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Trajectory Inference & Min-entropy

Estimator



Motivation: process single-cell RNA sequencing data

Data

Gene expression level of individual cells sampled at several times

Goal

Understand biological processes (development, reprogramming) :

genealogy of cells, role of genes, effect of interventions, etc.

Taken from (Schiebinger et al. 2019)

See also (Tong et al. 2020), (Farrell et al. 2018),... 1/21



Mathematical Model of Trajectory Inference (I)

• Ambient space X ⊂ Rd convex compact

• Path-space Ω := C([0, 1];X )

• Goal: estimate the population dynamics P ∈ P(Ω)

Measurement Model

Observe (Xti ,j)i∈[T ],j∈[ni ] for 0 ≤ t1, . . . , tT ≤ 1 and ni ≥ 1.

• independent realizations for all couples (i , j)

• Snapshots: µ̂ti := 1
ni

∑ni
j=1 δXti ,j
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Mathematical Model of Trajectory Inference (II)

Potential-driven Ito Diffusion Model

dXt = −∇Ψ(t,Xt) dt +
√
τ dBt , X0 ∼ µ0

• potential Ψ ∈ C2([0, 1],Rd) unknown

• temperature τ > 0 known, B (reflected) Brownian motion

• characterizes P ∈ P(Ω)

 some works focus on recovering Ψ, a different problem e.g. (Bunne et

al. ’21), (Hashimoto, ’16), (Tong et al. ’20)
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Min-entropy estimator & Consistency

Estimator Min-entropy relative to Wiener measure

R∗ := argmin
R∈P(Ω)

F(R), F(R) := Fitλ,σ(Rt1 , . . . ,RtT ) + τH(R|W τ )

• W τ ∈ P(Ω) is the law of the Brownian motion at

temperature τ (reversible, reflected, on X )

• H(µ|ν) =
∫

log(dµ/ dν)dµ is the relative entropy

• see next slide for Fitλ,σ

Theorem [Lavenant et al. 2021]

If (ti )i∈[T ] becomes dense in [0, 1] as T grows, then

lim
λ,σ→0

lim
T→∞

R∗ = P weakly, a.s.

Lavenant, Zhang, Kim, Schiebinger (2021). Towards a mathematical theory of trajectory inference. 4/21



Data fitting term

Fitλ,σ(Rt1 , . . . ,RtT ) :=
1

λ

T∑
i=1

(∆ti )F̃itσ(Rti |µ̂ti )

Log-likelihood fitting loss

Let F̃itσ be the neg-log-likelihood under noisy observation model

X̂ti ,j = Xti ,j + σZi ,j , Xti ,j ∼ Rti , Zi ,j ∼ N (0, 1)

F̃itσ(Rti |µ̂ti ) :=

∫
− log

(∫
exp

(
− ‖x − y‖2

2σ2

)
dRti (x)

)
dµ̂ti (y)

• Linear in µ̂ti
• Convex, smooth in R: as nice as one could hope

5/21



Challenges & Solution

• Well-posed convex optimization problem over P(Ω)

• Discretize then optimize approach is tractable...

 reduction from P(Ω) to P(X )T thanks to the Markovian

structure (Benamou et al. 2018), (Lavenant et al. 2021)

• ... but not satisfying (curse of dimensionality)

Can we design a free-support method that computes the

min-entropy estimator R∗?

Chizat, Zhang, Heitz, Schiebinger (2022). Trajectory Inference via Mean-field

Langevin in Path Space.
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Reduced Formulation



Entropic Optimal Transport

Let Π(µ, ν) be the set of transport plans between µ, ν ∈ P(X ), i.e.

probability measures in P(X × X ) with marginals µ and ν.

X ⊂ Rd compact.

Entropic Optimal Transport

Tτ (µ, ν) := min
γ∈Π(µ,ν)

∫
cτ (x , y) dγ(x , y) + τH(γ|µ⊗ ν)

where cτ (x , y) −→
τ→0

1
2‖y − x‖2 is the log-heat-kernel on X .

• differentiable in (µ, ν)

• first variation given by the “stable” dual potentials (ϕ,ψ)

• ε-approximation in O(n2/ε) using Sinkhorn’s algorithm, if µ

and ν have n atoms
7/21



A “representer theorem”

Path-space formulation over P(Ω):

F(R) := Fit(Rt1 , . . . ,RtT ) + τH(R|W τ )

Reduced formulation over P(X )T :

F (µ) := Fit(µ1, . . . ,µT ) +
T−1∑
i=1

1

∆ti
Tτ∆ti (µi ,µi+1)︸ ︷︷ ︸

G(µ)

+τ
T∑
i=1

H(µi )︸ ︷︷ ︸
H(µ)

Theorem

There is a computable bijection

between minimizers of F and F .

R∗t1,...,tT
(dx1, . . . , dxT ) = µ1(dx1)γ2|1(dx2) . . . γT |T−1(dxT )

In (Chizat, Zhang, Heitz, Schiebinger, 2022)

Adapted from (Benamou et al. 2019), (Lavenant et al. 2020)
8/21



Mean-Field Langevin & Exponential

Convergence



(Overdamped) Langevin Dynamics : quick primer (I)

• Goal: given V ∈ C2(X ), sample from ∝ e−V /τ , τ > 0.

