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Introduction

Motivations

Many problems of interests in applications involve non equilibrium gas flows
as hypersonic objects simulations or micro-electro-mechanical devices.

These kind of problems are characterized by breakdowns of fluid models,
either Euler or Navier-Stokes. When the breakdown is localized both in space
and time we must deal with connections of continuum and non equilibrium
regions.

To face such problems, the most natural approach is to try to combine
numerical schemes for continuum models with microscopic kinetic models
which guarantee a more accurate description of the physics when far from the
thermodynamical equilibrium.

Alternatively, we can try to construct numerical methods which address
explicitly the multiscale nature of the solutions. Asymptotic Preserving
methods represent one class among the possible methodologies.
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Introduction

The AP diagram

P ε

P ε
∆t

∆t→ 0 ∆t→ 0

ε→ 0
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6

-

P 0

P 0
∆t

6

-

In the diagram P ε is the original singular perturbation problem and P ε∆t its
numerical approximation characterized by a discretization parameter ∆t.
The asymptotic-preserving (AP) property corresponds to the request that P ε∆t is a
consistent discretization of P 0 as ε→ 0 independently of ∆t.
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Introduction

The kinetic model

In the Boltzmann description of RGD 1 in the hydrodynamic scaling, the density
f = f(x, v, t) of particles follows the equation

∂f

∂t
+

1

εα
v · ∇xf =

1

ε1+α
Q(f, f), x ∈ Ω ⊂ R3, v ∈ R3,

The parameter ε > 0 is called Knudsen number and it is proportional to the mean
free path between collisions. The bilinear collisional operator Q(f, f) is given by

Q(f, f)(v) =

∫
R3

∫
S2

B(|v − v∗|, ω)(f(v′)f(v′∗)− f(v)f(v∗))dv∗dω,

where ω is a vector of the unitary sphere S2 ⊂ R3 and for simplicity the
dependence of f on x and t has been omitted.
The collisional velocities (v′, v′∗) are given by the relations

v′ =
1

2
(v + v∗ + |q|ω), v′∗ =

1

2
(v + v∗ + |q|ω),

where q = v − v∗ is the relative velocity.

1C.Cercignani ’88
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Introduction

Hydrodynamic equations
If we consider the Boltzmann equation and multiply it for the elementary
collisional invariants 1, v, |v|2 and integrate in v we obtain a system of
conservation laws corresponding to conservation of mass, momentum and energy.
Clearly the differential system is not closed since it involves higher order moments
of the function f .
Formally as ε→ 0 the function f is locally replaced by a Maxwellian. In this case
it is possible to compute f from its low order moments thus obtaining to leading
order the closed system of compressible Euler equations

∂ρ

∂t
+

3∑
i=1

∂

∂xi
(ρui) = 0,

∂

∂t
(ρuj) +

3∑
i=1

∂

∂xi
(ρuiuj) +

∂

∂xj
p = 0, j = 1, 2, 3

∂E

∂t
+

3∑
i=1

∂

∂xi
(Eui + pui) = 0,

where p = ρT .
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Introduction

Main goal

The goal is to construct simple and efficient time discretizations for the solution
of kinetic equations in regions with a large variation of the mean free path.

Requirements

For large Knudsen numbers, the methods behave as standard explicit
methods.

For intermediate Knudsen numbers, the methods are capable to speed up the
computation, allowing larger time steps, without degradation of accuracy.

In the limit of very small Knudsen numbers, the collision step replaces the
distribution function by the local Maxwellian. This property is usually
referred to as asymptotic preserving (AP) since it implies consistency with
the underlying system of Euler equations of gas dynamics.

An high order accuracy should be maintained both in space and time by the
numerical scheme for all range of Knudsen numbers. We refer in this case to
as asymptotic accurate (AA) schemes.
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The hydrodynamic limit Implicit-Explicit Runge-Kutta methods

Numerical approaches

Fully explicit methods

Non stiff term: ∆t ≤ ∆x/max(v) (CFL condition)

Stiff term: ∆t ≤ Cε.
Stability will require very small step-sizes for stiff sources, diffusion or
relaxation terms (ε small).

Fully implicit methods

For problems with shocks or steep gradients, implicit methods are not much
better than explicit ones (spurious shocks and wrong wave propagation speed
when the CFL is violated).

For convection discretizations with slope limiters, the implicit relations are
hard (expensive) to solve even for linear problems.

I Thus it is desirable to develop schemes which are Implicit in G(U) and Explicit
in F(U) (IMEX).
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The hydrodynamic limit Implicit-Explicit Runge-Kutta methods

Requirements on IMEX

The combination of the implicit and explicit method should satisfy suitable order
conditions. For linear multistep methods (LMM) if both methods are of order p
then the IMEX scheme has order p. For Runge-Kutta (RK) schemes we need to
satisfy additional mixed compatibility conditions.

