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2BIOCORE, Iniria Nice Sophia-Antipolis
3COFFEE, Iniria Nice Sophia-Antipolis

4Laboratoire de J.A. Dieudonné, Université Côte d’Azur
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1 Context
There are many physical cases of flows composed of different gas or liquids interacting together. For example,
tissue bodies and tumors can be described as a set of interacting viscoelastic materials. Powder-snow avalanches
can be described as a mixture of fluid phases. Similarly, the rheology of the gut microbiota and its interactions
with chyme (a mixture of partially digested food and water) and the host can be modelled using mixture theory
[6]. Complex flows can also be found in many engineering application involving multiphase systems such as
boiling water in nuclear reactors. Therefore, the framework of mixture theory is a common tool to model and
study complex systems.

Mixture flows being ubiquitous in biophysics and engineering, the numerical schemes elaborated in the
project will not be restricted to this specific application. Mathematical models based on mixture theory take
the form of systems of partial derivative equations, coupled with algebraic constraints. The theoretical analysis
of such systems and the characterization of the qualitative properties of the solutions is extremely complicated.
Thus, it is important to develop efficient numerical methods able to accurately capture the solutions.

In this project, we are interested in applications of mixture models for describing biofilm dynamics. Indeed,
mixture theory revealed a powerful approach to represent microbial biofilms where a consortium of cells is
embedded in a polymeric structure [3, 8, 9]. Figure 1 present biofilms at microscopic scale.

(a) Bacterial biofilm image from [1] (b) Micro-algae biofilm image from [5]

Figure 1: Example microscopy imaging of bacterial and micro-algae biofilms

In mixture theory, the unknowns of the model are requested to satisfy certain constraints. As far as the
continuous equations are considered, several equivalent formulations of these constraints can be derived and
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used to bring out properties of the model. However, the preservation of these constraints by a numerical scheme
is a challenge and, once a discretization set up has been adopted, it is not clear that all the formulations of the
constraints remain equivalent. This issue can induce a loss of stability and accuracy, and eventually a dramatic
loss of key physical properties of the simulated flows.

The first objective of the project is to adapt and extend the numerical scheme proposed in [2] in order to
preserve these constraints. Next, we wish: (i) to design a version of the scheme that reaches second order accuracy
in time and space, (ii) to explore and compare different modeling options.

The developments will be tested and illustrated with a multiphasic model representing the development of a
photosynthetic biofilm, with application for biofuel, protein or drug production.

2 Mixture theory model for biofilms

2.1 Model description
We focus on a simplified 1D model for biofilms. Biofilms are made of microorganisms A (micro-algae or
bacteria) and an extra-cellular matrix E, immersed in water L. Each component 𝑘 ∈ {A, E,L} is described
through macroscopic variables: the mass density 𝜌𝑘 , the volume fraction 𝜙𝑘 which represents the percentage of
volume occupied by the component 𝑘 in an elementary piece of volume, and finally the velocity 𝑣𝑘 . Therefore, by
definition, the volume fractions satisfy at any time the volume filling constraint∑︁

𝑘∈{A,E,L}
𝜙𝑘 = 1 ⇐⇒ 𝜙A + 𝜙E + 𝜙L = 1. (1)

It means that all the domain is filled and there is no vacuum. The local composition of the mixture evolves due to
mechanical mechanisms such as transport and chemical reactions: several components react together leading to
the consumption of some and the production of others. We denote by Γ𝑘 the source term corresponding to the
gain/loss of mass for the 𝑘th phase and the mass balance equations take the form

𝜕𝑡 (𝜌𝑘𝜙𝑘) + 𝜕𝑥 (𝜌𝑘𝜙𝑘𝑣𝑘) = Γ𝑘 , 𝑘 ∈ {A, E,L}. (2)

In this context, the volumic mass density 𝜌𝑘 can be assumed to be constant. Thus the mass balance equations
are equivalent to 𝜕𝑡𝜙𝑘 + 𝜕𝑥 (𝜙𝑘𝑣𝑘) = Γ𝑘/𝜌𝑘 . Then summing these equations for each phase leads to the pseudo
incompressibility constraint:

𝜕𝑥
(
𝜙A𝑣A + 𝜙E𝑣E + 𝜙L𝑣L

)
=

ΓA
𝜌A

+ ΓE
𝜌E

+ ΓL
𝜌L

(3)

For biofilms, there are various biological processes to be taken into account: growth, extra-cellular matrix
excretion and death. These reactions are schematically represented in Table 1. The parameters 𝜂𝑘 are pseudo
stoichiometric coefficients that quantify how much a reactant or a product is consumed or produced when a
reaction occurs. The functions 𝜓 are the reaction rates. They describe the speed at which a reaction takes place
as a function of the local composition of the mixture. Therefore, the source terms read as follows:

ΓA = 𝜓𝑔 − 𝜓𝑒 − 𝜓𝑑 , ΓE = 𝜓𝑒 + 𝜂E𝜓𝑑 , ΓL = (1 − 𝜂E)𝜓𝑑 − 𝜂L𝜓𝑔 .

