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What is a Langmuir probe ?

A plasma is a gas made of electrically charged particles.

• A Langmuir probe is a spherical or cylindrical metallic measurement device
used to study plasmas.

• The probe voltage is varied to be either attractive or repulsive for the
electrons and it registers the current.

• It permits to determine the plasma parameters: its density, its temperature
and its potential.
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What is a Langmuir probe ?

Figure 1: One of the two Langmuir probes from the Swedish institute of Space
Physics in Uppsala on board ESA’s space vehicle Rosetta

Figure 2: Rosetta in orbit around the 67P/G-C comet
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References in physics

The modeling of probe-plasma interaction is a long time discussed problem in
plasma physics.

• Smott and Langmuir, The theory of collectors in Gaseous Discharges, 1926.

• Bernstein and Rabinowitz, Theory of electrotatics probes in a low-density plasmas, 1959.

• Allen, Probe theory - the orbital motion approach. Physica Scripta, 1992.

• Laframbroise, Theory of spherical and cylindrical Langmuir probes in collisionless Maxwellian
plasmas, 1996.
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References in applied mathematics

This problem has not been discussed that much in the mathematical
community.

• Raviart and Greengard, A boundary value problem for the stationary Vlasov-Poisson
equations: the plane diode, 1990.

• Degond, Raviart and al, The child-Langmuir asymptotics of the Vlasov-Poisson equation for
cylindrically of spherically symmetric diode, 1996.
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Two difficulties

The mass me of an electron is much smaller than the mass mi of an ion:

• It causes a charge separation in the vicinity of the probe called the Debye
sheath.

In non-planar geometry, it is not clear whether a particle reaches the probe
even in the absence of force fields.
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Modeling a cylindrical probe



Modeling a cylindrical Langmuir probe

Main assumptions and simplifications:

• The probe is an infinite cylinder of radius 1.

• The plasma is collisionless and unmagnetized (Vlasov-Poisson equations).
• The plasma has reached its permanent regime (steady equations).
• Invariance and symmetries along the probe (polar coordinate).
• Invariance by rotation (Radial Poisson equation).
• Invariance by axial symmetry (No ortho-radial current).
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Phase-space coordinate system

Particles positions in phase-space in the polar coordinate system write:
$

’

’

&

’

’

%

x “ px , yq “ rer , r “
a

x2 ` y 2, er “ pcos θ, sin θq
v :“ pvx , vy q “ vrer ` vθeθ, eθ “ p´ sin θ, cos θq,
vr “ v ¨ er , vθ “ v ¨ eθ.

Figure 3: Sketch of a trajectory of a particle into a radial force field coming from the
outer ionizing source at r “ rb .

Mehdi Badsi A kinetic model of plasma-probe interaction : theory and numerics 7 / 41



The Vlasov-Poisson equations

• Vlasov equation for the ionic density fipr , vr , vθq:

vr Br fi ´
vrvθ

r Bvθ fi `
ˆ

v 2
θ

r ´ Brφ

˙

Bvr fi “ 0,

• Vlasov equation for the electronic density fepr , vr , vθq:

vr Br fe ´
vrvθ

r Bvθ fe `
ˆ

v 2
θ

r ` Brφ

˙

Bvr fe “ 0,

• Radial Poisson equation for the electrostatic potential φprq:

´
λ2

r
d
dr

ˆ

r dφ
dr

˙

prq “ niprq ´ neprq.

The domain of computation is pr , vr , vθq P p1, rbq ˆR2. The parameter λ ! 1 is
the Debye length.
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The Vlasov-Poisson equations

The ions and electrons macroscopic charge densities are:

niprq :“
ż

R2
fipr , vr , vθqdvrdvθ, neprq :“

ż

R2
fepr , vr , vθqdvrdvθ.

The ions and electrons radial current densities are:

Jiprq :“
ż

R2
fipr , vr , vθqvrdvrdvθ, Jeprq :“ 1

?
µ

ż

R2
fepr , vr , vθqvrdvrdvθ.

where µ “ me{mi ! 1 is the mass ratio.
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Boundary conditions

• Incoming particles from the plasma core:

@vr ă 0 fiprb, vr , vθq “ f b
i pvr , vθq, feprb, vr , vθq “ f b

e pvr , vθq,

where pvr , vθq ÞÑ f b
i pvr , vθq, pvr , vθq ÞÑ f b

e pvr , vθq are given functions.