Explicit method

The stability region should be the largest possible.

Monotonicity requirements

‖Un+1‖ ≤ ‖Un‖, ∆t ≤ ∆t∗

Strong Stability Preserving (SSP) property2.

Implicit method

Stable for stiff systems, and good damping properties.

The method should be Asymptotic Preserving (AP) namely it should be
consistent with the model reduction that may occur in very stiff regimes 3.

2S.Gottlieb, C-W.Shu, E.Tadmor ’01, R.Spiteri, S.Ruth, ’02
3S.Jin ’99
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The hydrodynamic limit Implicit-Explicit Runge-Kutta methods

Why SSP?

Linear advection F (U) = aU with first order upwind. Solution for a = −1 at t = 0.1875
for Crank-Nicolson (left) and Backward Euler (right).

1.5

t = 0.1875

1

0

0.5u
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x

1.5

t = 0.1875
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x

Here the example is for implicit methods since the concept is the same, but the

numerical results are more evident. All Runge-Kutta and multi-step methods of order

greater than one have a step-size restriction to be SSP.
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The hydrodynamic limit Implicit-Explicit Runge-Kutta methods

Implicit-explicit methods
We consider the system of stiff ODE’s

System of stiff ODEs

U ′ = F(U) + G(U)

where F is non stiff and G is a stiff term.
Splitting methods

Solve separately the advection problem and the stiff source problem

U ′ = F(U), t ∈ [0, T ] U ′ = G(U), t ∈ [0, T ].

Although it is only first order accurate (even if the two steps are exact, unless
the operators commute), it is very popular due to its simple concept and the
freedom in choosing different solvers for advection and sources.

Higher order splitting (ex. Strang splitting) can be constructed but may
present a loss of accuracy when the source term is highly stiff.
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The hydrodynamic limit Implicit-Explicit Runge-Kutta methods

IMEX Runge-Kutta methods4

IMEX Runge-Kutta

Ui = Un + ∆t

i−1∑
j=1

ãijF(t0 + c̃j∆t, Uj) + ∆t

ν∑
j=1

aijG(t0 + cj∆t, Uj),

Un+1 = Un + ∆t

ν∑
i=1

w̃iF(t0 + c̃i∆t, Ui) + ∆t

ν∑
i=1

wiG(t0 + ci∆t, Ui).

Ã = (ãij), ãij = 0, j ≥ i and A = (aij): ν × ν matrices.
The coefficient vectors are c̃ = (c̃1, . . . , c̃ν)T , w̃ = (w̃1, . . . , w̃ν)T ,
c = (c1, . . . , cν)T , w = (w1, . . . , wν)T .
I We restrict to diagonally implicit (DIRK) scheme, aij = 0, j > i since they
guarantee that F is evaluated explicitly.

4U.Ascher, S.Ruth, R.Spiteri ’97, L.P., G.Russo ’00
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The hydrodynamic limit Implicit-Explicit Runge-Kutta methods

Order conditions

If wi = w̃i and ci = c̃i mixed conditions are automatically satisfied. This is
not true for higher that third order accuracy

IMEX-RK schemes are a particular case of additive Runge-Kutta (ARK)
methods. Higher order conditions can be derived using a generalization of
Butcher 1-trees to 2-trees.

The number of coupling conditions increase dramatically with the order of
the schemes5.

IMEX-RK Number of coupling conditions
Order General case w̃i = wi c̃ = c c̃ = c and w̃i = wi

1 0 0 0 0
2 2 0 0 0
3 12 3 2 0
4 56 21 12 2
5 252 110 54 15
6 1128 528 218 78

5M.Carpenter, C.Kennedy, ’03
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The hydrodynamic limit Implicit-Explicit Runge-Kutta methods

Design of IMEX-RK
Start with a p-order explicit SSP method and find the p-order DIRK method that
matches the order conditions with good damping properties (L-stability).

Second order SSP IMEX-RK

U1 = Un + γ∆tG(U1)

U2 = Un + ∆tF(Un) + (1− 2γ)∆tG(U1) + γ∆tG(U2)

Un+1 = Un +
1

2
∆t(F(Un) + F(U1)) +

1

2
∆t(G(U1) + G(U2)),

with γ = (1−
√

2)/2.
Third order SSP IMEX-RK

U1 = Un + γ∆tG(U1)

U2 = Un + ∆tF(Un) + (1− 2γ)∆tG(U1) + γ∆tG(U2)

U3 = Un +
1

4
∆t(F(Un) + F(U1)) + (1/2− γ)∆tG(U1) + γ∆tG(U3)

Un+1 = Un +
1

6
∆t(F(Un) + F(U1) + 4F(U2)) +

1

6
∆t(G(U1) + G(U2) + 4G(U3)),

with γ = (1−
√

2)/2.
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The hydrodynamic limit Asymptotic-Preserving methods for the Boltzmann equation

Asymptotically preserving and accurate methods

Definition (Asymptotic preservation)

A consistent time discretization method, of stepsize ∆t, for a kinetic equation is
asymptotic preserving (AP) if, independently of the initial data and of the stepsize
∆t, in the limit ε→ 0 becomes a consistent time discretization method for the
corresponding fluid equations.

