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What is a Langmuir probe ?

A plasma is a gas made of electrically charged particles.
e A Langmuir probe is a spherical or cylindrical metallic measurement device
used to study plasmas.

e The probe voltage is varied to be either attractive or repulsive for the
electrons and it registers the current.

e |t permits to determine the plasma parameters: its density, its temperature
and its potential.
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What is a Langmuir probe ?

Figure 1: One of the two Langmuir probes from the Swedish institute of Space
Physics in Uppsala on board ESA's space vehicle Rosetta

Figure 2: Rosetta in orbit around the 67P/G-C comet
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References in physics

The modeling of probe-plasma interaction is a long time discussed problem in
plasma physics.

e Smott and Langmuir, The theory of collectors in Gaseous Discharges, 1926.
e Bernstein and Rabinowitz, Theory of electrotatics probes in a low-density plasmas, 1959.
e Allen, Probe theory - the orbital motion approach. Physica Scripta, 1992.

e Laframbroise, Theory of spherical and cylindrical Langmuir probes in collisionless Maxwellian
plasmas, 1996.
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References in applied mathematics

This problem has not been discussed that much in the mathematical
community.

e Raviart and Greengard, A boundary value problem for the stationary Vlasov-Poisson
equations: the plane diode, 1990.

e Degond, Raviart and al, The child-Langmuir asymptotics of the Vlasov-Poisson equation for
cylindrically of spherically symmetric diode, 1996.
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Two difficulties

The mass m. of an electron is much smaller than the mass m; of an ion:

e |t causes a charge separation in the vicinity of the probe called the Debye
sheath.

In non-planar geometry, it is not clear whether a particle reaches the probe

even in the absence of force fields.
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Modeling a cylindrical probe



Modeling a cylindrical Langmuir probe

Main assumptions and simplifications:

e The probe is an infinite cylinder of radius 1.
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Modeling a cylindrical Langmuir probe

Main assumptions and simplifications:

e The probe is an infinite cylinder of radius 1.

e The plasma is collisionless and unmagnetized (Vlasov-Poisson equations).
e The plasma has reached its permanent regime (steady equations).

e Invariance and symmetries along the probe (polar coordinate).

e Invariance by rotation (Radial Poisson equation).

Invariance by axial symmetry (No ortho-radial current).
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Phase-space coordinate system

Particles positions in phase-space in the polar coordinate system write:

x=(x,y) =re,, r=+/x2+y2, e = (cos6,sin0)
V= (VX7 Vy) = Vr®r + Vo®y, €9 = (—sin €7C059),

VP =V - @, Vg =V - @®g.

Figure 3: Sketch of a trajectory of a particle into a radial force field coming from the
outer ionizing source at r = rp.
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The Vlasov-Poisson equations

e Vlasov equation for the ionic density fi(r, vi, vo):

2

Oy fi + (V—f - r¢) o, f =0,

ViV
vy Orf; —

r
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The Vlasov-Poisson equations

e Vlasov equation for the ionic density fi(r, vi, vo):

ViV
vy Orf; —

r

V2
avefi + (Te - r¢> 6v,f;' = 07

e Vlasov equation for the electronic density fe(r, vi, vp):

. A7

Vrorfe - -
r

V2
v fe + (79 + a,¢>) ov,fo =0,
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The Vlasov-Poisson equations

e Vlasov equation for the ionic density fi(r, vi, vo):

vy Orf; — KA 6V9f + (* - r¢) oy fi =0,

e Vlasov equation for the electronic density fe(r, vi, vp):

Vr Vo
Vr arfe -

V2
=0 fet (79 + a,¢) o, fo =0,

e Radial Poisson equation for the electrostatic potential ¢(r):

22 (r22) ) = ) - ),

The domain of computation is (r, v,, vg) € (1, ) x R?. The parameter A « 1 is
the Debye length.
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The Vlasov-Poisson equations

The ions and electrons macroscopic charge densities are:

ni(r) = fi(r, ve,vo)dvrdve, ne(r) = fe(r, Vi, vo)dvedvy.
R2

R2
The ions and electrons radial current densities are:

