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Introduction and motivation

The ongoing COVID-19 pandemic has led to a strong
interest from researchers around the world in building
and studying new epidemiological models capable of
describing the progress of the epidemic1

Most classical compartmental models represent the
spread of the epidemic only concerning the temporal
evolution of the disease among the population, but not
taking into account spatial effects

Spatial effects can be modeled using networks of
interacting components (cities, regions, ...) or more in
general by considering a fully two-dimensional space
dynamics

Bellomo et al. ’20; Buonuomo, Della Marca ’20; Colombo et al. ’20; Gatto et a al.
2020; Giordano et al. ’20; Peirlinck et al. ’20; Tang et al. 2020; Viguerie et al. ’20;
Vollmer at al. ’20; and many many more....
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Introduction and motivation

Additionally, any realistic data-driven model must take into account the
large uncertainty in the values reported by official sources, such as the
amount of infectious individuals

Detected cases (left) and deaths (right) in Italy from the beginning of the pandemic
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Introduction and motivation

The SIR model2

Susceptible
(S)

Infected
(I)

Recovered
(R)

dS

dt
= −βSI

N
dI

dt
= β

SI

N
− γI

dR

dt
= γI

N = S + I + R ⇒ total population (normalized N = 1)

β, γ ⇒ transmission and recovery rates

R0 = β/γ ⇒ basic reproduction number

Deterministic model with no spatial information on the epidemic spread
2Kermack, McKendrick ’27; Hethcote ’00
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Introduction and motivation

The compartmentalization game

More realistic models involve additional compartmentalizations depending
on the specific characteristic of the infectious disease3

Matching models with available data may be a real challenge (data-driven
models). Introducing some degree of uncertainty into the data is an
essential feature of analyzing realistic scenarios.

3Hethcote ’00; Gatto et al. ’20; Giordano et al. ’20
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Introduction and motivation

The parabolic SIR model4

∂S

∂t
= −βSI +

∂

∂x

(
DS

∂S

∂x

)
∂I

∂t
= βSI − γI +

∂

∂x

(
DI
∂I

∂x

)
∂R

∂t
= γI +

∂

∂x

(
DR

∂R

∂x

)
S = S(x , t), I = I (x , t), R = R(x , t), x ∈ Ω ⊂ R
DS , DI , DR ⇒ self-diffusion coefficients

DS > DI (population dynamics), DI > DS = 0 (infection dynamics)

the diffusion coefficients might also be space-dependent (or nonlinear)

The parabolic character of the model may lead the disease to propagate
instantaneously over large distances

4Webb ’86; Murray ’01; Berestycki, Roquejoffre, Rossi ’21
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A multiscale kinetic transport model

A compartmental kinetic transport model for commuters
We consider a population of commuters at position x ∈ Ω moving with velocity
directions v ∈ S1. The kinetic densities of the commuters satisfy the transport equations

∂fS
∂t

+∇x · (vS fS) = −FI (fS , IT )− FA(fS ,AT ) +
1

τS
(S − fS)

∂fE
∂t

+∇x · (vE fE ) = FI (fS , IT ) + FA(fS ,AT )− afE +
1

τE
(E − fE )

∂fI
∂t

+∇x · (vI fI ) = aσfE − γI fI +
1

τI
(I − fI ) (1)

∂fA
∂t

+∇x · (vAfA) = a(1− σ)fE − γAfA +
1

τA
(A− fA)

∂fR
∂t

+∇x · (vR fR) = γI fI + γAfA +
1

τR
(R − fR)

The number of Susceptible, Exposed, Infected and Recovered is

S(x , t) =
1

2π

∫
S1

fS(x , v , t) dv , E(x , t) =
1

2π

∫
S1

fE (x , v , t) dv , R(x , t) =
1

2π

∫
S1

fR(x , v , t) dv ,

I (x , t) =
1

2π

∫
S1

fI (x , v , t) dv , A(x , t) =
1

2π

∫
S1

fA(x , v , t) dv ,
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A multiscale kinetic transport model