• Non-emitting Langmuir probe:

@vr ą 0 fip1, vr , vθq “ 0, fep1, vr , vθq “ 0.

• Boundary datum for the Poisson equation:

φp1q “ φp P R, φprbq “ 0.

φp is the probe potential.
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An existence theorem

Theorem (B., Godard-Cadillac)
Assume that the incoming particle distributions f bi and f be are in L1 and satisfy the following
integrability conditions:

}f }L1vθ pL
8
vr pvr dvr qq

:“
ż

R
sup
vrPR

|vr f pvr , vθq|dvθ ă `8,

}f }L1vr pL8vθ ;|vr |´γ dvr q
:“

ż

R
sup
vθPR

|f pvr , vθq|
dvr
|vr |γ

ă `8,

for some 0 ă γ ă 1. Then there exists a solution for the Vlasov-Poisson system for the
Langmuir probe (weak solution for Vlasov and strong for Poisson). Moreover, the solutions of
the Vlasov equations are given by explicit formula depending on φ, f bi , f

b
e .

A sufficient condition for the integrability conditions:

@pvr , vθq, |f pvr , vθq| ď
1

1` |vr | ` |vθ|2
.

Condition satisfied by Maxwellian distributions.
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The radial solutions

Measure valued solutions:

fi pr , vr , vθq “ gi pr , vr q b δvθ“0, fepr , vr , vθq “ gepr , vr q b δvθ“0.

Degenerate case: particles move radially.

Theorem (B., Crestetto, Godard-Cadillac)
Let φp ă 0, λ ą 0. Assume the incoming radial distribution of particles gb

i pvr q and gb
e pvr q are

in L1 and sup
vPR
|vgpvq| ă `8. Assume additionally:

• gb
e P W 2,1

pR´q satisfies some differential inequalities.

• The generalized Bohm condition:
ż 0

´8

gb
i pwq
w2 dw ă gb

e

´

´
a

´2φp

¯

p´2φpq
´ 1

2 `

ż

?
´2φp

´8

dgb
e

dw
p´|v |q

dv
|v |
.

• The neutrality in the plasma core: ni prbq “ neprbq.
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The radial solutions

Then, there exists a solution (measure valued solution for the Vlasov equations, classical solution
for the Poisson equation) with the following properties:

• φλ is C2
r1, rbs and it is increasing concave.

• φλ converges locally uniformly to zero in p1, rbs as λÑ 0.

• Boundary-layer estimate:

λ2

2

ż rb

1
r
ˇ

ˇ

ˇ

ˇ

dφλ
dr
prq

ˇ

ˇ

ˇ

ˇ

2
dr `

α

2

ż rb

1
|φλprq|2dr “

λÝÑ0
Opλq.

where α ą 0 is a constant independent on λ.

• }ni ´ ne}L1r1,rbs Ñ 0 as λÑ 0.
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Mathematical study



The strategy

• Fix the potential φ P W 2,8
r1, rbs and compute explicitly the solutions of the Vlasov

equations using the method of characteristics.

• Compute the densities ni ,ne and study the resulting Poisson equation.
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The linear Vlasov equation

• The characteristics of the Vlasov equation with a potential ψ “ ˘φ are given by the
solutions of:

$

’

’

&

’

’

%

d
dt rptq “ vr ptq,
d
dt vr ptq “

v2
θ
ptq

rptq ´
d
dr ψprptqq,

d
dt vθptq “ ´

vr ptqvθptq
rptq .

Solutions of the Vlasov equation are constant on the characteristics.

• Constants of motion:
d
dt

˜

v2r ptq
2

`
vθptq2

2
` ψprptqq

¸

“ 0,
d
dt
prptqvθptqq “ 0.

• The characteristics are contained in the level sets defined for L P R and e P R by:

CL,e “

#

pr , vr , vθq P p1, rbq ˆ R2 :
v2r
2
`

v2θ
2
` ψprq “ e and rvθ “ L

+

.
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Phase space study

• For L P R being fixed, define the effective potential:

ULrψsprq “
L2

2r2
` ψprq.

• Its maximum value is denoted:

ULrψs “ max
rPr1,rbs

ULrψsprq.

• For each L P R, study the phase space pr , vr q by looking at the level sets of the function:

pr , vr q ÞÑ
v2r
2
` ULrψsprq.