1
Ji(r) := fi(r,ve,vo)vidvidvg, Je(r) = — fe(r, v, vo)vrdv,dvg.
(r) » ( 0) 0 (r) 75 ) ( 0) 0

where p = me/m; « 1 is the mass ratio.
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Boundary conditions

e Incoming particles from the plasma core:
b b
Vv <0 fi(r, v, vo) = £ (Vi Vo), fe(rb, Vi Vo) = £ (v, Vo),

where (v,, vg) — £2(v,, va), (vi, ve) — 2(v,, vg) are given functions.
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Boundary conditions

e Incoming particles from the plasma core:
b b
Vv <0 fi(r, v, vo) = £ (Vi Vo), fe(rb, Vi Vo) = £ (v, Vo),

where (v,, vg) — £2(v,, va), (vi, ve) — 2(v,, vg) are given functions.

e Non-emitting Langmuir probe:

Vv, >0 fi(1,ve,vo) =0, f(l,v,,vp)=0.

e Boundary datum for the Poisson equation:

o(1) =¢peR, ¢(rn) =0.

¢p is the probe potential.
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An existence theorem

Theorem (B., Godard-Cadillac)
Assume that the incoming particle distributions f,-b and feb are in L' and satisfy the following

integrability conditions:

f o = f dvg < +00
I HL&@(Lf(v,dv,)) L vSrUeFI;IVr (vry vo)|dve < +00,

Vr

[ve |7

HfHLL(LVT;;W,\—’YdV,) = L sup [ (vr, vo)| <+,

vgER
for some 0 < v < 1. Then there exists a solution for the Vlasov-Poisson system for the
Langmuir probe (weak solution for Vlasov and strong for Poisson). Moreover, the solutions of
the Vlasov equations are given by explicit formula depending on ¢, ﬂ-b, f:‘

A sufficient condition for the integrability conditions:
1

Y(vr,ve), |f(vi,vo)|l < ——————.
(e v)s 170 v0)| < s

Condition satisfied by Maxwellian distributions.
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The radial solutions

Measure valued solutions:

F(r, Ve, vo) = &(r, ) ® Svgmos £y Vi, V) = &e(r, vr) ® Sy —o-
Degenerate case: particles move radially.
Theorem (B., Crestetto, Godard-Cadillac)

Let ¢, < 0, A > 0. Assume the incoming radial distribution of particles g,-b(v,) and geb(v,) are

in L* and sup|vg(v)| < +00. Assume additionally:
veR

o g’ e W2L(R™) satisfies some differential inequalities.

e The generalized Bohm condition:

j; %m <& (~v=26,) (<2693 + |

dv

Ivl”

VT dgt
e (—Iv])
0 w

e The neutrality in the plasma core: nj(ry) = ne(rp).
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The radial solutions

Then, there exists a solution (measure valued solution for the Vlasov equations, classical solution
for the Poisson equation) with the following properties:

e ¢y is C2[17 rp] and it is increasing concave.
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The radial solutions

Then, there exists a solution (measure valued solution for the Vlasov equations, classical solution
for the Poisson equation) with the following properties:

e ¢y is C2[17 rp] and it is increasing concave.

e ¢, converges locally uniformly to zero in (1, ry] as A — 0.
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The radial solutions

Then, there exists a solution (measure valued solution for the Vlasov equations, classical solution
for the Poisson equation) with the following properties:

e ¢y is C2[17 rp] and it is increasing concave.

e ¢, converges locally uniformly to zero in (1, ry] as A — 0.

e Boundary-layer estimate:

A2 [ ‘ doa
—_ r

2 T,
)| dr + Efb\m(rnzdr - o).
2 ) A—0

2 dr

where o« > 0 is a constant independent on A.
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The radial solutions

Then, there exists a solution (measure valued solution for the Vlasov equations, classical solution
for the Poisson equation) with the following properties:

b is C2[17 rp] and it is increasing concave.

e ¢, converges locally uniformly to zero in (1, ry] as A — 0.
e Boundary-layer estimate:

A2 [ |doy
S| (r)
2 dr

where o« > 0 is a constant independent on A.

2 T,
dr + EJb lx(I)2dr = O(N).
2 ) A—0

° [ni—nefap,; > 0asA—0.
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Mathematical study



The strategy

e Fix the potential ¢ € Wz‘oo[l, rp] and compute explicitly the solutions of the Vlasov
equations using the method of characteristics.

e Compute the densities nj,n. and study the resulting Poisson equation.
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The linear Vlasov equation

e The characteristics of the Vlasov equation with a potential ¢ = +¢ are given by the
solutions of:
Lr(8) = (),
710)
%Vr(t) = ,e(t) - %Wf(t))

vr(t)vg (t)
Sve(t) = — 0@

Solutions of the Vlasov equation are constant on the characteristics.
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Lr(8) = (),
710)
%Vr(t) = ,e(t) - %Wf(t))

vr(t)vg (t)
Sve(t) = — 0@

Solutions of the Vlasov equation are constant on the characteristics.