A diffusion compartmental model for non commuters

The unknowns Su(x , t), Eu(x , t), Iu(x , t), Au(x , t), Ru(x , t) are the density fractions of
the non-commuters who, by assumption, move only on an urban scale and satisfy

∂Su

∂t
= −FI (Su, IT )− FA(Su,AT ) +∇x · (Du

S∇xSu)

∂Eu

∂t
= FI (Su, IT ) + FA(Su,AT )− aEu +∇x · (Du

E∇xEu)

∂Iu
∂t

= aσEu − γI Iu +∇x · (Du
I ∇x Iu) (2)

∂Au

∂t
= a(1− σ)Eu − γAAu +∇x · (Du

A∇xAu)

∂Ru

∂t
= γI Iu + γAAu +∇x · (Du

R∇xRu).

The velocities vi = λi (x)v in the kinetic model, the diffusion coefficients Du
i = Du

i (x),
i ∈ {S ,E , I ,A,R} and the relaxation times τi = τi (x), i ∈ {S ,E , I ,A,R} take into
account the heterogeneity of geographical areas.
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A multiscale kinetic transport model

The coupled model

The total densities are defined by

ST (x , t) = S(x , t)+Su(x , t), ET (x , t) = E(x , t)+Eu(x , t), RT (x , t) = R(x , t)+Ru(x , t),

IT (x , t) = I (x , t) + Iu(x , t), AT (x , t) = A(x , t) + Au(x , t).

The transmission of the infection is governed by the incidence functions FI (·, IT ) and
FA(·,AT ). We assume local interactions to characterize the nonlinear incidence functions

FI (g , IT ) = βI
gI pT

1 + κI IT
, FA(g ,AT ) = βA

gAp
T

1 + κAAT
,

Alternative incidence functions are

FI (g , IT ) = βI
gI pT

1 + κI

∫
Ω̄
IT dx

, FA(g ,AT ) = βA
gAp

T

1 + κA

∫
Ω̄
AT dx

,

βI = βI (x , t) and βA = βA(x , t) characterize the contact rates of highly symptomatic
and mildly symptomatic/asymptomatic infectious individuals.
κI = κI (x , t) and κA = κA(x , t) are the incidence damping coefficients based on the
self-protective behavior.
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A multiscale kinetic transport model

Commuters behavior in urban areas
A diffusion behavior can be recovered when τS,I ,R → 0 while the diffusion coefficients

DS =
1

2
λ2
SτS , DE =

1

2
λ2
EτE , DI =

1

2
λ2
I τI , DA =

1

2
λ2
AτA, DR =

1

2
λ2
RτR .

Let us introduce the flux functions

JS =
λS

2π

∫
S1

vfS(x , v , t) dv , JE =
λE

2π

∫
S1

vfE (x , v , t) dv , JI =
λI

2π

∫
S1

vfI (x , v , t) dv

JA =
λA

2π

∫
S1

vfA(x , v , t) dv , JR =
λR

2π

∫
S1

vfR(x , v , t) dv .

Integrating system (1) in v we see that the macroscopic densities of commuters obey to

∂S

∂t
+∇x · JS = −FI (S , IT )− FA(S ,AT )

∂E

∂t
+∇x · JE = FI (S , IT ) + FA(S ,AT )− aE

∂I

∂t
+∇x · JI = aσE − γI I

∂A

∂t
+∇x · JA = a(1− σ)E − γAA

∂R

∂t
+∇x · JR = γI I + γAA
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A multiscale kinetic transport model

Diffusion limit
The flux functions satisfy

∂JS
∂t

+∇x ·
(
λ2
S

2π

∫
S1

((v ⊗ v)fS) dv

)
= −FI (JS , IT )− FA(JS ,AT )− 1

τS
JS

∂JE
∂t

+∇x ·
(
λ2
E

2π

∫
S1

((v ⊗ v)fE ) dv

)
=

λE

λS
(FI (JS , IT ) + FA(JS ,AT ))− aJE −

1

τE
JE

∂JI
∂t

+∇x ·
(
λ2
I

2π

∫
S1

((v ⊗ v)fI ) dv

)
=

λI

λE
aσJE − γIJI −

1

τI
JI

∂JA
∂t

+∇x ·
(
λ2
A

2π

∫
S1

((v ⊗ v)fA) dv

)
=

λA

λE
a(1− σ)JE − γAJA −

1

τA
JA

∂JR
∂t

+∇x ·
(
λ2
R

2π

∫
S1

((v ⊗ v)fR) dv

)
=

λR

λI
γIJI +

λR

λA
γAJA −

1

τR
JR .

