fM , fM )

= JM (gM , gM ) + GM (fqM , gM )

and we obtain a system of coupled PDEs for the evolution of the nonequilibrium
part
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Micro-macro stochastic Galerkin scheme III

∂

∂t
ĝh(v, t) =∇v ·

[
M∑
k=0

Bhk[gM ]ĝk +∇v

(
M∑
k=0

Dhk(v)ĝk

)]

+∇v ·

[
M∑
k=0

Bhk[fqM ]ĝk + Bhk[gM ]f̂qk

]
− ∂

∂t
f̂qk (v, t),

where Bhk[gM ] and Bhk[fqM ] are defined as

Bhk[gM ](v, t) =

∫
Iz

B[gM ]Φk(z)Φh(z)p(z)dz,

Bhk[fqM ](v, t) =

∫
Iz

B[fqM ]Φk(z)Φh(z)p(z)dz.
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Micro-Macro Stochastic Galerkin methods Stochastic Galerkin methods for Fokker-Planck equations

Reformulation of the micro-macro stochastic Galerkin
scheme
We observe that the micro-macro stochastic Galerkin method admits the following
equivalent formulation. We have

∂

∂t
f(z, v, t) = J̃ (fq + g, fq + g)(z, v, t),

being the operator J̃ (·, ·) defined as follows

J̃ (h1, h2) =
1

2
(∇v · B[h1]h2 +∇v · B[h2]h1)

1

2
(ρh1∇v · ∇v(D(v)h1) + ρh2∇v · ∇v(D(v)h2)) ,

where h1, h2 are two densities on V ⊆ R and ρh1
=
∫
V
h1dv, ρh2

=
∫
V
h2dv.

Hence,

J̃ (fq + g, fq + g) = J̃ (g, g) + 2J̃ (g, fq) := L(fq, g),
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Micro-Macro Stochastic Galerkin methods Stochastic Galerkin methods for Fokker-Planck equations

On a new formulation of micro-macro stochastic Galerkin

Thus, we can write

∂

∂t
g(z, v, t) = L(fq, g)(z, v, t)− ∂

∂t
fq(z, v, t).

Now, plugging everything in the stochastic Galerkin setting we have

∂

∂t
gM (z, v, t) = LM (fqM , gM )− ∂

∂t
fqM (z, v, t).

Since gM (z, v, t) = fM (z, v, t)− fqM (z, v, t) we observe that

LM (fqM , gM )(z, v, t) = J̃M (fM , fM )− J̃M (fqM , f
q
M ).

A convenient reformulation is therefore

∂

∂t
fM (z, v, t) = J̃M (fM , fM )− J̃M (fqM , f

q
M ).10

10F. Filbet, L. Pareschi, T. Rey ’19
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Micro-Macro Stochastic Galerkin methods Numerical examples

Test 1: Explicit steady state in opinion dynamics

We consider a model of opinion formation obeying to a F-P model with

B[f ](z, v, t) = γ(z)(v − u), D(z, v) =
σ2(z)

2
(1− v2)2,

The discretization of the polynomial chaos expansion for fM (z, v, t) reads

d

dt
f̂i(t) =

Bi+1f̂i+1(t)− Bi−1f̂i−1(t)

2∆v
+

Di+1f̂i+1(t)− 2Dif̂i(t) + Di−1f̂i−1(t)

∆v2
, t ≥ 0,

Instead, within the micro-macro formulation we have

d

dt
f̂i(t) =

Bi+1f̂i+1(t)− Bi−1f̂i−1(t)

2∆v
+

Di+1f̂i+1(t)− 2Dif̂i(t) + Di−1f̂i−1(t)

∆v2

−

(
Bi+1f̂

∞
i+1 − Bi−1f̂

∞
i−1

2∆v
+

Di+1f̂
∞
i+1 − 2Dif̂

∞
i + Di−1f̂

∞
i−1

∆v2

)
,
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Micro-Macro Stochastic Galerkin methods Numerical examples

Test 1
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Conclusions

Conclusions

In many kinetic models including the effects of uncertainty is essential, since
at most we can aspire to have statistical informations on some parameters.

Monte Carlo methods are attractive since they are non intrusive and easily
parallelizable but they exhibit statistical fluctuations and slow convergence.

Multiscale control variate methods employ the knowledge of some simpler
kinetic/fluid models with different fidelity levels to improve the statistical
estimate at the various space-time scales.

Stochastic Galerkin methods based on gPC provide spectral accuracy for
smooth random fields but contribute to the curse of dimensionality and
sometimes are not able to preserve the main physical properties.

Micro-Macro Stochastic Galerkin methods provide spectral accuracy with a
reduced number of modes without altering the structure of the original
method.

The material for this part is mostly based on the recent survey
G.D., Liu Liu, Lorenzo Pareschi, Xueyu Zhu. Multi-Fidelity Methods for
Uncertainty Propagation in Kinetic Equations. Panoramas et synthèses, In press.
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