e Constants of motion:
d (), v
dt 2 2

+ wmm) —0, S v =0
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The linear Vlasov equation

e The characteristics of the Vlasov equation with a potential ¢ = +¢ are given by the
solutions of:
Lr(8) = (),
710)
%Vr(t) = ,e(t) - %Wf(t))

vr(t)vg (t)
Sve(t) = — 0@

Solutions of the Vlasov equation are constant on the characteristics.

e Constants of motion:
d (), v
dt 2 2

+ wmm) —0, S v =0

e The characteristics are contained in the level sets defined for L € R and e € R by:

2 2
CL,e:{(r,v,,\/@)e(l,rb)><]R2 3 v?'+‘/2—9+1/1(r):e and rve:L}.
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Phase space study

e For L € R being fixed, define the effective potential:
12
ULTPI(r) = 5 + 9(r).

Y
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Phase space study

e For L € R being fixed, define the effective potential:

12
ULTPI(r) = 5 + 9(r).

Y

e Its maximum value is denoted:

UL[yp] = max U[](r).
re[1,rp]
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Phase space study

e For L € R being fixed, define the effective potential:

12
ULTPI(r) = 5 + 9(r).

Y

e Its maximum value is denoted:

UL[yp] = max U[](r).
re[1,rp]

e For each L € R, study the phase space (r, v,) by looking at the level sets of the function:

V2
(ryve) — 7’ + U [¢](r).

The maximum value U, [¢] defines a global potential barrier: it separates the trajectories that

collapse with the Langmuir probe from those which do not.
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Phase space study

2
e Cover the phase space (r, v,) with the curves of equation: VT’ =e—UL[Y](r).
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Phase space study

e Cover the phase space (r, v,) with the curves of equation: VT =e—UL[y](r).

e Study the barrier position when e < U [¢] :
r(L,e) :=min{a€e [1,r] : Vre[a ], Ulyp](r) <e}.

Vr
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Phase space study

e Decomposition of the phase space:

DAI(L) = {( W)€ (L) xR : v < —\200[9] fuL[w]<r>>},
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Phase space study

e Decomposition of the phase space:

DAI(L) = {( W)€ (L) xR : v < —\200[9] fuL[w]<r>>},

2
Di[4](L) := {(n vi)e (1,m) xR : V?r + UL [P](r) < UL[b] and r > r(L, e)}.
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Phase space study

e Decomposition of the phase space:

DAI(L) = {( W)€ (L) xR : v < —\200[9] fuL[w]<r>>},

V2 —_—
DywI(L) = {(n v) € (L) xR ¢ 2L+ U[(r) < Uld] and r > r(L,e) b
e The solution of the Vlasov equation is constant on the characteristics, it is natural to define:

FP (= V2 + 2] (r) = ULle](r6)), 72) if (rvr) € D[9](L), L = rve,

0 otherwise.

f(ryve,vg) = {

It defines a weak solution to the Vlasov equation for a potential ¢ = +¢.
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Computation of the macroscopic densities and currents

e Define p[y] :=inf{ae [1,r,] : foraere[a,n], (r) <0}

Mehdi Badsi A kinetic model of plasma-probe interaction : theory and numerics 19 / 41



Computation of the macroscopic densities and currents

e Define p[y] :=inf{ae [1,r,] : foraere[a,n], (r) <0}

Then
r(L,e) = plUL[Y] — e].
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Computation of the macroscopic densities and currents

e Define p[y] :=inf{ae [1,r,] : foraere[a,n], (r) <0}

Then
r(L,e) = plUL[y] — e].

e Define:

B: Rx[lL,np]xR — R

1 1
(v, r, L) — 2u+L2<—2—E).
e Define:
M Rx[lL,n]xRxR — R
L if w2 > B(v,r, L),
(v, r,w, L) — w2 — B(v,r, L)
0

otherwise.
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Computation of the macroscopic densities and currents

Proposition

The macroscopic density and current associated with a potential 1) = +¢ are given by:

() = ~&l¥1(r), )

L
= r L) (w, =) (141 _ dw dL,
glb](v, r) L@ (vyrow, L) (w, rb)( + W2+%<2ML[¢]) ,;5[1“&(%,%)7\”2] w
’b rb
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Computation of the macroscopic densities and currents