The maximum value ULrψs defines a global potential barrier: it separates the trajectories that

collapse with the Langmuir probe from those which do not.
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Phase space study

• Cover the phase space pr , vr q with the curves of equation: v2r
2 “ e ´ ULrψsprq.

• Study the barrier position when e ă ULrψs :
rpL, eq :“ minta P r1, rbs : @r P ra, rbs, ULrψsprq ď eu.

vr

UL “ e

rrpL, eq

r

UL

UL
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Phase space study

• Decomposition of the phase space:

D1
brψspLq :“

"

pr , vr q P p1, rbq ˆ R : vr ă ´
b

2pULrψs ´ ULrψsprqq
*

,

D2
brψspLq :“

#

pr , vr q P p1, rbq ˆ R :
v2r
2
` ULrψsprq ă ULrψs and r ą rpL, eq

+

.

• The solution of the Vlasov equation is constant on the characteristics, it is natural to define:

f pr , vr , vθq “
#

f bp´
a

v2r ` 2pULrψsprq ´ ULrψsprbqq,
rvθ
rb
q if pr , vr q P DbrψspLq, L “ rvθ,

0 otherwise.

It defines a weak solution to the Vlasov equation for a potential ψ “ ˘φ.
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Computation of the macroscopic densities and currents

• Define ρ̃rψs :“ infta P r1, rbs : for a.e r P ra, rbs, ψprq ď 0u.

Then
rpL, eq “ ρ̃rULrψs ´ es.

• Define:
β : Rˆ r1, rbs ˆ R ÝÑ R

pν, r , Lq ÞÝÑ 2ν ` L2
ˆ 1
r2
´

1
r2b

˙

.

• Define:
Γ : Rˆ r1, rbs ˆ Rˆ R ÝÑ R

pν, r ,w , Lq ÞÝÑ

$

’

&

’

%

pwq´
a

w2 ´ βpν, r , Lq
if w2

ą βpν, r , Lq,

0 otherwise.
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Computation of the macroscopic densities and currents
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β : Rˆ r1, rbs ˆ R ÝÑ R
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r2
´
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r2b

˙
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Computation of the macroscopic densities and currents

Proposition
The macroscopic density and current associated with a potential ψ “ ˘φ are given by:

nrψsprq “
1
r
grψspψprq, rq

grψspν, rq “
ż

R2
Γ
`

ν, r ,w , L
˘

f b
ˆ

w ,
L
rb

˙ˆ

1`1
w2` L2

r2b
ă2ULrψs

˙

1
rě rρ

”

ψ` L2
2
`

1
‚ 2 ´

1
r2b

˘

´w2
ı dw dL,

Jrψsprq “
2
r

ż L“`8

L“0

ż

´

b

2pULrψss´ULrψsprbqq

´8

f b
ˆ

w ;
L
rb

˙

w dw dL.

The quantities ULrψs and ρ̃ are non-local.
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Existence of a solution

• We are interested in solving the Poisson problem:
$

’

&

’

%

´λ2 d
dr

ˆ

r dφ
dr

˙

prq “ grφspφprq, rq ´ gr´φsp´φprq, rq,

φp1q “ φp φprbq “ 0.

• The bracket rφs encodes the non-locality.

• The source term in the Poisson equation thus is non-linear and non-local.
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Existence of a solution: a fixed-point method

The strategy:

• Fix the non-local terms.

• Solve the local semi-linear Poisson problem.

• Establish enough compactness.

• Pass to the limit to conclude.

Let φn
P W 2,8

r1, rbs such that φn
p1q “ φp and φn

prbq “ 0. Solve for φn`1 :
$

’

&

’

%

´λ2 d
dr

ˆ

r dφn`1
dr

˙

prq “ grφn
spφprqn`1, rq ´ gr´φn

sp´φprqn`1, rq,

φn`1
p1q “ φp φn`1

prbq “ 0.
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Existence of a solution: compactness

Lemma (Functions gi and ge are finite)

Let f : R2
Ñ R measurable and let p P r1, 2q. Then,

sup
νPR

sup
rPr1,rbs

ż

`8

´8

ż

`8

´8

|w |p
ˇ

ˇw2 ´ L2
` 1
r2
´ 1

r2b

˘

´ 2ν
ˇ

ˇ

p
2

ˇ

ˇf pw , Lq
ˇ

ˇ dw dL ď 2}f }L1

`
4

2´ p
}f }L1LpL

8
w pw dwqq;

The non linear source term grφn
spφprqn`1, rq ´ gr´φn

sp´φprqn`1, rq is uniformly bounded in

L8. We get that the sequence pφn
q is bounded in W 2,8. This implies compactness by

Rellich-Kondrachov theorem. In particular φn converges (up to a sub seq) uniformly to some φ.
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Existence of a solution: passing to the limit

How to pass to the limit in the quantity:
ρ̃rψ ´ es :“ infta P r1, rbs @r ě a ψprq ď eu.