Definition (Asymptotic accuracy)

A consistent time discretization method, of stepsize ∆t, for a kinetic equation is
asymptotic accurate (AA) if, is asymptotic preserving and it preserves a given
order of accuracy in time for all values of ε. In particular, in the limit ε→ 0, it is
automatically reduced to a consistent high order time discretization method for
the corresponding fluid equations.

Giacomo Dimarco (University of Ferrara) Numerical methods and UQ for kinetic equations #3 CEMRACS, 18-22 July, 2022 17 / 54



The hydrodynamic limit Asymptotic-Preserving methods for the Boltzmann equation

IMEX Formulation

The general formulation of the IMEX schemes for kinetic equations is

F (i) = fn −∆t

i−1∑
j=1

ãijv · ∇xF (j) + ∆t

ν∑
j=1

aij
1

ε
Q(F (j))

fn+1 = fn −∆t

ν∑
i=1

w̃iv · ∇xF (i) + ∆t

ν∑
i=1

wi
1

ε
Q(F (i)).

F (i) are called stages and fn+1 the numerical solution. Using the vector notations

F = fne+ ∆tÃ L(F ) +
∆t

ε
AQ(F )

fn+1 = fn + ∆tw̃TL(F ) +
∆t

ε
wTQ(F ),

where e = (1, 1, .., 1)T ∈ Rν and L(F ) = −v · ∇xF .
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The hydrodynamic limit Asymptotic-Preserving methods for the Boltzmann equation

IMEX Formulation II

The matrices Ã = (ãij), ãij = 0 for j ≥ i and A = (aij) are ν × ν matrices
such that the resulting scheme is explicit in v · ∇xf , and diagonally implicit
(aij = 0, for j > i) in Q(f).

A Runge-Kutta method is characterized by the above defined matrices and by
the coefficient vectors w̃ = (w̃1, .., w̃ν)T , w = (w1, .., wν)T .

The use of a DIRK (Diagonally Implicit RK) scheme is enough to assure that
the transport term v · ∇xf is evaluated explicitly.

The order conditions can be simply derived by matching the schemes with a
Taylor expansion of the solution.

The schemes can be represented by a double Butcher tableau

c̃ Ã

w̃T

c A

wT
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The hydrodynamic limit Asymptotic-Preserving methods for the Boltzmann equation

IMEX definitions

Definition

We call an IMEX-RK method of type A if the matrix A ∈ Rν×ν is invertible, or
equivalently aii 6= 0, i = 1, . . . , ν. We call an IMEX-RK method of type CK if the
matrix A can be written as

A =

(
0 0

a Â

)
,

with the submatrix Â ∈ R(ν−1) × (ν−1) invertible.

Definition

We call an IMEX-RK method implicitly stiffly accurate (ISA) if

aνi = wi, i = 1, . . . , ν.

If in addition the explicit method satisfies

ãνi = w̃i, i = 1, . . . , ν

the IMEX-RK method is said to be globally stiffly accurate (GSA) or simply stiffly
accurate.
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The hydrodynamic limit Asymptotic-Preserving methods for the Boltzmann equation

Asymptotic Preserving and Asymptotic Accurate IMEX
schemes for A type matrix
The following theorem shows that type A IMEX schemes are asymptotic
preserving and asymptotic accurate.

Theorem

If the IMEX method is of type A then in the limit ε→ 0, it becomes the explicit
Runge Kutta scheme characterized by (Ã, w̃, c̃) applied to the limit Euler system.

In fact, multiplying the IMEX method by the collision invariants and integrating in
velocity space we obtain the explicit Runge-Kutta methods applied to the moment
system

〈ϕF 〉 = 〈ϕfne〉+ ∆tÃ〈ϕL(F )〉
〈ϕfn+1〉 = 〈ϕfn〉+ ∆tw̃T 〈ϕL(F )〉.