Letting τS,I ,R → 0, we get from the r.h.s. in (1)

fS = S , fE = E , fI = I , fA = A, fR = R,

and

JS = −DS∇xS , JE = −DE∇xE , JI = −DI∇x I , JA = −DA∇xA, JR = −DR∇xR,
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A multiscale kinetic transport model

Diffusion limit II

Thus, the following diffusion system for the population of commuters is obtained

∂S

∂t
= −FI (S , IT )− FA(S ,AT ) +∇x · (DS∇xS)

∂E

∂t
= FI (S , IT ) + FA(S ,AT )− aE +∇x · (DE∇xE)

∂I

∂t
= aσE − γI I +∇x · (DI∇x I ) (3)

∂A

∂t
= a(1− σ)E − γAA +∇x · (DA∇xA)

∂R

∂t
= γI I + γAA +∇x · (DR∇xR)

The capability of the model to account for different regimes, hyperbolic or parabolic,
accordingly to the space dependent relaxation times τi , i ∈ {S ,E , I ,A,R}, makes it
suitable for describing the dynamics of human beings.
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A multiscale kinetic transport model

Including data uncertainty

To extend the model to the case of uncertainties, let us suppose that the
population depend on an additional random vector z = (z1, . . . , zd)T ∈ Ωz ⊆ Rd .

Possible sources of uncertainty are due to lack of information on the actual
number of infected or specific epidemic characteristics.

This gives the following high-dimensional unknowns

fS(x , v , t, z), fE (x , v , t, z), fI (x , v , t, z), fA(x , v , t, z), fR(x , v , t, z).

Su(x , t, z), Eu(x , t, z), Iu(x , t, z),Au(x , t, z),Ru(x , t, z).

Notice that, the structure of the model does not change, i.e. there is no direct
variation of the unknowns with respect to z .

One common choice is to consider the parameters acting inside the incidence
function to have a dependence of the form

βI = βI (x , t, z), βA = βA(x , t, z).

kI = kI (x , t, z), kA = kA(x , t, z),
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A numerical method capturing the diffusive limit

The numerical method

For the commuters, the numerical scheme for the deterministic case is based on a
discrete ordinate method in velocity in which the even and odd parity formulation
is employed 5.

Then a finite volume method working on two-dimensional unstructured meshes 6

approximate the discrete ordinate formulation.

The full discretization of the equations is obtained through the use of suitable
IMEX Runge-Kutta schemes 7.

The above choices permit to obtain a scheme which consistently captures the
diffusion limit from the kinetic system when the scaling parameters τS,I ,R tends
toward zero.

The discretization of the stochastic part is performed by standard generalized
Polynomial Chaos (gPC) expansion technique 8.

5Jin-Pareschi ’00, Klar ’98, D.-Pareschi-Rispoli ’14
6Boscheri-D. ’20
7Boscarino-Pareschi-Russo ’13, D.-Pareschi-Rispoli ’14
8Xiu ’10
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A numerical method capturing the diffusive limit

Even and odd parities formulation
We rewrite the commuters system denoting v = (η, ξ) ∈ S1. This gives

r
(1)
i (ξ, η) =

1

2
(fi (ξ,−η) + fi (−ξ, η)), r

(2)
i (ξ, η) =

1

2
(fi (ξ, η) + fi (−ξ,−η))

while for the scalar fluxes one has

j
(1)
i (ξ, η) =

λi

2
(fi (ξ,−η) + fi (−ξ, η)), j

(2)
i (ξ, η) =

λi

2
(fi (ξ, η) + fi (−ξ,−η))

with i = S ,E , I ,A,R. An equivalent formulation with respect to (1) can then be
obtained thanks to this change of variables