It is in general not continuous with respect to ψ for the L8 topology. The problem is at strict
local maxima of ψ.

}ψ1 ´ ψ2}L8 ă ε

e

ρ̃rψ1 ´ es ρ̃rψ2 ´ es

ψ2

ψ1

Lemma (Convergence property for rρ)

Let pφnq be a sequence of continuous functions that is uniformly converging towards φ. Then for
almost every e P R,

rρrφn ´ es ÝÑ rρrφ´ es.

Enough to conclude since it appears ρ̃ only appears under an integral.
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Numerics



Gradient descent based iterative method: continuous setting

Iterative method:

• If φn is given, define Grφn
spν, rq “

şν
0 grφn

spν1, rqdν1.

• Consider the energy functional:

Jrφn
spψq “

ż rb

1

λ2

2
r
ˇ

ˇ

ˇ

ˇ

dψ
dr
prq

ˇ

ˇ

ˇ

ˇ

2
` Gr´φn

sp´ψprq, rq ´ Grφn
spψprq, rqdr .

• Compute by recursion:
φ
n`1

“ φ
n
´ ρ∇Jrφn

spφ
n
q, ρ ą 0.

The gradient ∇Jrφn
spφn

q P V is the unique Riesz-representation of the Fréchet differential
of J at φn for a chosen inner product p¨ ; ¨q:

p∇hJrφn
hspφ

n
hq;ϕq “ dJrφn

hspφ
n
hqpϕq @ϕ P V 0

h .

• At convergence, it solves the non-linear and non-local Poisson problem.
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Gradient descent based iterative method: discrete setting

Uniform mesh of the interval r1, rbs of size h “ prb ´ 1q{pN ` 1q
φn
h P Vh :“ continuous and piecewise affine functions on r1, rbs.

• If ψ P Vh, ρ̃rψs is computed by interpolation.

ρ̃rψh ´ es

e

ψh

rk`1rk

• The indicator 1
w2` L2

r2b
ă2ULrψs

is regularized because oscillations may appear if high order

numerical integration is used.

Mehdi Badsi A kinetic model of plasma-probe interaction : theory and numerics 26 / 41



Gradient descent based iterative method: discrete setting

Uniform mesh of the interval r1, rbs of size h “ prb ´ 1q{pN ` 1q
φn
h P Vh :“ continuous and piecewise affine functions on r1, rbs.

• If ψ P Vh, ρ̃rψs is computed by interpolation.

ρ̃rψh ´ es

e

ψh

rk`1rk

• The indicator 1
w2` L2

r2b
ă2ULrψs

is regularized because oscillations may appear if high order

numerical integration is used.

Mehdi Badsi A kinetic model of plasma-probe interaction : theory and numerics 26 / 41



Gradient descent based iterative method: discrete setting

Uniform mesh of the interval r1, rbs of size h “ prb ´ 1q{pN ` 1q
φn
h P Vh :“ continuous and piecewise affine functions on r1, rbs.

• If ψ P Vh, ρ̃rψs is computed by interpolation.

ρ̃rψh ´ es

e

ψh

rk`1rk

• The indicator 1
w2` L2

r2b
ă2ULrψs

is regularized because oscillations may appear if high order

numerical integration is used.

Mehdi Badsi A kinetic model of plasma-probe interaction : theory and numerics 26 / 41



Gradient descent based iterative method: discrete setting

Uniform mesh of the interval r1, rbs of size h “ prb ´ 1q{pN ` 1q
φn
h P Vh :“ continuous and piecewise affine functions on r1, rbs.

• If ψ P Vh, ρ̃rψs is computed by interpolation.

ρ̃rψh ´ es

e

ψh

rk`1rk

• The indicator 1
w2` L2

r2b
ă2ULrψs

is regularized because oscillations may appear if high order

numerical integration is used.