Since A is invertible we can solve for Q(F ) to get

∆tQ(F ) = εA−1
(
F − fne−∆tÃL(F )

)
⇒ ε→ 0 ∆tQ(F ) = 0⇒ F = M [F ].
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The hydrodynamic limit Asymptotic-Preserving methods for the Boltzmann equation

Asymptotic Preserving and Asymptotic Accurate IMEX
schemes for A type matrix II
Replacing F = M [F ] in the moment system leads to an explicit Runge-Kutta
method applied to the limiting Euler system

U = Une−∆tÃ∇x · F(U)

Un+1 = Un + ∆tw̃T∇x · F(U),

U = (U (1), . . . ,U (ν))T , F(U) = (F(U (1)), . . . ,F(U (ν)))T , U (i) = 〈ϕM [F (i)]〉 and
F(U (i)) = 〈ϕL(M [F (i)])〉.
Another property we can demand is that in the limit ε→ 0 the distribution
function is projected over the equilibrium fn+1 →M [fn+1]. One possibility is

Theorem

If the IMEX scheme is of type A and Globally Stiffly Accurate (GSA) then

lim
ε→0

fn+1 = M [fn+1].
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The hydrodynamic limit Asymptotic-Preserving methods for the Boltzmann equation

AP-AA IMEX schemes for CK-type matrix

The request that the matrix A is invertible is highly restrictive for high order
methods. We search then for AP and AA even when the matrix is of type CK. We
need the notion of initial data consistent with the limit problem.

Definition
The initial data for the Boltzmann kinetic equation are said consistent or well
prepared if

f0(x, v) = M [f0(x, v)] + gε(x, v), lim
ε→0

gε(x, v) = 0.

We can then state the following result

Theorem
If the IMEX scheme is of type CK and GSA then for consistent initial data, in the
limit ε→ 0, the IMEX scheme becomes the explicit RK scheme characterized by
(Ã, w̃, c̃) applied to the limit Euler system.
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The hydrodynamic limit Asymptotic-Preserving methods for the Boltzmann equation

Penalization of the collision integral

We rewrite the collision operator in the form

QB(f) = (QB(f)−QP (f)) +QP (f) = GP (f) +QP (f),

where QP (f) is a general operator which will be used to penalize the original
Boltzmann operator QB(f). The corresponding kinetic equation reads

∂tf + v · ∇xf =
1

ε
GP (f) +

1

ε
QP (f).

Recalling that QB(f) = P (f)− µf where P (f) is the so-called gain part of the
operator and µ an estimate of the largest value of the loss part and taking
QP (f) = µ(M − f) leads to

∂tf + v · ∇xf =
µ

ε
(
P (f)

µ
−M) +

µ

ε
(M − f).
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The hydrodynamic limit Asymptotic-Preserving methods for the Boltzmann equation

Penalization of the collision integral II

We use now a numerical scheme in which only the simpler operator QP (f) is
treated implicitly.

This means that the term GP (f) describing the deviations of the true
Boltzmann operator QB(f) from the simplified operator QP (f) and the
convection term v · ∇xf are treated explicitly.

This approach introduces some additional stability requirements in order for
the IMEX schemes to preserve the asymptotic behavior of the equation.

The penalized IMEX Runge-Kutta schemes read

F (i) = fn + ∆t

i−1∑
j=1

ãij

(
1

ε
GP (F (j))− v · ∇xF (j)

)
+ ∆t

ν∑
j=1

aij
1

ε
QP (F (j))

fn+1 = fn + ∆t

ν∑
i=1

w̃i

(
1

ε
GP (F (i))− v · ∇xF (i)

)
+ ∆t

ν∑
j=1

wi
1

ε
QP (F (i)).
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The hydrodynamic limit Asymptotic-Preserving methods for the Boltzmann equation

Properties of the penalized IMEX schemes

We have the following results

Theorem

If the penalized IMEX method is of type A and satisfies

w̃T = wTA−1Ã,

then in the limit ε→ 0, it becomes the explicit RK scheme characterized by
(Ã, w̃, c̃) applied to the limit Euler system. The above condition is automatically
satisfied if the IMEX scheme is GSA. Moreover, in this case we have

lim
ε→0

fn+1 = M [fn+1].

In the case of penalized IMEX schemes of type CK, we can state an analogous
result if in addition consistent initial data are considered.

Giacomo Dimarco (University of Ferrara) Numerical methods and UQ for kinetic equations #3 CEMRACS, 18-22 July, 2022 26 / 54



The hydrodynamic limit Asymptotic-Preserving methods for the Boltzmann equation

L1 error for the density for different second and third order
IMEX schemes on smooth solution I

3rd order WENO space discretization
Fast spectral method for the collision integral.
Time step ∆t = ∆x/(2vmax).
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Figure: Left equilibrium initial data, right non equilibrium initial data, ε = 10−3.
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The hydrodynamic limit Asymptotic-Preserving methods for the Boltzmann equation

L1 error for the density for different second and third order
IMEX schemes on smooth solution II

3rd order WENO space discretization
Fast spectral method for the collision integral.
Time step ∆t = ∆x/(2vmax).
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Figure: Left equilibrium initial data, right non equilibrium initial data, ε = 10−6.
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The diffusive limit

The Boltzmann equation in the drift-diffusion limit
Let consider the Boltzmann equation under the diffusive scaling which describes
the time evolution of electrons inside semiconductor devices

ε ∂tf + v · ∇xf −
q

m
E · ∇vf =

1

ε
Q(f) + εĜ .

