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Trajectory Inference & Min-entropy
Estimator



Motivation: process single-cell RNA sequencing data

Data

Gene expression level of individual cells sampled at several times
Goal

Understand biological processes (development, reprogramming) :

genealogy of cells, role of genes, effect of interventions, etc.

e
=4
j =m iPSCs

D18
D15

N,

Taken from (Schiebinger et al. 2019)
See also (Tong et al. 2020), (Farrell et al. 2018),... 1/21



Mathematical Model of Trajectory Inference (1)

e Ambient space X C R? convex compact
e Path-space Q :=C([0, 1]; X)
e Goal: estimate the population dynamics P € P(Q)

space X

time t
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Measurement Model

Observe (Xt )icr]jefn] for 0< t1,...,t7 < 1land n; > 1.
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e Snapshots: fi, = ,,l, er"":1 5Xt,-,j
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Mathematical Model of Trajectory Inference (1)

e Ambient space X C R? convex compact
e Path-space Q :=C([0, 1]; X)
e Goal: estimate the population dynamics P € P(Q)

. 8
.
e °* o °
= 8
g8
Y
2
e ..-
g 8 : .
e 8 .

time t

Measurement Model
Observe (Xt )icr]jefn] for 0< t1,...,t7 < 1land n; > 1.

e independent realizations for all couples (7, )

e Snapshots: fi, = ,,l, er"":1 5Xt,-,j




Mathematical Model of Trajectory Inference (Il)

Potential-driven Ito Diffusion Model
dXt = —V\U(t,Xt) dt = \/;dBt, XO ~ [0

e potential ¥ € C2([0, 1], R9) unknown
e temperature 7 > 0 known, B (reflected) Brownian motion

e characterizes P € P(Q)

Wix)

space X

0 1
time t

~~ some works focus on recovering W, a different problem e.g. (Bunne et
al. '21), (Hashimoto, '16), (Tong et al. '20)
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Min-entropy estimator & Consistency

Estimator Min-entropy relative to Wiener measure

R* :=argmin F(R), F(R) :=Fitys(Rs,...,Re;) + TH(RIWT)
ReP(Q)

e W7 € P(Q) is the law of the Brownian motion at

temperature 7 (reversible, reflected, on X))

e H(ulv) = [log(dp/dv)dp is the relative entropy

e see next slide for Fit) ,

Theorem [Lavenant et al. 2021]
If (ti)ie;7) becomes dense in [0,1] as T grows, then

lim lim R* =P weakly, as.
A,oc—0 T—o0

4/21

Lavenant, Zhang, Kim, Schiebinger (2021). Towards a mathematical theory of trajectory inference.



Data fitting term

.
. 1
Fity o(Reys -, Rey) = Z(At,)Fw (R, it;)

Log-likelihood fitting loss

Let FNito be the neg-log-likelihood under noisy observation model
Xij=Xej+0Zij,  Xyj~ Ry Zij~N(0,1)

Fito(Roli) = [ —tog [ o (- LAY aru() dat)

e Linear in fi,
e Convex, smooth in R: as nice as one could hope
5/21



Challenges & Solution

e Well-posed convex optimization problem over P ()

e Discretize then optimize approach is tractable...
~~ reduction from P(Q) to P(X)" thanks to the Markovian
structure (Benamou et al. 2018), (Lavenant et al. 2021)

e ... but not satisfying (curse of dimensionality)

Can we design a free-support method that computes the
min-entropy estimator R*?

00 02 04 06 08 10

Chizat, Zhang, Heitz, Schiebinger (2022). Trajectory Inference via Mean-field 6/21
Langevin in Path Space.



Reduced Formulation



Entropic Optimal Transport

Let M(u,v) be the set of transport plans between p, v € P(X), i.e.
probability measures in P(X x X') with marginals u and v.
X C RY compact.

Entropic Optimal Transport

To(ur)i=_amin [ crlxy)dray) + THG 1o )
yeN(p,v)

where ¢-(x,y) — $lly — x]||? is the log-heat-kernel on X
T—

e differentiable in (i, v)
e first variation given by the “stable” dual potentials (¢, 1)
e c-approximation in O(n?/e) using Sinkhorn's algorithm, if ;1

and v have n atoms
7/21



A “representer theorem”

Path-space formulation over P(Q):
.F(R) = Fit(Rtl, 500g Rt-r) + TH(R‘ WT)

Reduced formulation over P(X):
T-1 T

) 1
F(p) =Fit(pq,...,pn7) + Z ETTAt,'(Hiv Kit1) ‘i‘TZ H(p;)
i=1 ! i=1
G(p) H(w)

There is a computable bijection
between minimizers of F and F.