Proposition

The macroscopic density and current associated with a potential 1) = +¢ are given by:
1
n[¢](r) = —glpl((r), )

.
W) = [ T w ) LY (141 "
g v, r) = - v, W, w, rb W2+%<2LTL['IP] r;ﬁ[«wr“
b

. dw dL,
7 (&-

)]

o=

2 L=t (—\ 2N 1 () L
J[w](r)=;L70 f\ t e fb<w;7b> w dw dL.

©

The quantities 2/, [¢)] and / are non-local.
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Existence of a solution

e We are interested in solving the Poisson problem:
324 (4 ) () = £l8)(6(r).1) — £T-0)(~ (1)),
#(1) = ¢p (rs) = 0.

e The bracket [¢] encodes the non-locality.

e The source term in the Poisson equation thus is non-linear and non-local.
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Existence of a solution: a fixed-point method

The strategy:

e Fix the non-local terms.
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Existence of a solution: a fixed-point method

The strategy:

e Fix the non-local terms.

e Solve the local semi-linear Poisson problem.

Mehdi Badsi A kinetic model of plasma-probe interaction : theory and numerics 22 /41



Existence of a solution: a fixed-point method

The strategy:

e Fix the non-local terms.
e Solve the local semi-linear Poisson problem.

e Establish enough compactness.

Mehdi Badsi A kinetic model of plasma-probe interaction : theory and numerics 22 /41



Existence of a solution: a fixed-point method

The strategy:

e Fix the non-local terms.
e Solve the local semi-linear Poisson problem.
e Establish enough compactness.

e Pass to the limit to conclude.

Let ¢" € W»®[1, 1] such that ¢"(1) = ¢, and ¢"(r,) = 0. Solve for ¢"** :

=N (r%)(r) = g[¢"1(o(n)" T, r) — g[—¢"1(—p(nN" T, 1),
") = ¢p ¢"TH(m) = 0.
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Existence of a solution: compactness

Lemma (Functions g; and g. are finite)

Let f : R?> — R measurable and let p € [1,2). Then,

+o0 lwl|?
sup  sup f J = |f(w, D) dw dL < 2|1
veR re(l,n,] © ‘WZ Z(L2 _ %) _ 21,{5

" 7

4. _
o Il g v

The non linear source term g[¢"](o(r)" 1, r) — g[—¢"]1(—#(r)" 1, r) is uniformly bounded in
L. We get that the sequence (¢") is bounded in W2 ® . This implies compactness by

Rellich-Kondrachov theorem. In particular ¢" converges (up to a sub seq) uniformly to some ¢.
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Existence of a solution: passing to the limit

How to pass to the limit in the quantity:
ply —e]l:=inf{ae [1,rn|Vr=a (r) <e}.

It is in general not continuous with respect to v for the L™ topology. The problem is at strict
local maxima of .
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Existence of a solution: passing to the limit

How to pass to the limit in the quantity:
ply —e]l:=inf{ae [1,rn|Vr=a (r) <e}.

It is in general not continuous with respect to v for the L™ topology. The problem is at strict
local maxima of .

Lemma (Convergence property for p)

Let (¢,) be a sequence of continuous functions that is uniformly converging towards ¢. Then for
almost every e € R,

plon —el — plo —e].

Enough to conclude since it appears § only appears under an integral.
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Numerics




rative method: continuous setting

Iterative method:

o If ¢" is given, define G[¢"](v,r) = {7 glo"1(V', r)dv'.
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Gradient descent based iterative method: continuous setting

Iterative method:

o If ¢" is given, define G[¢"](v, r) = §i g[6"](v/', r)dv'.

e Consider the energy functional:

r 2 2
J"Nw) = [* 5|20+ GL=¢")(=(0). 1) = L8 w0) et
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Gradient descent based iterative method: continuous setting

Iterative method:

o If ¢" is given, define G[¢"](v, r) = §i g[6"](v/', r)dv'.

e Consider the energy functional:

r 2 2
J"Nw) = [* 5|20+ GL=¢")(=(0). 1) = L8 w0) et

e Compute by recursion:
¢"t = ¢" — pVI[S"1(¢"). p > 0.
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Gradient descent based iterative method: continuous setting

Iterative method:

o If ¢" is given, define G[¢"](v, r) = §i g[6"](v/', r)dv'.