Ĝ = Ĝ(t, x, v) models the generation and recombination process, while Q(f) the
collisions, E(t, x) = −∇xΦ(t, x) is the electric field computed through Φ

γ∆xΦ = ρ− ρd,

where γ is the scaled Debye length and ρd(x) is given. Now, defining the total
mass ρ = ρ(t, x) as

ρ =

∫
f(v) dv ,

one can show that when ε→ 0, ρ satisfies the drift-diffusion equation

∂tρ = ∇x · (D∇xρ+ ηρE) + G̃.

where D is the diffusion coefficient defined implicitly in terms of the cross section,
η = qD/mθ is the so-called mobility and G̃ is the integral of the generation
recombination function.
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The diffusive limit

Even and odd parities
Let split the Boltzmann equation into two equations, one for v and one for −v

ε ∂tf + v · ∇xf −
q

m
E · ∇vf =

1

ε
Q(f)(v) + εĜ,

ε ∂tf − v · ∇xf +
q

m
E · ∇vf =

1

ε
Q(f)(−v) + εĜ.

Introducing the so called even parity r and odd parity j defined by

r(t, x, v) =
1

2

(
f(t, x, v) + f(t, x,−v)

)
,

j(t, x, v) =
1

2ε

(
f(t, x, v)− f(t, x,−v)

)
.

Adding and subtracting the two above equations we get

∂tr + v · ∇xj −
q

m
E · ∇vj =

1

ε2
Q(r) + Ĝ,

∂tj +
1

ε2

(
v · ∇xr −

q

m
E · ∇vr

)
= − 1

ε2
λj ,
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The diffusive limit Reformulating the kinetic equations

A suitable reformulation
The scheme should solve, in the limit ε→ 0, the drift-diffusion equation with an
implicit treatment of the diffusion term. This ensures a stability condition for the
time step of the order : ∆t = O(∆x). We add to both sides of the equation for r
the following term

v · ∇x
(
µ
v

λ
· ∇xr

)
,

where µ = µ(ε) is a positive function such that µ(0) = 1. The modified system
reads

∂tr + v · ∇x
(
j + µ

v

λ
· ∇xr

)
− E · ∇vj =

1

ε2
Q(r) + v · ∇x

(
µ
v

λ
· ∇xr

)
+ Ĝ,

∂tj = − 1

ε2

(
v · ∇xr − E · ∇vr

)
− 1

ε2
λj .

The reformulated system can be rewritten in a compact form as

∂tr = f1(r, j) +
1

ε2
Q(r) + f2(r),

∂tj = − 1

ε2
g(r, j)

where
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The diffusive limit Reformulating the kinetic equations

IMEX Runge-Kutta scheme

f1(r, j) = −v · ∇x
(
j + µ

v

λ
· ∇xr

)
+ E · ∇vj + Ĝ,

f2(r) = µ v · ∇x
( v
λ
· ∇xr

)
, g(r, j) = λj + (v · ∇xr − E · ∇vr) .

Now, an IMEX Runge-Kutta scheme reads for the internal stages k = 1, . . . , ν as

R(k) = rn + ∆t

k−1∑
j=1

ãkj f1

(
R(j), J (j)

)
+ ∆t

k∑
j=1

akj

(
1

ε2
Q
(
R(j)

)
+ f2

(
R(j)

))

J (k) = jn − ∆t

ε2

k∑
j=1

akj g
(
R(j), J (j)

)
while the numerical solution is given by

rn+1 = rn + ∆t

ν∑
k=1

w̃kf1

(
R(k), J (k)

)
+ ∆t

ν∑
k=1

wk

(
1

ε2
Q
(
R(k)

)
+ f2

(
R(k)

))

jn+1 = jn − ∆t

ε2

ν∑
k=1

wk g
(
R(k), J (k)

)
.
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The diffusive limit Reformulating the kinetic equations

A linearization technique for the implicit collision term

In the numerical method described the collision operator, which could be costly to compute
or even more to invert, has to be implicitly computed.

A solution is represented by the penalization. We add and subtract to the collision term Q
an operator L and then we combine the implicit and the explicit solvers.

Q(r)︸ ︷︷ ︸
Implicit

→
(
Q(r)− L(r)

)
︸ ︷︷ ︸

Explicit

+ L(r)︸︷︷︸
Implicit

.