∂r
(1)
S

∂t
+ ξ

∂j
(1)
S

∂x
− η

∂j
(1)
S

∂y
= −FI (r

(1)
S , IT )− FA(r

(1)
S ,AT ) +

1

τS

(
S − r

(1)
S

)
∂r

(2)
S

∂t
+ ξ

∂j
(2)
S

∂x
+ η

∂j
(2)
S

∂y
= −FI (r

(2)
S , IT )− FA(r

(2)
S ,AT ) +

1

τS

(
S − r

(2)
S

)
∂r

(1)
E

∂t
+ ξ

∂j
(1)
E

∂x
− η

∂j
(1)
E

∂y
= FI (r

(1)
S , IT ) + FA(r

(1)
S ,AT )− ar

(1)
E +

1

τE

(
E − r

(1)
E

)
∂r

(2)
E

∂t
+ ξ

∂j
(2)
E

∂x
+ η

∂j
(2)
E

∂y
= FI (r

(2)
S , IT ) + FA(r

(2)
S ,AT )− ar

(2)
E +

1

τE

(
E − r

(2)
E

)
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A numerical method capturing the diffusive limit

Even and odd parities formulation II

∂r
(1)
I

∂t
+ ξ

∂j
(1)
I

∂x
− η

∂j
(1)
I

∂y
= aσr

(1)
E − γI r

(1)
I +

1

τI

(
I − r

(1)
I

)
∂r

(2)
I

∂t
+ ξ

∂j
(2)
S

∂x
+ η

∂j
(2)
I

∂y
= aσr

(2)
E − γI r

(2)
I +

1

τI

(
I − r

(2)
I

)
∂r

(1)
A

∂t
+ ξ

∂j
(1)
A

∂x
− η

∂j
(1)
A

∂y
= a(1− σ)r

(1)
E − γAr

(1)
A +

1

τA

(
A− r

(1)
A

)
∂r

(2)
A

∂t
+ ξ

∂j
(2)
A

∂x
+ η

∂j
(2)
A

∂y
= a(1− σ)r

(2)
E − γAr

(2)
A +

1

τA

(
A− r

(2)
A

)
∂r

(1)
R

∂t
+ ξ

∂j
(1)
R

∂x
− η

∂j
(1)
R

∂y
= γI r

(1)
I + γAr

(1)
A +

1

τR

(
R − r

(1)
R

)
∂r

(2)
R

∂t
+ ξ

∂j
(2)
R

∂x
+ η

∂j
(2)
R

∂y
= γI r

(2)
I + γAr

(2)
A +

1

τR

(
R − r

(2)
R

)
In addition we have
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A numerical method capturing the diffusive limit

Even and odd parities formulation III
∂j

(1)
S

∂t
+ λ

2
Sξ
∂r

(1)
S

∂x
− λ2

Sη
∂r

(1)
S

∂y
= −FI (j

(1)
S
, IT )− FA(j

(1)
S
, AT )−

1

τS
j
(1)
S

∂j
(2)
S

∂t
+ λ

2
Sξ
∂r

(2)
S

∂x
+ λ

2
Sη
∂r

(2)
S

∂y
= −FI (j

(2)
S
, IT )− FA(j

(1)
S
, AT )−

1

τS
j
(2)
S

∂j
(1)
E

∂t
+ λ

2
E ξ
∂r

(1)
E

∂x
− λ2

Eη
∂r

(1)
E

∂y
=
λE

λS

(
FI (j

(1)
S
, IT ) + FA(j

(1)
S
, AT )

)
− aj

(1)
E
−

1

τE
j
(1)
E

∂j
(2)
E

∂t
+ λ

2
E ξ
∂r

(2)
E

∂x
+ λ

2
Eη
∂r

(2)
E

∂y
=
λE

λS

(
FI (j

(2)
S
, IT ) + FA(j

(2)
S
, AT )