The growth is mainly induced by substrate (S) assimilation and liquid (L) absorption. However, in first
approximation we assume that the substrate is in excess. Thus the growth rate 𝜓𝑔 takes the form of 𝜓𝑔 = 𝜇𝑔AL
where 𝜇𝑔 is the maximal growth rate. The extra-cellular matrix excretion 𝜓𝑒 and the the death rate 𝜓𝑑 are
assumed to be proportional to the quantity of micro-algae, thus 𝜓𝑒 = 𝜇𝑒A and 𝜓𝑑 = 𝜇𝑑A, respectively.

The movement of the different components depends on the local forces applied to the system. For each
component, a momentum balance equation gathers these physical features. According to [3, 8, 9], let us consider
the hydrostatic pressure 𝑃, the elastic tensor for the biofilm constituents (micro-algae and extra-cellular-matrix)
∇𝜋𝑘 , and the friction between phases 𝐹 and the momentum supply induced by mass exchanges Γ𝑘v𝑘 . The
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Bioreaction representation

Name reactant(s) Rate Product(s)

Growth 𝜂LL + 𝜂SS
𝜓𝑔−−−−−−−→ A

Excretion A
𝜓𝑒−−−−−−−→ E

Death A
𝜓𝑑−−−−−−−→ 𝜂EE + (1 − 𝜂E)L

Table 1: Schematic representation of the biochemical reactions considered for a simplified model of biofilm
growth.

viscous stress tensor reads 𝜏 = 𝜇𝑘
(
∇𝑣𝑘 + 𝑡∇𝑣𝑘 − 2

3 (∇ · 𝑣𝑘)Id
)
. The phases are also subjected to a gravity force

𝑔. Eventually, in 1D the momentum equations write

𝜕𝑡 (𝜌𝑘𝜙𝑘𝑣𝑘) + 𝜕𝑥
(
𝜌𝑘𝜙𝑘𝑣

2
𝑘

)
+ 𝜕𝑥𝜋𝑘 = −𝜙𝑘𝜕𝑥𝑃 + 4

3
𝜕𝑥

(
𝜇𝑘𝜕𝑥𝑣𝑘

)
+ 𝐹𝑘 + Γ𝑘𝑣𝑘 + 𝜙𝑘𝜌𝑘𝑔, 𝑘 ∈ {A, E,L}.

Let us now detail the expression of the elastic tensors and the friction forces. For the liquid the elastic force is
negligible, namely 𝜋L = 0. For the micro-algae (𝑘 = A) and the extra-cellular matrix (𝑘 = E), we assume that the

elastic tensor is defined as in [2]: 𝜋𝑘 = 𝛾𝑘
𝜙
𝛽𝑘
𝑘

𝜙★
𝑘
−𝜙

𝑘

. In this expression, the coefficient 𝛾𝑘 has the homogeneity of a
pressure, the exponent satisfy 𝛽𝑘 > 1 and 𝜙★

𝑘
is the so-called close-packing volume fraction for the component. As

in [2, 3, 8, 9] we assume that the friction forces are proportional to the relative velocity 𝐹𝑘 =
∑

𝑝≠𝑘 𝑓𝑘, 𝑝
(
𝑣𝑝 − 𝑣𝑘

)
with 𝑓𝑘, 𝑝 constant parameters. However, there are evidences that this force may depend on the local composition
of the mixture; the adaptation of this feature and its impact assessment is one of the aim of the project, see
section 4.1.

The model is supplemented by boundary conditions. Let Ω = [0, 𝐿] be the domain and 𝜕Ω its boundary.
In 1D the domain should correspond to a biofilm core drilling in the orthogonal axis of the support where the
biofilm develops. The velocities at the bottom of the domain which corresponds to the surface on which the
biofilm develops vanishes: 𝑣𝑘 (0) = 0, 𝑘 ∈ {A, E,L}. However, the velocity on the top must satisfy a constraint
induced by the incompressibility constraint (3). Indeed, the integration the over the whole domain of equation (3)
combined with the null velocity at the bottom lead to(

𝜙A𝑣A + 𝜙E𝑣E + 𝜙L𝑣L
)
(𝑥 = 𝐿) =

∫ 𝐿

0

(
ΓA
𝜌A

+ ΓE
𝜌E

+ ΓL
𝜌L

)
𝑑𝑥

To enforce this condition, let assume that the top velocities are given by 𝑣𝑘 =
∫ 𝐿