Different choices for L are possible : linearized operators, relaxation operators.. Regardless from
the choice of L, we apply the IMEX schemes to get

∂tr = −v · ∇x

(
j + µ

v

λ
· ∇xr

)
+ E · ∇vj +

1

ε2

(
Q(r)− L(r)

)
+ Ĝ︸ ︷︷ ︸

Explicit

+
1

ε2
L(r) + v · ∇x

(
µ
v

λ
· ∇xr

)
︸ ︷︷ ︸

Implicit

,

∂tj = −
1

ε2

(
λ j + v · ∇xr − E · ∇vr

)
︸ ︷︷ ︸

Implicit

.
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The diffusive limit Reformulating the kinetic equations

Properties of the IMEX schemes

Computing implicitly the operator L stabilizes the non-linear collision
operator, without changing the asymptotic behavior of the solution.

This stabilization is not straightforward, in order to stabilize the reformulated
system it is necessary that the coefficients of the scheme used for the time
integration of the linearized collision operator dominate those used for the
time integration of the original operator.

Type A IMEX schemes are Asymptotic Preserving and Asymptotically
Accurate. If in addition they are GSA the distribution function is projected
over the equilibrium at each time step.

Two sufficient conditions for type CK IMEX schemes which guarantee the
AP and AA properties are be GSA and have the initial data are close to the
equilibrium state (we say in this case that the initial data are consistent with
the limit problem).

In this case, we get also sufficient conditions to assure that the distribution
function is projected over the equilibrium state at each time step.
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The diffusive limit Reformulating the kinetic equations

Kinetic regime
We compare a fourth order explicit RK scheme with Nx = 400, with the first,
second and third order IMEX approximations using 50 grid points, ε = 1 and
∆t = ∆tH = 0.5 ε∆x/vmax. The explicit integrator require

∆t = min
{

∆tP = ∆x2

2 , ∆tH = cH ε∆x/vmax

}
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The diffusive limit Reformulating the kinetic equations

Diffusive regime
We compare a fourth order explicit RK scheme with Nx = 400, with the first,
second and third order IMEX approximations using 50 grid points, ε = 0.002 and
∆t = ∆tH = 0.5 ∆x/vmax. The explicit integrator require

∆t = min
{

∆tP = ∆x2

2 , ∆tH = cH ε∆x/vmax

}
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The quasi-neutral limit
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The quasi-neutral limit

Quasi neutral Vlasov Poisson system

We consider the so-called collisional Vlasov equation

∂tf + v · ∇xf +∇xϕ · ∇vf =
1

ε
Q(f).

The electric potential ϕ is coupled to f through the Poisson equation

∆ϕ =
e

ε0
(ρ− 1), with ρ =

∫
fdv.

where e is the electric charge and ε0 is the vacuum permittivity. A classical
rescaling of the Vlasov-Poisson system leads to

γ2∆ϕ = ρ− 1, with ρ =

∫
fdv.

where we denoted by γ =
(
ε0kBT0

e2n0

)1/2

the scaled Debye length, with kB the

Boltzmann constant, with n0 the plasma density scale and T0 the plasma
temperature scale.
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The quasi-neutral limit The reformulated quasi neutral Vlasov Poisson system

The reformulated quasi neutral Vlasov Poisson system
In order to recover an equation for the potential ϕ , we assume that the
quasineutrality constraint is satisfied initially and we derive with respect to time
the continuity equation. This leads to

∂ttρ+ ∂t∇x · (ρu) = 0.

Then, taking the divergence of momentum equation

∇x · ∂t(ρu) +∇2
x : S = ∇x · (−ρ∇xϕ)

where S =
∫
fv ⊗ vdv. Making the difference between the above two equations

∂ttρ−∇2
x : S = ∇x · (ρ∇xϕ).

Finally, using the Poisson equation to replace gives the Reformulated Poisson
Equation (RPE)

− γ2∂tt∆ϕ−∇2
x : S = ∇x · (ρ∇xϕ).

which is equivalent to the original one if initially the Poisson equation and its time
derivative are satisfied.
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The quasi-neutral limit The reformulated quasi neutral Vlasov Poisson system

The limit systems
Thus the reformulated system reads

∂f

∂t
+ v · ∇xf +∇ϕ · ∇vf =

1

ε
Q(f),

−γ2∂tt∆ϕ−∇2
x : S = ∇x · (ρ∇xϕ)

The quasi-neutral limit of Vlasov-Poisson system reads

∂f

∂t
+ v · ∇xf +∇ϕ · ∇vf =

1

ε
Q(f),

−∇2
x : S = ∇x · (ρ∇xϕ).

The Reformulated Vlasov-Poisson system in the fluid limit reads

∂tU +∇x · F (U) = G(U),

−γ2∂tt∆ϕ−∇2
x : S = ∇x · (ρ∇xϕ).

and the Euler-Poisson quasi-neutral system reads

∂tU +∇x · F (U) = G(U),

−∇2
x : S = ∇x · (ρ∇xϕ).
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The quasi-neutral limit The reformulated quasi neutral Vlasov Poisson system

A first order splitting

The initial condition satisfies the quasi-neutral limit: ρn = 1 and ∇x · (ρu)n = 0

f∗ = fn −∆t∇xϕ · ∇vfn,
fn+1 = f∗ −∆t v · ∇xf∗.