e Consider the energy functional:

r 2 2
J"Nw) = [* 5|20+ GL=¢")(=(0). 1) = L8 w0) et

e Compute by recursion:
¢ = ¢" — pVI[6"](¢"), p > 0.
The gradient VJ[¢"](¢") € V is the unique Riesz-representation of the Fréchet differential
of J at ¢" for a chosen inner product (- ; -):

(Vad[d31(6h)i ©) = dJ[dl(dh) (@) Ve € Vy
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Gradient descent based iterative method: continuous setting

Iterative method:

o If ¢" is given, define G[¢"](v, r) = §i g[6"](v/', r)dv'.

e Consider the energy functional:

r 2 2
J"Nw) = [* 5|20+ GL=¢")(=(0). 1) = L8 w0) et

e Compute by recursion:
¢ = ¢" — pVI[6"](¢"), p > 0.
The gradient VJ[¢"](¢") € V is the unique Riesz-representation of the Fréchet differential
of J at ¢" for a chosen inner product (- ; -):

(Vad[631(0h)i ©) = dJ[dpl(dp)(9) Ve € Vy.

e At convergence, it solves the non-linear and non-local Poisson problem.
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Gradient descent based iterative method: discrete setting

Uniform mesh of the interval [1, ry] of size h = (r, — 1)/(N + 1)
¢y € Vp := continuous and piecewise affine functions on [1, rp].
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Gradient descent based iterative method: discrete setting

Uniform mesh of the interval [1, ry] of size h = (r, — 1)/(N + 1)
¢y € Vp := continuous and piecewise affine functions on [1, rp].

e If ) € Vy, p[e)] is computed by interpolation.
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Gradient descent based iterative method: discrete setting

Uniform mesh of the interval [1, ry] of size h = (r, — 1)/(N + 1)
¢y € Vp := continuous and piecewise affine functions on [1, rp].

e If ) € Vy, p[e)] is computed by interpolation.

e The indicator 1 i

«

A B regularized because oscillations may appear if high order
w +r—2<2uL[w]

numerical integration is used.
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Radial solutions: the 1D sheath problem

f;'b(vl’v V9) = gib(vr) ® 5\/9:07

feb(vra vg) = geb(Vr) ® 5\/9:0

with , ,
2 s b

b vi u;) b Ve

g (vr) = e 2 ,ui= =20 g (v) = e 2.
(vr) o i (V) =
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Radial solutions: the 1D sheath problem

£ (ve, vo) = &7 (V1) ® dyy—0, £ (Vr, Vo) = &2 (V) ® Sup=0-

with ) )
2 s b

& ve (o)t b n®  _v

g (vr) = e 2 ,ui=-20 g/ (v) = e 2.
) V2 ' e V2T

e 1y is fixed a priori to ensure ni(r,) = ne(rp).
e The Bohm condition S(ioo g’ (v,)v,2dv, < const is verified.

e r, =3,A=0.1, N = 200. The gradient algorithm is stopped when
(A CHICHIEIES [
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Radial solutions: the 1D sheath problem

&(r) for different values of ¢,

2F J
: ¢p=-0.6 —*-
-2.5¢ Pp=-1.4 —o— 1
3 ‘ . $p=30 -m
~1 15 2 2.5 3
r
m(r)-rg(r) for different values of ¢,
4 . . -
=06 — - |
$p=-1.4 ——
Pp=-3.0 - ®- 1
15 2 25" 3

-
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Radial solutions: the 1D sheath problem

@(r) for different values of ¢,

0 T T - —
054 -— " Ho—o— - * o -
At e B
-1.5F 4
2+ 1
; Pp=-0.6 — % -
2.5} ¢p=-1_4 —o—
_3 L L ¢p=-—3‘.0 -
1 1.5 2 25 3
r
my(r)-re(r) for different values of ¢,
0.15 ; . :
[ $p=-0.6 —*-
0.1 Gp=-1.4 —o— |
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Radial solutions: the

1D sheath problem

Total current density at the probe (ji-je)(=1,9p)

Total current density at the probe (ji-je)(=1,9p)

250 25 -
satisfied Bohm case —-—- unsatisfied Bohm case —-—-

200 i 20-

150 !