)
− aj

(2)
E
−

1

τE
j
(2)
E

∂j
(1)
I

∂t
+ λ

2
I ξ
∂r

(1)
I

∂x
− λ2

I η
∂r

(1)
I

∂y
=
λI

λE

aσj
(1)
E
− γI j

(1)
I
−

1

τI
j
(1)
I

∂j
(2)
I

∂t
+ λ

2
I ξ
∂r

(2)
I

∂x
+ λ

2
I η
∂r

(2)
I

∂y
=
λI

λE

aσj
(2)
E
− γI j

(2)
I
−

1

τI
j
(2)
I
.

∂j
(1)
A

∂t
+ λ

2
Aξ
∂r

(1)
A

∂x
− λ2

Aη
∂r

(1)
A

∂y
=
λA

λE

a(1− σ)j
(1)
E
− γAj

(1)
A
−

1

τA
j
(1)
A

∂j
(2)
A

∂t
+ λ

2
Aξ
∂r

(2)
A

∂x
+ λ

2
Aη
∂r

(2)
A

∂y
=
λA

λE

a(1− σ)j
(2)
E
− γAj

(2)
A
−

1

τA
j
(2)
A

∂j
(1)
R

∂t
+ λ

2
Rξ
∂r

(1)
R

∂x
− λ2

Rη
∂r

(1)
R

∂y
=
λR

λI

γI j
(1)
I

+
λR

λA

γAj
(1)
A
−

1

τR
j
(1)
R

∂j
(2)
R

∂t
+ λ

2
Rξ
∂r

(2)
R

∂x
+ λ

2
Rη
∂r

(2)
R

∂y
=
λR

λI

γI j
(2)
I

+
λR

λA

γAj
(2)
A
−

1

τR
j
(2)
R
.
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A numerical method capturing the diffusive limit

Space discretization on unstructured grids
We consider a spatial two-dimensional computational domain Ω discretized by a
set of non overlapping polygons Pi , i = 1, . . .Np.

Each element Pi exhibits an arbitrary number NSi of edges eji . The boundary of

the cell is given by ∂Pi =
NSi⋃
j=1

eji .

The governing equations discretized by means of a finite volume scheme

∂Q

∂t
+∇x · F(Q) = S(Q), (x , y) ∈ Ω ⊂ R2, t ∈ R+

0 ,

where Q is the vector of conserved variables

Q =
(
r

(1)
i , r

(2)
i , j

(1)
i , j

(2)
i

)>
, i = S ,E , I ,A,R

while F(Q) is the linear flux tensor and S(Q) represents the stiff source term.

A first order in time finite volume method is obtained by

Qn+1
i = Qn

i −
∆t

|Pi |
∑

Pj∈NSi

∫
eij

Fn
ij · nij d l +

∫
Pi

Sn
i dx.
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A numerical method capturing the diffusive limit

Space discretization on unstructured grids II

Higher order in space is then achieved by substituting the cell averages by
piecewise high order polynomials: wi (x).

These are obtained from the given cell averages relying on a second order Central
WENO (CWENO) reconstruction procedure.

The numerical flux function Fij · nij is a simple and robust local Lax-Friedrichs flux

Fij · nij =
1

2

(
F(w+

i,j) + F(w−i,j)
)
· nij −

1

2
smax

(
w+

i,j − w−i,j
)
,

where w+
i,j ,w

−
i,j are the high order boundary extrapolated data evaluated through

the CWENO reconstruction procedure.

In the diffusion limit, i.e. as (τS , τI , τR)→ 0, the source term S(Q) becomes stiff,
therefore in order to avoid prohibitive time steps we need to discretize the
commuters system partly implicitly.