This gives for the density and the momentum

ρ∗ = ρn = 1,

(ρu)∗ = (ρu)n + ∆tρn∇xϕ,

so that ∇x · (ρu)∗ = ∆t∇x · (ρn∇xϕ). The second step gives

ρn+1 = ρ∗ −∆t∇x · (ρu)∗ = ρn −∆t2∇x · (ρn∇xϕ),

(ρu)n+1 = (ρu)∗ −∆t∇x · S∗.
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The quasi-neutral limit The reformulated quasi neutral Vlasov Poisson system

First order splitting and high order splitting

And, then

∇x · (ρu)n+1 = ∇x · (ρu)∗ −∆t∇2
x : S∗ = ∆t(∇x · (ρn∇xϕ)−∇2

x : S∗).

This means that in principle, we can choose an electric potential which
ensures that ∇x · (ρu)n+1 = 0,

This is the case if ϕ is the solution of ∇x · (ρn∇xϕ) = ∇2
x : S∗.

However, in the general case, there is no choice of the electric potential
which ensures the propagation of the quasi-neutral state ρn+1 = ρn = 1.

If we repeat the same analysis for a second order splitting as for instance the
Strang splitting we realize that quasi neutrality is lost for any choice of the
initial step.

There is no easy solution for the construction of high order schemes
preserving quasi-neutral states when splitting methods are used.

Giacomo Dimarco (University of Ferrara) Numerical methods and UQ for kinetic equations #3 CEMRACS, 18-22 July, 2022 43 / 54



The quasi-neutral limit The reformulated quasi neutral Vlasov Poisson system

A new stable scheme for quasi neutrality

Let us first consider the quasi-neutral system and assume quasi-neutral initial
conditions i.e. ρn = 1 and ∇x · (ρu)n = 0, then we have

fn+1 = fn −∆t v · ∇xfn −∆t∇xϕn+1 · ∇vfn +
∆t ν

ε
(M [fn+1]− fn+1),

∇x · (ρn∇xϕn+1) = ∇2
x : Sn.

Taking the velocity moments leads to

ρn+1 = ρn −∆t∇x · (ρu)n,

(ρu)n+1 = (ρu)n −∆t∇x · Sn + ∆tρn∇xϕn+1,

which gives

ρn+1 = ρn, and ∇x · (ρu)n+1 = −∆t(∇2
x : Sn −∇x · (ρn∇xϕn+1)) = 0.

Thus quasi-neutrality constraint is propagated in time.
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The quasi-neutral limit The reformulated quasi neutral Vlasov Poisson system

Reformulation of the new scheme
Now, let conside the reformulated BGK-Vlasov-Poisson system and

λ2 ∆ϕn+1 − 2∆ϕn + ∆ϕn−1

∆t
+ ∆t∇x ·

(
ρn∇xϕn+1

)
= ∆t∇2

x : Sn, ∀ n ≥ 2.

Initially two resolutions of the constrained Poisson equation must be done to
compute ϕn+1, ϕn.
To bypass this limitation, let us remark that the following reformulation holds

λ2 ∆ϕn+1 − 2∆ϕn + ∆ϕn−1

∆t
− ρn+2 − 2 ρn+1 + ρn

∆t
= 0.

So, we can write
λ2 ∆ϕn+1 = ρn+2 − 1.

By rearranging the above equation we finally get

fn+1 = fn −∆t v · ∇xfn −∆t∇xϕn+1 · ∇vfn +
∆t ν

ε
(M [fn+1]− fn+1),

∇x ·
[
(λ2 + ∆t2ρn)∇xϕn+1

]
= ρn+1 − 1−∆t∇x · (ρu)n + ∆t2∇2

x : Sn.
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The quasi-neutral limit The reformulated quasi neutral Vlasov Poisson system

Analysis of the new stable scheme

Let us now analyze the behavior of the above scheme.

If we let λ→ 0 we immediately get, if the initial data are consistent with the
quasi neutral limit that the scheme is AP in the quasi neutral limit.