R;,...,tr(dxlﬂ oy dxT) = Nl(dx1)72|1(dx2) - "7T|T71(dXT)

In (Chizat, Zhang, Heitz, Schiebinger, 2022)
Adapted from (Benamou et al. 2019), (Lavenant et al. 2020)
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Mean-Field Langevin & Exponential
Convergence




(Overdamped) Langevin Dynamics : quick primer (I)

Goal: given V € C?(X), sample from o< e=V/7, 7 > 0.
Noisy GD:

Xit1 = —nVV(Xi) + V22, Xo~ po, Zk %N’(O, D)

As n — 0, converges in law to a Langevin Dynamics (t = kn):
dX; = =V V(X;)dt + V27dB;, Xy~ po, B Brownian process
e Moreover u; = Law(X;) follows the Fokker-Planck equation:

Orpie = V - (e VV) + 7Ape, o given
—_——— =~

drift diffusion

NB: do not confuse optimization time vs biological time

9/21



(Overdamped) Langevin Dynamics : quick primer (1)

Interpretation: Wasserstein gradient flow of

F-(1) ::/Vdu+TH(M) = H(ulp7)

where 1% oc e=V/™ € P(X), H(u) = [log(dpu/ dx)dy is the
neg-entropy and H(u|v) = [ log(du/dv)dpu is the relative entropy

Theorem [Holley, Kusuoka, Stroock, 1989] and many more
V/’T.

- F; admits a unique minimizer uk o e™
- Assume that p satisfies a p,- log-Sobolev inequality, then

Fr(pe) = Fr(py) < e 277 (Fr(po) — Fr(i))-

~> Let us generalize this result to a much larger class of dynamics
with non-linear drift (interacting particles)

10/21



Setting for Mean-field Langevin

Let G : P(X) — R, a convex function (here X = RY allowed).

Optimization problem

in F; here = =G(p)+7H
i (1) wher, (1) = G(p) + TH(p)

Let V[u] == %(u) € C1(X) the first variation of G, i.e. Vg,

i ™ (6((1— u+-ev) = G() = [ VIR dl =), W

€l0

e assume that F; admits a minimizer pX, let F* = F (u})

e assume V exists and has a Lipschitz gradient, i.e. 3L > 0 s.t.

IVVIRI) =V VTN < LWa(u, 1) +Ix=xNl), Vi, !, x, X

11/21



Particle gradient flow and its mean-field limit

Noisy Gradient Flow (Evolution of m particles)

i o i R 1 <&
dXt( ) _ —VV[,ut](X,_S )) dt + V27dB;; where [i; = - Z 5X(,-)(t
i=1

Proposition (Mean-Field limit [Mc-Kean, Kac... in the 60s])

As m — +00, the (X{") converges in distribution to iid draws from

dX; = =V V[u](Xe)dt + V27dB;  where  py = Law(X})

Mean-Field Langevin Dynamics

Ocpte = V - (e V'V [pe]) + TApe

~> (pe)e> is a Wasserstein Gradient Flow of F.

~> Let us study the convergence of this dynamics 12/21



Log-Sobolev inequality

Relative Entropy: H(u|v) = [log (%) du

Relative Fisher Information: /(p|v) = [ ||V log %\\2d,u,

Main assumption: Log-Sobolev Inequality

Assume that there exists p, > 0 such that Vi € P2(X), the
probability measure v oc e~ VIH/™ satisfies LSI(p,) i.e.

H(@lv) < 2;/(/1!1/)7 Vii € P(X).

LS| = tojasiewicz inequality for  — H(p|v) in Wasserstein space.
It is satisfied:

o if X is compact and || V[u]||cc < o0 (uniformly in pu)
o if ¥ =R and ||V[u] — f|leo < oo for some f strongly convex.

13/21



Exponential convergence

Theorem [Nitanda et al. 2022], [Chizat 2022]

Under the previous assumptions the Mean-Field Langevin dynamics

is well-posed and converges globally at an exponential rate:

Fr(pe) = Fr(py) < €277 (Fr(po) — Fr(i))

The same rate holds for W2(u, p) and H(pe|p).

e recovers the rate for Langevin in the linear case

6w = [ v

e also a convergence speed for simulated annealing (see paper)

Nitanda, Wu, Suzuki (2022). Convex Analysis of the Mean Field Langevin Dynamics.
Chizat (2022). Mean-Field Langevin Dynamics: Exponential Convergence and Annealing.

14/21



Proof Idea (7 =1)

Proof: the standard linear case (Langevin). |

Let V € C2(X), v x eV and F(u) := [V dpu+ H(p) = H(ulv).
By direct computations and Log-Sobolev inequality:

L (P~ F) = 1) < ~2p, Hpue) = ~20,(F(ue) — F).