A second order IMEX method which preserves the asymptotic limit given by the
diffusion equations is proposed.
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A numerical method capturing the diffusive limit

Time integration
We consider again system (1) formulated using the parities. We assume τS,I ,R = τ and
rewrite it in partitioned form as

∂u

∂t
+
∂f(v)

∂x
+
∂g(v)

∂y
= E(u) +

1

τ
(U− u)

∂v

∂t
+ Λ2 ∂f(u)

∂x
+ Λ2 ∂g(u)

∂y
= E(v)− 1

τ
v,

where

u =
(
r

(1)
S , r

(2)
S , r

(1)
E , r

(2)
E , r

(1)
I , r

(2)
I , r

(1)
A , r

(2)
A , r

(1)
R , r

(2)
R

)T
,

v =
(
j

(1)
S , j

(2)
S , j

(1)
E , j

(2)
E , j

(1)
I , j

(2)
I , j

(1)
A , j

(2)
A , j

(1)
R , j

(2)
R

)T
,

f(v) = ξv, g(v) = ηJv, J = diag{−1, 1,−1, 1,−1, 1,−1, 1,−1, 1},

E(u) =
(
−FI (r

(i)
S , IT )− FA(r

(i)
S ,AT ),FI (r

(i)
S , IT ) + FA(r

(i)
S ,AT )− ar

(i)
E , aσr

(i)
E − γI r

(i)
I ,

a(1− σ)r
(i)
E − γAr

(i)
A , γI r

(i)
I γAr

(i)
A

)T
, i = 1, 2

U = (S , S ,E ,E , I , I ,A,A,R,R)T , Λ = diag{λS , λS , λE , λE , λI , λI , λA, λA, λR , λR},

and f(u), g(u), E(v) are defined similarly.
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A numerical method capturing the diffusive limit

Time integration II
The Implicit-Explict Runge-Kutta (IMEX-RK) approach applied to the partitioned
system reads as

u(k) = un −∆t
k∑

j=1

akj

(
∂f(v(j))

∂x
+
∂g(v(j))

∂y
− 1

τ

(
U(j) − u(j)

))
+ ∆t

k−1∑
j=1

ãkjE
(

u(j)
)

v(k) = vn −∆t
k−1∑
j=1

ãkj

(
Λ2 ∂f(u(j))

∂x
+ Λ2 ∂g(u(j))

∂y
− E(v(j))

)
+ ∆t

k∑
j=1

akj
1

τ
v(j),

where u(k), v(k) are the so-called internal stages. The numerical solution reads

un+1 = un −∆t
s∑

k=1

bk

(
∂f(v(k))

∂x
+
∂g(v(k))

∂y
− 1

τ

(
U(k) − u(k)

))
+ ∆t

s∑
k=1

b̃kE
(

u(k)
)

vn+1 = vn −∆t
s∑

k=1

b̃k

(
Λ2 ∂f(u(k))

∂x
+ Λ2 ∂g(u(k))

∂y
− E(v(k))

)
+ ∆t

s∑
k=1

bk
1

τ
v(k).

Furthermore, we choose the Runge-Kutta scheme in such a way that the following
relations hold true

akj = bj , j = 1, . . . , s, ãkj = b̃j , j = 1, . . . , s − 1.
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A numerical method capturing the diffusive limit

Numerical diffusion limit

Assuming for simplicity DS,I ,R independent from space, we can write

τv(k) = τvn −∆t
k−1∑
j=1

ãkj

(
τΛ2 ∂f(u(j))

∂x
+ τΛ2 ∂g(u(j))

∂y
− τE(v(j))

)
+ ∆t

k∑
j=1

akjv
(j),

therefore the limit τ → 0 yields

k∑
j=1

akjv
(j) =

k−1∑
j=1

ãkj

(
2D

∂f(U(j))

∂x
+ 2D

∂g(U(j))

∂y

)
,

where we used u(j) = U(j) as τ → 0. Using now the same identity u(j) = U(j) we get

U(k) = Un −∆t
k∑

j=1

akj

(
∂f(v(j))

∂x
+
∂g(v(j))

∂y

)
+ ∆t

k−1∑
j=1

ãkjE
(

U(j)
)
,
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A numerical method capturing the diffusive limit

Numerical diffusion limit II
Thanks to the definitions of f and g we get

U(k) =Un − 2∆tD
k−1∑
j=1

ãkj

(
ξ2 ∂

2U(j)

∂x2
+ 2ξηJ

∂2U(j)

∂x∂y
+ η2 ∂

2U(j)

∂y 2

)

+ ∆t
k−1∑
j=1

ãkjE
(

U(j)
)
.