On the other hand if λ = 0 at t = 0, but the initial data are not consistent
with the quasi neutral limit we get

ρ1 = ρ0 −∆t∇x · (ρu)0,

and

∇x · (ρu)1 = ∇x · (ρu)0 −∆t∇2
x : S0 + ∆t

(
∇2
x : S0 + 2ρ1−ρ0−1

∆t2

)
,

= ∇x · (ρu)0 −∇x · (ρu)0 + ρ1−1
∆t = ρ1−1

∆t .
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The quasi-neutral limit The reformulated quasi neutral Vlasov Poisson system

Analysis of the new stable scheme II

The second time step leads to

ρ2 = ρ1 −∆t∇x · (ρu)1 = ρ1 −∆t
ρ1 − 1

∆t
= 1,

and

∇x · (ρu)2 = ∇x · (ρu)1 −∆t∇2
x : S1 + ∆t

(
∇2
x : S1 + 2ρ2−ρ1−1

∆t2

)
,

= ∇x · (ρu)1 −∇x · (ρu)1 + ρ2−1
∆t = ρ2−1

∆t = 0,

Moreover, if at a given instant of time tn, the Debye length becomes zero, at
the time step tn+2 the quasi neutrality is obtained and then propagated for
all times.

A linear stability result for above described scheme in the fluid limit ε→ 0
can be done. which proves that the scheme proposed is stable for all values
of λ to small perturbations of the quasi neutral equilibrium state.
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Asymptotic Preserving methods and domain decomposition

The Vlasov-BGK-Poisson system
We consider a two species plasma: x ∈ Ω ⊂ Rd, v ∈ Rd and time t > 0

∂tfi + v · ∇xfi + E · ∇vfi =
1

εi
(Mfi − fi),

∂tfe + v · ∇xfe − E · ∇vfe =
1

εe
(Mfe − fe),

together with a Poisson equation for the electric potential

−γ2∆ϕ = ρi − ρe

with γ the Debye length and E = −∇xϕ. We divide for each species the physical
domain Ω into BKt , BHt and Bt and accordingly we define a cut-off function
h = h(x, t) ∈ C(R) for each of the two species

h(x, t) =

 1, if x ∈ BKt
0, if x ∈ BHt

0 ≤ h(x, t) ≤ 1, if x ∈ Bt
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Asymptotic Preserving methods and domain decomposition

The coupling strategy

Let us set for all x ∈ Ω define two new functions for each species{
fK = h f
fH = (1− h) f.

We then have for the time derivative of the defined new functions

∂tfK = ∂t(hf) = f ∂th+ h∂tf

∂tfH = ∂t

(
(1− h)f

)
= −f ∂th+ (1− h)∂tf

which give using the Vlasov-BGK equation

∂tfK + h v · ∇xfK + h v · ∇xfH + E · ∇vfK = h
ε

(
Mf − f

)
+ f∂th,

∂tfH + (1− h) v · ∇xfH + fK + E · ∇vfH = 1−h
ε

(
Mf − f

)
− f∂th
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Asymptotic Preserving methods and domain decomposition

The coupling strategy and the macroscopic equations

Suppose now that in some part of the domain the ions or respectively the
electrons are in equilibrium while in rest of the domain we are far from it

This permits to replace fH by MfH for one of both species at the same time.

We then get a system for the moments of MfH : (ρH , ρHuH , EH) which reads

∂tρH + (1− h)∇x · (ρHuH) = −(1− h)∇x ·
(∫

Rd

vfK dv

)
− g∂th,

∂t(ρHuH) + (1− h)∇x · (ρHuH ⊗ uH + pHI) = ρHE

−(1− h)∇x ·
(∫

Rd

v2fK dv

)
− gu∂th,

∂tEH + (1− h)∇x ·
(

(EH + pH)uH

)
= ρHuHE

−(1− h)∇x ·
(∫

Rd

v
|v|2

2
fK dv

)
− E∂th,
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Asymptotic Preserving methods and domain decomposition

Key points

Correctly dividing the domain is a crucial step for this method:

• accuracy: use proper model everywhere (“positivity”) issues

• efficiency: kinetic only if necessary, computational speedup

• dynamically generate kinetic or hydrodynamic regions

• coupling functions for different species evolve independently
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Asymptotic Preserving methods and domain decomposition

Test 1 : Temperature for one specie expansion
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Figure: Temperature profiles at different times.
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Asymptotic Preserving methods and domain decomposition

Remarks and further reading

IMEX schemes represent a powerful tool for the time discretization of partial
differential equations where convection and stiff sources/diffusion are present.

However they are not a universal cure for all problems. It is not difficult to
imagine a situation where a fully explicit (or implicit) method is preferable.

The most critical case is the application to (nonlinear) PDEs where the stiff
scales originate a model reduction. In such cases AP methods are essential in
order to capture the correct physical behavior.

The material for this part is mostly based on the recent survey
G.D., L. Pareschi, Acta Numerica, 2014.

Further surveys on AP schemes can be found in

I S. Jin, ‘Asymptotic preserving (AP) schemes for multiscale kinetic and
hyperbolic equations: a review.’, Riv. Mat. Univ. Parma 3, (2012), 177–216.

I P. Degond, ‘Asymptotic-preserving schemes for fluid models of plasmas’,
Panoramas et Syntheses, (2014).
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