0

(
ΓA
𝜌A

+ ΓE
𝜌E

+ ΓL
𝜌L

)
𝑑𝑥.
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2.2 Synthesis of model equations
The PDE system under consideration writes:

𝜙A + 𝜙E + 𝜙L = 1, (4a)

𝜕𝑡𝜙A + 𝜕𝑥 (𝜙A𝑣A) = ΓA
𝜌A

, (4b)

𝜕𝑡𝜙E + 𝜕𝑥 (𝜙E𝑣E) =
ΓE
𝜌E
, (4c)

𝜕𝑡𝜙L + 𝜕𝑥 (𝜙L𝑣L) =
ΓL
𝜌L

, (4d)

𝜕𝑡 (𝜌A𝜙A𝑣A) + 𝜕𝑥
(
𝜌A𝜙A𝑣

2
A

)
+ 𝜕𝑥𝜋A = −𝜙A𝜕𝑥𝑃 + 4

3
𝜕𝑥

(
𝜇A𝜕𝑥𝑣A

)
+ 𝐹A + ΓA𝑣A + 𝜙A𝜌A𝑔, (4e)

𝜕𝑡 (𝜌E𝜙E𝑣E) + 𝜕𝑥
(
𝜌E𝜙E𝑣

2
E

)
+ 𝜕𝑥𝜋E = −𝜙E𝜕𝑥𝑃 + 4

3
𝜕𝑥

(
𝜇E𝜕𝑥𝑣E

)
+ 𝐹E + ΓE𝑣E + 𝜙E𝜌E𝑔, (4f)

𝜕𝑡 (𝜌L𝜙L𝑣L) + 𝜕𝑥
(
𝜌L𝜙L𝑣

2
L

)
= −𝜙L𝜕𝑥𝑃 + 4

3
𝜕𝑥

(
𝜇L𝜕𝑥𝑣L

)
+ 𝐹L + ΓL𝑣L + 𝜙L𝜌L𝑔, (4g)

with

ΓA = 𝜓𝑔 − 𝜓𝑒 − 𝜓𝑑 , ΓE = 𝜓𝑒 + 𝜂E𝜓𝑑 , ΓL = (1 − 𝜂E)𝜓𝑑 − 𝜂L𝜓𝑔, (5a)
𝜓𝑔 = 𝜇𝑔AL, 𝜓𝑒 = 𝜇𝑒A, 𝜓𝑑 = 𝜇𝑑A, (5b)

𝜋𝑘 = 𝛾𝑘
𝜙
𝛽𝑘

𝑘

𝜙★
𝑘
− 𝜙

𝑘

, 𝑘 ∈ {A, E}, (5c)

𝐹𝑘 =
∑︁
𝑝≠𝑘

𝑓𝑘, 𝑝
(
𝑣𝑝 − 𝑣𝑘

)
, 𝑘 ∈ {A, E,L}. (5d)

Most of the parameters come from [9] or [2]. The micro-algae and the extra-cellular-matrix viscosity
coefficient are taken from [7]. All the parameters values are gathered in table 2.

3 Numerical scheme: implementation and analysis
The pressure is an unknown which is implicitly defined, associated to the constraint (1). The key point of
the method presented in [2] is to build a numerical scheme able to preserve the different formulations of the
constraints at the discrete level. The method is based on a time splitting method, in the spirit of projection methods
in incompressible fluid mechanics. In the first step, the whole system is updated neglecting the constraint. In the
second step, the velocities are corrected by using the incompressibility constraint (3). However, the computation
of the pressure uses the definition of the convection fluxes in order to handle the incompressibility constraint and
to preserve the consistency of the scheme. In turn, this discrete equation becomes non-linear.

4 Project targets

4.1 First tasks
1. Develop from [2] a finite volume scheme for the 3-phases model, preserving the constraints of the model,

2. Implement the numerical scheme using Python,

3. Adapt the friction forces and in order to account the local composition of the mixture by changing the
friction coefficient 𝑓𝑘, 𝑝 into a function of the local composition: 𝑓 𝑓 , 𝑝

(
𝜙𝑘𝜙𝑝

)𝛼 and then compare the
results with the original mode.