Finally, integrating over the velocity field one has

S (k) =Sn −∆tDS

k−1∑
j=1

ãkj

(
∂2S (j)

∂x2
+
∂2S (j)

∂y 2

)
−∆t

k−1∑
j=1

ãkjFI (S
(j), I

(j)
T ) + FA(S (j),A

(j)
T ),

R(k) =Rn −∆tDR

k−1∑
j=1

ãkj

(
∂2R(j)

∂x2
+
∂2R(j)

∂y 2

)
+ ∆t

k−1∑
j=1

ãkjγI I
(j) + γAA

(j)

and the same for A(k), I (k) and E (k).
Thus, the internal stages correspond to the stages of the explicit scheme applied to the
reaction-diffusion system. Moreover, the last stage is equivalent to the numerical
solution.
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A numerical method capturing the diffusive limit

Stochastic collocation method

We restrict to the case in which there is only one stochastic variable z in the
system.

The probability density function is supposed known. The approximate solution for
the commuters QM(x , v , t, z) and the non commuters Qu

M(x , t, z) are represented
as truncations of the series of the orthonormal polynomials, i.e.

QM(x , v , t, z) =
M∑
j=1

Q̂j(x , v , t)φj(z), Qu
M(x , t, z) =

M∑
j=1

Q̂u
j (x , t)φj(z)

where M is the number of terms of the truncated series and φj(z) are orthonormal
polynomials, with respect to the measure ρz(z) dz .

The expansion coefficients are obtained by

Q̂j(x , v , t) =

∫
Γ

Q(x , v , t, z)φj(z) ρz(z) dz , j = 1, . . . ,M.

Q̂u
j (x , t) =

∫
Γ

Qu(x , t, z)φj(z) ρz(z) dz , j = 1, . . . ,M.
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A numerical method capturing the diffusive limit

Stochastic collocation method II

The exact integrals for the expansion coefficients are replaced by a suitable
quadrature formula characterized by the set {zn,wn}Np

n=1,zn the collocation point,
wn the corresponding weight, Np the number of quadrature points

Q̂j(x , v , t) ≈
Np∑
n=1

Q(x , v , t, zn)φj(zn)wn, Q̂u
j (x , t) ≈

Np∑
n=1

Qu(x , t, zn)φj(zn)wn,

where Q(x , v , t, zn) and Qu(x , t, zn) with n = 1, . . . ,Np are the solutions of the
problem evaluated at the n-th collocation point.

All quantities of interest concerning the random variable can then be computed.
For example, the expectations are approximated as

E [Q] ≈ E [QM ] =

∫
Γ

QM(x , v , t, z) ρz(z) dz ≈
Np∑
n=1

Q(x , v , t, zn)wn,

E [Qu] ≈ E [Qu
M ] =

∫
Γ

Qu
M(x , t, z) ρz(z) dz ≈

Np∑
n=1

Qu(x , t, zn)wn.
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Application to the emergence of COVID-19 in Italy
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Application to the emergence of COVID-19 in Italy

Application to the spread of COVID-19 in a realistic geographical scenario

COVID-19 outbreak in Emilia-Romagna (Italy), 1-10 March 2020

From \To PC PR RE MO BO FE RA FC RN C [%]
PC - 4178 - - - - - - - 1.45
PR 1707 - 5142 - - - - - - 1.51
RE - 8969 - 19841 - - - - - 5.42
MO - - 11488 - 13034 1173 - - - 3.63
BO - - - 6842 - 5983 3887 - - 1.64
FE - - - 2682 16865 - 2610 - - 6.80
RA - - - - 9808 1016 - 9211 - 5.14
FC - - - - - 6646 - 6944 3.41
RN - - - - - - 6075 - 1.79
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Application to the emergence of COVID-19 in Italy

Population
Initial distribution of a generic population f (x , y) assigned to each main city c

f (x , y) =
1

2πrc
e
− (x−xc )2+(y−yc )2

2r2
c fc

where rc is the radius of the urban area.