• Noisy GD:

Xk+1 = −η∇V (Xk) +
√

2τηZk , X0 ∼ µ0, Zk
iid∼ N (0, I )

• As η → 0, converges in law to a Langevin Dynamics (t = kη):

dXt = −∇V (Xt)dt +
√

2τdBt , X0 ∼ µ0, Bt Brownian process

• Moreover µt = Law(Xt) follows the Fokker-Planck equation:

∂tµt = ∇ · (µt∇V )︸ ︷︷ ︸
drift

+ τ∆µt︸ ︷︷ ︸
diffusion

, µ0 given

NB: do not confuse optimization time vs biological time

9/21



(Overdamped) Langevin Dynamics : quick primer (II)

Interpretation: Wasserstein gradient flow of

Fτ (µ) :=

∫
V dµ+ τH(µ) = H(µ|µ∗τ )

where µ∗τ ∝ e−V /τ ∈ P(X ), H(µ) =
∫

log(dµ/ dx)dµ is the

neg-entropy and H(µ|ν) =
∫

log(dµ/ dν)dµ is the relative entropy

Theorem [Holley, Kusuoka, Stroock, 1989] and many more

- Fτ admits a unique minimizer µ∗τ ∝ e−V /τ .

- Assume that µ∗τ satisfies a ρτ - log-Sobolev inequality, then

Fτ (µt)− Fτ (µ∗τ ) ≤ e−2τρτ t
(
Fτ (µ0)− Fτ (µ∗τ )

)
.

 Let us generalize this result to a much larger class of dynamics

with non-linear drift (interacting particles)

10/21



Setting for Mean-field Langevin

Let G : P(X )→ R+ a convex function (here X = Rd allowed).

Optimization problem

min
µ∈P2(X )

Fτ (µ) where Fτ (µ) := G (µ) + τH(µ)

Let V [µ] := δG
δµ (µ) ∈ C1(X ) the first variation of G , i.e. ∀µ,

lim
ε↓0

ε−1
(
G ((1− ε)µ+ εν)−G (µ)

)
=

∫
X
V [µ](x) d(ν − µ)(x), ∀ν

Assumptions

• assume that Fτ admits a minimizer µ∗τ , let F ∗τ = Fτ (µ∗τ )

• assume V exists and has a Lipschitz gradient, i.e. ∃L > 0 s.t.

‖∇V [µ](x)−∇V [µ′](x ′)‖ ≤ L
(
W2(µ, µ′)+‖x−x ′‖

)
, ∀µ, µ′, x , x ′

11/21



Particle gradient flow and its mean-field limit

Noisy Gradient Flow (Evolution of m particles)

dX
(i)
t = −∇V [µ̂t ](X

(i)
t ) dt +

√
2τdBt,i where µ̂t =

1

m

m∑
i=1

δX (i)(t)

Proposition (Mean-Field limit [Mc-Kean, Kac. . . in the 60s])

As m→ +∞, the (X
(i)
t ) converges in distribution to iid draws from

dXt = −∇V [µt ](Xt) dt +
√

2τdBt where µt = Law(Xt)

Mean-Field Langevin Dynamics

∂tµt = ∇ · (µt∇V [µt ]) + τ∆µt

 (µt)t≥ is a Wasserstein Gradient Flow of Fτ .

 Let us study the convergence of this dynamics 12/21



Log-Sobolev inequality

Relative Entropy: H(µ|ν) :=
∫

log
( dµ
dν

)
dµ

Relative Fisher Information: I (µ|ν) :=
∫
‖∇ log dµ

dν ‖
2 dµ

Main assumption: Log-Sobolev Inequality

Assume that there exists ρτ > 0 such that ∀µ ∈ P2(X ), the

probability measure ν ∝ e−V [µ]/τ satisfies LSI(ρτ ) i.e.

H(µ̃|ν) ≤ 1

2ρτ
I (µ̃|ν), ∀µ̃ ∈ P(X ).

LSI =  Lojasiewicz inequality for µ 7→ H(µ|ν) in Wasserstein space.

It is satisfied:

• if X is compact and ‖V [µ]‖∞ <∞ (uniformly in µ)

• if X = Rd and ‖V [µ]− f ‖∞ <∞ for some f strongly convex.

13/21



Exponential convergence

Theorem [Nitanda et al. 2022], [Chizat 2022]

Under the previous assumptions the Mean-Field Langevin dynamics

is well-posed and converges globally at an exponential rate:

Fτ (µt)− Fτ (µ∗τ ) ≤ e−2τρτ t
(
Fτ (µ0)− Fτ (µ∗τ )

)
.

The same rate holds for W 2
2 (µt , µ

∗
τ ) and H(µt |µ∗τ ).

• recovers the rate for Langevin in the linear case

G (µ) =

∫
V dµ

• also a convergence speed for simulated annealing (see paper)

Nitanda, Wu, Suzuki (2022). Convex Analysis of the Mean Field Langevin Dynamics.