15/21
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Let V € C2(X), v x eV and F(u) := [V dpu+ H(p) = H(ulv).
By direct computations and Log-Sobolev inequality:

L (P~ F) = 1) < ~2p, Hpue) = ~20,(F(ue) — F).

Proof: the general case

Defining vy o< e~ VI#d it holds:

Energy Dissipation Ineq. Entropy Sandwich Lemma

qp (pe) = 1 (pele) Hpelp*) < Fue) — F*<H(pelve).

v

7(F(Mt) - F*) = _I(Mt|’/t) < —QPTH(Nt|Vt) < - 2PT(F(/~‘t) - F*)~

15/21



Prior works & Applications

Prior works:

e Mei, Montanari, Nguyen (2018). A Mean Field View of the
Landscape of Two-Layers Neural Networks.

e Hu, Ren, Siska, Szpruch (2019). Mean-Field Langevin
Dynamics and Energy Landscape of Neural Networks.

e Kazeykina, Ren, Tan, Yang (2020). Ergodicity of the
underdamped Mean-Field Langevin dynamics.

Applications:

e Noisy Gradient Descent on wide two-layer neural networks

e Free-support debiaised entropic Wasserstein barycenters
(Chizat, in prep)

e Min-entropy estimator for trajectory inference (Chizat, Zhang,

Heitz, Schiebinger, 2022) 16/21



Back to Trajectory Inference




Reminders

Path-space formulation over P(Q):
.F(R) = Fit(Rtl, 500g Rt-r) + TH(R‘ WT)

Reduced formulation over P(X):

T-1 T
) 1
F(p) =Fit(pq,...,pn7) + Z ETTAti(Hiv Kit1) ‘i‘TZ H(p;)
i=1 i=1

G(m) H(w)
There is a computable bijection between minimizers of F and F.

e G is not convex but G + 7H is
e Apply MFL to F. = G + (7 + €)H for some € > 0

In (Chizat, Zhang, Heitz, Schiebinger, 2022)
Adapted from (Benamou et al. 2019), (Lavenant et al. 2020)
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Theory & Practice: trajectory inference via MFL

If X is compact, the Mean-Field Langevin dynamics (pt,)s>0 for Fe
is well-posed and converges exponentially to minimizers of F. at a

rate e K/¢.

With ¢(s) = C/log s one has Fo(p,) —inf Fp < 1/ logs.

00 02 04 06 08 10

Chizat, Zhang, Heitz, Schiebinger (2022). Trajectory Inference via Mean-field Langevin in Path Space.
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Theory & Practice: trajectory inference via MFL

If X is compact, the Mean-Field Langevin dynamics (pt,)s>0 for Fe
is well-posed and converges exponentially to minimizers of F. at a

rate e K/¢.

With ¢(s) = C/logs one has Fo(p,) — inf Fp < 1/ logs.

Reduced objective F Subsample Full dataset day 2s Error
6
3.0 75 s . - L
SR - é}; 820 -~ gwor
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g . ] 295
“26 P s o}
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0.0 ' ) 05
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Iteration UMAPL UMAPL day

In paper: extension to deal with cell birth/death
Chizat, Zhang, Heitz, Schiebinger (2022). Trajectory Inference via Mean-field Langevin in Path Space.
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Stability of Entropic Optimal
Transport




Lipschitz continuity of the Schrodinger map

The first-variation (¢, 1) of T solves the Schrodinger system:

p(x) ==\ Iog/ (YY) —clxy))/A dv(y)
X

¥(y) = —Alog / BLI=eC/A 4yy(x)
X

Theorem (Stability of EOT [Carlier, Chizat, Laborde, in prep.])

If X compact and ¢ € CK(X x X) with k > 1 then 3C; > 0 s.t.
(e, %) = (&, D)llekjm < Cu(Walp, i) + Wa(w, 7))

e C¥/ ~ is the usual C* norm quotiented by the equiv. relation

(o, ) ~(p+K,9Y—K), KER

e regularizing by p ® v is crucial

e result proved in the multi-marginal case 20/21



Proof idea: Implicit Function Theorem

Notation: ¢ <= (¢, ¥), p < (1, V)

e write the Schrodinger system as F(p, ) =0

e consider any transport plan v € MN(u,v), the induced
interpolation p, = ((1 — t)7! + tm?) 4~y and the functional

(C¥/ ~) x [0,1] = (C*/ ~)

(Lpa t) = F(‘Pvu’t)
e apply the Implicit Function Theorem in Banach space

G:

YINY/

See also: Carlier, Laborde (2020), Nutz and Wiesel (2022) 21/21



Some remarks
e Mean-Field Langevin interacts nicely with Entropic OT

e Statistical guarantees for the estimator?

e Theory of diffusion in path-space?

References
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