Model calibration
Using the connection matrix and the road distances for the traveling speed λi ,
i ∈ {S ,E , I ,R}
Using the corresponding SEIR ODE model for the epidemic parameters
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Application to the emergence of COVID-19 in Italy
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Time evolution of total infected and recovered population (R + I ) compared against
experimental data for the region Emilia-Romagna. Right: time evolution of total
infected and recovered population (R + I ) compared against experimental data.
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Application to the emergence of COVID-19 in Italy

Distribution of exposed population E including asymptomatic at times t = 0, t = 2,
t = 4 (top), t = 6, t = 8 and t = 10 (bottom).
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Application to the emergence of COVID-19 in Italy

Distribution of total population (S + Su) + (E + Eu) + (I + Iu) + (R + Ru) at initial time
t = 0 (left) and at the final time t = 10 (right). The model bring back at regular

intervals from day to day the situation to the initial condition in which all commuters
and non-commuters are located in the main urban areas.
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Application to the emergence of COVID-19 in Italy

The Lombardy network
From/To LO MI BG BS CR Total commuters

LO
– 56717 – – 13712 70429

(80.53%) (19.47%) (30.97%)

MI
55397 – 74168 26709 21622 177896

(31.14%) (41.69%) (15.01%) (12.15%) (5.45%)

BG
– 76337 – 78348 12016 166701

(45.79%) (47.00%) (7.21%) (15.04%)

BS
– 26594 70879 – 16967 114440

(23.24%) (61.93%) (14.83%) (9.12%)

CR
13264 23142 12025 17681 – 66112

(20.06%) (35.00%) (18.19%) (26.75%) (18.58%)

mesh grid provinces
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Application to the emergence of COVID-19 in Italy

The Lombardy network II

λi , i ∈ {S,E ,A,R} τi , i ∈ {S,E , I ,A,R}

Figure: Left initial condition imposed for characteristic speeds λ. Right relaxation times
τ .
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Application to the emergence of COVID-19 in Italy

Exp[ST ,0(x , y)] Exp[ST (x , y)]

Figure: Numerical results of the simulation of the first outbreak of COVID-19 in
Lombardy, Italy. Left expectation of the susceptible population ST on the initial day
simulated (February 27, 2020) and right at the end of the simulation (March 22, 2020).
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Application to the emergence of COVID-19 in Italy

Pavia Lodi Cremona

Milan Varese Monza-Brianza

Figure: Numerical results, with 95% confidence intervals, of the simulation of the first
outbreak of COVID-19 in Lombardy, Italy. Data are taken from the COVID-19
repository of the Civil Protection Department of Italy. Vertical dashed lines identify the
onset of governmental lockdown restrictions.
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Application to the emergence of COVID-19 in Italy

Research perspectives
Conclusions

Multiscale kinetic models for the description of the spread of an epidemic disease
in a spatially heterogeneous context

Introduction of commuters and non-commuters population.

Application to a real epidemic spread (COVID-19 outbreak in Emilia-Romagna and
Lombardy).

Second order asymptotic preserving time discretization and finite volume spatial
discretization made of unstructured meshes of arbitrary shape.

Outlook

Multidimensional uncertainty quantification.

Data fitting for extrapolation of the model parameter and construction of data
driven models.

Incorporation of an age-structured population.

Control.

The material for this part is mostly based on the recent survey: ”Kinetic modelling of
epidemic dynamics: social contacts, control with uncertain data, and multiscale spatial
dynamics.” G. Albi, G. Bertaglia, W. Boscheri, G.D., L. Pareschi, G. Toscani, M. Zanella.
Predicting Pandemics in a Globally Connected World, Vol. 1, Birkhauser-Springer Series:
Modeling and Simulation in Science, Engineering and Technology, 2022.
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