4. Change the model for the elastic tensor into:
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Symbol Name Value Unit

𝜇𝑔 Micro-algae maximal growth rate 2 𝑑𝑎𝑦−1

𝜇𝑒 Micro-algae maximal ECM excretion rate 0.4 𝑑𝑎𝑦−1

𝜇𝑑 Micro-algae maximal death rate rate 0.2 𝑑𝑎𝑦−1

𝜂L Liquid pseudo stoichiometric coefficient for growth 0.96 ∅
𝜂S Substrate pseudo stoichiometric coefficient for growth 0.146 ∅
𝜂E Liquid pseudo stoichiometric coefficient for growth 0.90 ∅
𝜙★A Micro-algae close packing threshold ∼ 0.75 ∅
𝛾A Micro-algae viscoelastic tensor coefficient 1.5 · 10−7 𝑘𝑔/𝑚/𝑑𝑎𝑦
𝛽A Micro-algae viscoelastic tensor exponent 1 ∅
𝜙★E Extra-cellular matrix close packing threshold ∼ 0.75 ∅
𝛾E Extra-cellular matrix viscoelastic tensor coefficient 1.5 · 10−7 𝑘𝑔/𝑚/𝑑𝑎𝑦
𝛽E Extra-cellular matrix viscoelastic tensor exponent 1 ∅
𝜌A Micro-algae volumetric mass density 1050 𝑘𝑔/𝑚3

𝜌A Extra-cellular matrix volumetric mass density 1050 𝑘𝑔/𝑚3

𝜌L Liquid volumetric mass density 1020 𝑘𝑔/𝑚3

𝜇L Liquid viscosity 10−3 𝑃𝑎 · 𝑠
𝜇A Micro-algae viscosity [0.1, 10] 𝑃𝑎 · 𝑠
𝜇E Extra-cellular matrix viscosity [0.1, 10] 𝑃𝑎 · 𝑠

Table 2: Model parameters

(a) 𝜋 = 𝛾𝜙𝛽 as [3, 8, 9] in and study its impact on solution dynamic and the CFL condition,
(b) 𝜋 = −𝛾

(
ln(1 − 𝜙) + 𝜙 + 𝜙2) as [4] in and study its impact on solution dynamic and the CFL condition.

4.2 Model extensions
4.2.1 Light absorption

The growth of the biofilm is mainly induced by photosynthesis. Therefore, it is relevant to include the effects of
light for micro-algae biofilms. This can be incorporated in the model (see [3, 8, 9]) by changing the mathematical
law for growth from 𝜓𝑔 = 𝜇𝑔AL into

𝜓𝑔 = 𝜇𝑔AL 2(1 + 𝐾I)I
I2 + 2𝐾II + 1

, I(𝑡, 𝑧) =
I𝑠𝑢𝑟 𝑓 (𝑡)
I𝑜𝑝𝑡

exp
(
−
∫ 𝑧𝑠𝑢𝑟 𝑓

𝑧

𝜏(1 − L)𝑑ℎ
)

where 𝐾I is a parameter associated to Haldane’s law for the impact of the rescaled light intensity I. The rescaled
light intensity I depends on the light intensity at the surface I𝑠𝑢𝑟 𝑓 , the optimal light intensity I𝑜𝑝𝑡 and the
absorption rate of the biofilm 𝜏

4.2.2 Substrate concentration dynamic

The substrate S is a dissolved component within the liquid phase. In addition to the transport by the phase it can
also diffuse at a rate 𝐷S within the phase. Therefore, the masse balance equations for a dissolved 𝑐S within a
phase 𝜙𝑘 writes:

𝜕𝑡 (𝜌L𝜙L𝑐S) + 𝜕𝑥 (𝜌L𝜙L𝑐S𝑣L) − 𝜕𝑥 (𝜌L𝜙L𝐷S𝜕𝑥𝑐S) = ΓS

Then the micro-algae growth can account for the local substrate availability using Monod law, see [9]. Thus, 𝜓𝑔

becomes:

𝜓𝑔 = 𝜇𝑔AL 2(1 + 𝐾I)I
I2 + 2𝐾II + 1

S
𝐾S + S , I(𝑡, 𝑧) =

I𝑠𝑢𝑟 𝑓 (𝑡)
I𝑜𝑝𝑡

exp
(
−
∫ 𝑧𝑠𝑢𝑟 𝑓

𝑧

𝜏(1 − L)𝑑ℎ
)
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where 𝐾S is the half-saturation constant for the substrates. The external substrate supply is obtained through
boundary conditions by imposing S(𝐿) = S★ where S★ is a reference concentration. All the parameters values
associated to this extension can be found in [9].

4.2.3 Inclusion of additionnal states

If time permits, another population (bacteria) will also be included together with other substrates such as oxygen
or CO2. Bacteria consume the EPS produced by microalgae to grow and use oxygen, while microalgae use the
CO2 for photosynthesis. A scheme for a more automatic implementation of additionnal state variables will be
proposed.
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