Mehdi Badsi A kinetic model of plasma-probe interaction : theory and numerics 26 / 41



Gradient descent based iterative method: discrete setting

Uniform mesh of the interval r1, rbs of size h “ prb ´ 1q{pN ` 1q
φn
h P Vh :“ continuous and piecewise affine functions on r1, rbs.

• If ψ P Vh, ρ̃rψs is computed by interpolation.

ρ̃rψh ´ es

e

ψh

rk`1rk

• The indicator 1
w2` L2

r2b
ă2ULrψs

is regularized because oscillations may appear if high order

numerical integration is used.

Mehdi Badsi A kinetic model of plasma-probe interaction : theory and numerics 26 / 41



Radial solutions: the 1D sheath problem

f bi pvr , vθq “ gb
i pvr q b δvθ“0, f be pvr , vθq “ gb

e pvr q b δvθ“0.

with

gb
i pvr q “

v2r
?
2π

e´
pvr´ui q

2
2 , ui “ ´2.0 gb

e pvr q “
nb
?
2π

e´
v2r
2 .

• nb is fixed a priori to ensure ni prbq “ neprbq.

• The Bohm condition
ş0
´8

gb
i pvr qv

´2
r dvr ă const is verified.

• rb “ 3, λ “ 0.1,N “ 200. The gradient algorithm is stopped when
}∇hJrφn

hspφ
n
hq}L8 ă 10´8.
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Radial solutions: the 1D sheath problem

Figure 4: Radial case with satisfied Bohm condition: potential φprq (left) and density
difference rni prq ´ rneprq (right) for φp varying from ´0.6 to ´3.
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Radial solutions: the 1D sheath problem

gb
i pvr q “ 1?

2π
e´

v2r
2 .

Figure 5: Radial case with unsatisfied Bohm condition: potential φprq (left) and
density difference rni prq ´ rneprq (right) for φp varying from ´0.6 to ´3.
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Radial solutions: the 1D sheath problem

Figure 6: Radial case: total current density at the probe pji ´ jeqpr “ 1, φpq as a
function of the probe potential, the Bohm condition being satisfied (left) or unsatisfied
(right).
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Two dimensional solutions: the Maxwellian case

f bi pvr , vθq “
1
?
2π

e´
v2r
2 bMT pvθq, f be pvr , vθq “

nb
?
2π

e´
v2r
2 bMT pvθq

where

MT pvθq “
1

?
2πT

e´
v2
θ

2T , T ą 0.

• nb is fixed a priori to ensure ni prbq “ neprbq.

• rb “ 3, λ “ 0.1,N “ 200. The gradient algorithm is stopped when
}∇hJrφn

hspφ
n
hq}L8 ă 10´4.

• T “ 0.1 and T “ 0.05.

Mehdi Badsi A kinetic model of plasma-probe interaction : theory and numerics 31 / 41



Figure 7: Maxwellian case: potential φprq (left) and density difference rni prq ´ rneprq
(right) for φp “ ´3 and two values of T: 0.05 and 0.1.
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Figure 8: Maxwellian case: ionic distribution function fi pr , vr q for T “ 0.05 (top),
T “ 0.1 (bottom).
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Figure 9: Maxwellian case: ionic distribution function fi pr , vr q for T “ 0.05 (top),
T “ 0.1 (bottom)
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Figure 10: Maxwellian case: ionic distribution function fepr , vr q for T “ 0.05 (left),
T “ 0.1 (right), and three increasing values of vθ from top to bottom.
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Figure 11: Maxwellian case: ionic distribution function fepr , vr q for T “ 0.05 (left),
T “ 0.1 (right), and three increasing values of vθ from top to bottom.
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Figure 12: Maxwellian case: total current density at the probe pji ´ jeqpr “ 1, φpq as a
function of the probe potential.
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Figure 13: Maxwellian case: φ and electronic trajectories.
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Figure 14: Maxwellian case: φ and ionic trajectories.
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Conclusion



Conclusion

• We proved the existence of solutions for a kinetic model of plasma-probe interaction.

• We obtained qualitative description and quantitative estimates of the solutions in the radial
setting.

• We proposed a numerical method to compute the solutions which is able to capture closed
trajectories.

• Comparison with the results of Laframboise 1 needs more numerical investigation.

1Laframbroise, Theory of spherical and cylindrical Langmuir probes in collisionless Maxwellian
plasmas, 1996.
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Thank you for paying attention.
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