Chizat (2022). Mean-Field Langevin Dynamics: Exponential Convergence and Annealing.
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Proof Idea (τ = 1)

Proof: the standard linear case (Langevin).

Let V ∈ C2(X ), ν ∝ e−V and F (µ) :=
∫
V dµ+ H(µ) = H(µ|ν).

By direct computations and Log-Sobolev inequality:

d

dt
(F (µt)− F ∗) = −I (µt |ν) ≤ −2ρτH(µt |ν) = −2ρτ (F (µt)− F ∗).

Proof: the general case

Defining νt ∝ e−V [µt ], it holds:

Energy Dissipation Ineq.

d

dt
F (µt) = −I (µt |νt)

Entropy Sandwich Lemma

H(µt |µ∗) ≤ F (µt)− F ∗≤H(µt |νt).

d

dt
(F (µt)− F ∗) = −I (µt |νt) ≤ −2ρτH(µt |νt) ≤− 2ρτ (F (µt)− F ∗).
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Prior works & Applications

Prior works:

• Mei, Montanari, Nguyen (2018). A Mean Field View of the

Landscape of Two-Layers Neural Networks.

• Hu, Ren, Siska, Szpruch (2019). Mean-Field Langevin

Dynamics and Energy Landscape of Neural Networks.

• Kazeykina, Ren, Tan, Yang (2020). Ergodicity of the

underdamped Mean-Field Langevin dynamics.

Applications:

• Noisy Gradient Descent on wide two-layer neural networks

• Free-support debiaised entropic Wasserstein barycenters

(Chizat, in prep)

• Min-entropy estimator for trajectory inference (Chizat, Zhang,

Heitz, Schiebinger, 2022)
16/21



Back to Trajectory Inference



Reminders

Path-space formulation over P(Ω):

F(R) := Fit(Rt1 , . . . ,RtT ) + τH(R|W τ )

Reduced formulation over P(X )T :

F (µ) := Fit(µ1, . . . ,µT ) +
T−1∑
i=1

1

∆ti
Tτ∆ti (µi ,µi+1)︸ ︷︷ ︸

G(µ)

+τ
T∑
i=1

H(µi )︸ ︷︷ ︸
H(µ)

Theorem

There is a computable bijection between minimizers of F and F .

• G is not convex but G + τH is

• Apply MFL to Fε = G + (τ + ε)H for some ε > 0

In (Chizat, Zhang, Heitz, Schiebinger, 2022)

Adapted from (Benamou et al. 2019), (Lavenant et al. 2020)
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Theory & Practice: trajectory inference via MFL

Theorem

If X is compact, the Mean-Field Langevin dynamics (µs)s≥0 for Fε

is well-posed and converges exponentially to minimizers of Fε at a

rate e−K/ε.

With ε(s) = C/ log s one has F0(µs)− inf F0 . 1/ log s.

Chizat, Zhang, Heitz, Schiebinger (2022). Trajectory Inference via Mean-field Langevin in Path Space.
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Theory & Practice: trajectory inference via MFL
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In paper: extension to deal with cell birth/death

Chizat, Zhang, Heitz, Schiebinger (2022). Trajectory Inference via Mean-field Langevin in Path Space.
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Stability of Entropic Optimal

Transport



Lipschitz continuity of the Schrödinger map

The first-variation (φ, ψ) of Tλ solves the Schrödinger system:
ϕ(x) = −λ log

∫
X
e(ψ(y)−c(x,y))/λ dν(y)

ψ(y) = −λ log

∫
X
e(φ(x)−c(x,y))/λ dµ(x)

Theorem (Stability of EOT [Carlier, Chizat, Laborde, in prep.])

If X compact and c ∈ Ck(X × X ) with k ≥ 1 then ∃Ck > 0 s.t.

‖(ϕ,ψ)− (ϕ̃, ψ̃)‖Ck/∼ ≤ Ck

(
W2(µ, µ̃) + W2(ν, ν̃)

)
• Ck/ ∼ is the usual Ck norm quotiented by the equiv. relation

(ϕ,ψ) ∼ (ϕ+ κ, ψ − κ), κ ∈ R

• regularizing by µ⊗ ν is crucial

• result proved in the multi-marginal case
20/21



Proof idea: Implicit Function Theorem

Notation: ϕ← (ϕ,ψ),µ← (µ, ν)

• write the Schrödinger system as F (ϕ,µ) = 0

• consider any transport plan γ ∈ Π(µ,ν), the induced

interpolation µt = ((1− t)π1 + tπ2)#γ and the functional

G :

∣∣∣∣∣(C
k/ ∼)× [0, 1]→ (Ck/ ∼)

(ϕ, t) = F (ϕ,µt)

• apply the Implicit Function Theorem in Banach space

See also: Carlier, Laborde (2020), Nutz and Wiesel (2022)
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Some remarks

• Mean-Field Langevin interacts nicely with Entropic OT

• Statistical guarantees for the estimator?

• Theory of diffusion in path-space?

References

• (Chizat, ’22) Mean Field Langevin Dynamics: Exponential

convergence and annealing.
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