/ 151
100 a
7 10 /
50 - 2
oL - - 5 e
_50-3 25 -2 15 1 -0.5 0 0-3 N 25 -2 15 -1 -0.5
bp bp

Figure 6: Radial case: total current density at the probe (j; — je)(r = 1,¢p) as a
function of the probe potential, the Bohm condition being satisfied (left) or unsatisfied

(right).
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Two dimensional solutions: the Maxwellian case

2

_r n,
£ (ve, vo) T 7 ®Mr(w), (v, vp) = —=
where

\/ﬂe_% ® Mt (ve)

2
M (ve) ! 72%)' T>0
T7(Vg) = —— e 9 > 0.

VanT

e 1y is fixed a priori to ensure nj(r,) = ne(rp).

e r, =3,\=0.1, N =200. The gradient algorithm is stopped when
IV ad (671 (Ph) 100 < 1077

e T =0.1and T = 0.05.
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&(r) for ¢,=-3 and different values of T

0.5} =
A ) q
1.5} ]
2t J

-2.51 T=5.102 — % - 1
T=1.10" ——

25 3

-
N
(&)
N

m(r)-rme(r) for ¢,=-3 and different values of T
0.5 ; . :
T=5.102 — % -
0.4% T=110"1 —o— 1
03r -
0.2r
0.1r
ol
-0.1F
-0.2
-0.3

Figure 7: Maxwellian case: potential ¢(r) (left) and density difference rn;(r) — rne(r)
(right) for ¢, = —3 and two values of T: 0.05 and 0.1.
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ionic distribution fi(r,v;) for vg=0, T=5.102

ionic distribution fi(r,v) for vg=0, T=1 1071

06
05
04
03
02
01

Figure 8: Maxwellian case: ionic distribution function fi(r, v,) for T = 0.05 (top),
T = 0.1 (bottom).
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ionic distribution fi(r,v,) for vg=0.64, T=5.10"2

0.012
0.01

0.008
0.006 |
0.004
0.002

ionic distribution fi(r,v;) for vg=0.91, T=1 R

0.009
0.008
0.007
0.006
0.005
0.004
0.003
0.002
0.001

Figure 9: Maxwellian case: ionic distribution function fi(r, v,) for T = 0.05 (top),
T = 0.1 (bottom)
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electronic distribution fe(r,v) for ve=0, T=5.102

07
06
05
04
03
02
0.1

electronic distribution fg(r,v;) for vg=0, T=1 1071

045
04
035
03
025
02
0.15
01
0.05

Figure 10: Maxwellian case: ionic distribution function fe(r, v,) for T = 0.05 (left),
T = 0.1 (right), and three increasing values of vy from top to bottom.
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electronic distribution fe(r,v) for vg=0.64, T=5.10"2

0.01

0.009
0.008
0.007
0.006
0.005
0.004
0.003
0.002
0.001

vr

electronic distribution fe(r,v;) for vg=0.91, T=1 107!

0.008
0.007
0.006
0.005
0.004
0.003
0.002
0.001

Vr

Figure 11: Maxwellian case: ionic distribution function fe(r, v,) for T = 0.05 (left),
T = 0.1 (right), and three increasing values of vy from top to bottom.
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Total current density at the probe (ji-je)(=1,9p)

T T T T T

O =2 N W Hd»OO N

Figure 12: Maxwellian case: total current density at the probe (ji —je)(r = 1, ¢p) as a
function of the probe potential.
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®(x,y) and electron trajectory for v(t=0)=-3, vg(t=0)=0.5

0 v T - T 3
05 [ 12
-1 E 11
-15 0 y
2 F 41
25 1-2
3 2 a4 0 1 2 3°
X
®(x,y) and electron trajectory for v,(t=0)=-1, vg(t=0)=0.5
0
-05
-1
15 y
-2
25
-3

Figure 13: Maxwellian case: ¢ and electronic trajectories.
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®(x,y) and ion trajectory for v,(t=0)=-0.5, vg(t=0)=0.75

$(x,y) and ion trajectory for v(t=0)=-0.65, vg(t=0)=0.79

Figure 14: Maxwellian case: ¢ and ionic trajectories.
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Conclusion




Conclusion

e We proved the existence of solutions for a kinetic model of plasma-probe interaction.

!Laframbroise, Theory of spherical and cylindrical Langmuir probes in collisionless Maxwellian
plasmas, 1996.
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Conclusion

e We proved the existence of solutions for a kinetic model of plasma-probe interaction.

e We obtained qualitative description and quantitative estimates of the solutions in the radial
setting.

e We proposed a numerical method to compute the solutions which is able to capture closed
trajectories.

e Comparison with the results of Laframboise * needs more numerical investigation.

!Laframbroise, Theory of spherical and cylindrical Langmuir probes in collisionless Maxwellian
plasmas, 1996.
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Thank you for paying attention.
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