Statistical theory for deep neural networks

Lectures 1 & 2

Johannes Schmidt-Hieber
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The problem

o complex data structures ~~ no available statistical models

o combination of intricate network architectures with various
regularization methods

o fitting a network is a non-linear problem in the network
parameters

@ non-convex function class
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Why theory?

o understand why deep learning works

o deep learning is a chaotic field (thousands of publications)
~» mathematical theory can be useful to extract key concepts

o comparison with other methods

o selection of tuning parameters

o detecting limitations of deep learning
o improvements

o hybrid methods
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organization of the course

Lectures:
o Theory for shallow networks
o Advantages of additional layers
o Statistical theory for deep ReLU networks

o Overparametrization
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Shallow networks

o shallow neural network with one output is a function
f: R? — R of the form

m
f(x) = cha(ijx + vj), w; € R, vj,¢ € R.
j=1

o c:R—=R
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Feedforward neural networks

o for v =(vi,.

Vr)T7y = (.yla .
shifted activation function o, : R" — R" as

,yr)" € R", define the
_ T
ov= (o1 —v1),...,0(yr = v))
o network architecture (L, p)

o positive integer L called number of hidden layers/depth

o width vector p = (po,...,pr41) € NFF2
Neural network with architecture (L, p) is

f(X) — WL(TV/ WL*l(TV/,\ e W].O-V\ WOX

o W;is a pj X pj+1 weight matrix
o v; € RP is a shift vector
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Feedforward neural networks

Comments:

o feedforward ~~ information is passed in one direction through
the network

o network functions are build by alternating matrix-vector
multiplications with the action of the non-linear activation
function o

o network architecture is given

o parameters generating the underlying function class are the
matrices W, ..., W, and the shift bectors vq,..., v,
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Graph representation

©

© © o0 o

output ! 2

Ve

hidden layers »l

in CS, neural networks are introduced via graph representation
nodes in the graph (also called units) are arranged in layers
input layer is the first layer and the output layer the last layer
layers that lie in between are called hidden layers

number of hidden layers corresponds to L and the number of
units in each layer generates the width vector p

Each node/unit in the graph representation stands for
operation o(a’ - +b)
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Special types

Neural network:

f(x) = Wioy, Wi_10y, , - -- Wioy, Wox,

Comments:

©

network is called sparse if W; are sparse matrices

©

i-th layer is fully connected ~~ W; is dense

for L = 1 network coincides with shallow networks

©

©

if L > 1, network is called deep
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Depth

Revolution of Depth
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Source: Kaiming He, Deep Residual Networks
o version of ResNet with 152 hidden layers
o networks become deeper

Do
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High-dimensionality
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Source: arxiv.org/pdf/1605.07678.pdf

o Number of network parameters is larger than sample size

o AlexNet uses 60 million parameters for 1.2 million training
samples
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functions generated by shallow networks

problems:
o how large is this class?
o how well can we approximate functions of a specific
smoothness?

o or the function f(x1,x2) = x1x27
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universal approximation

o functions in the class F,, , have m(d + 2) real parameters

o nested spaces, e.g. Fm o C Fpy » Whenever m > m.

Shallow networks with
activation function ¢ have the universal approximation property if
for any € > 0 and any continuous function f on [0, 1]9, there exists
an integer m = m(f, ), such that

inf ||f — 0o <e.
g If — glle(oagey < €
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reduction to ridge functions

© many proofs first show universal approximation in dimension
one

o univariate functions {o(w - +v) : w,v € R} span the space of
continuous functions

o statement does not involve scalar products anymore

afterwards, it is enough to show that the function space spanned
by so called ridge functions

f=> gw)
j=1

with g; univariate and continuous has the universal approximation
property

O D = = = wac
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universal approximation for univariate functions

Shallow networks with smooth activation function that
is not a polynomial have universal approximation property for
d=1.

Proof:
o Alo(t) := (o(t +xh) —a(t))/h
o Alo(t) = AYAE o)1)
o definition of the k-th derivative ~~

Apo(t)

A (t)) =0, ash—0
X
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universal approximation for univariate functions (ctd.)

©

o not a polynomial ~» there exists for each k a real number ty
with o(K)(t,) # 0
o multiplying with x* and division ¢(¥)(t,) yields

Afo(ty) P

2 (1) — — 0, ash—0.

o for any h >0, (¥ (tx)) *Ako(tx) can be realized by a
shallow network with k + 1 units

o ~ build networks approximating the function x — x*
arbitrarily well in sup-norm

o apply Weierstrass approximation theorem O
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some comments on the proof

o proof provides explicit construction of networks that closely
resemble polynomials

o construction requires that

o uses only one point of the activation function to generate a
specific power

o ~- small perturbations of the activation function can lead to
completely different properties

o networks can "zoom in"” at local features of the activation
function

o the universal approximation theorem can be extended to
continuous activation functions using local smoothing
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universal approximation via Fourier transform

o Fourier transform Ff(&) = [ e "€ *f(x) dx
o inverse Fourier transform F~1f(x) = (2m)~¢ [ e EF(£) de

o f=F1Ff
o for any complex number z, z = |z|e/® for some real number
¢ = ()

o ~ there exists a real valued function ¢(w) such that
Ff(w) = e®M)|Ff(w)]
o Fourier inversion ~~

L iwTx i
f(x)= ) Re/eW Xel®W)| Ff (w)|dw

1

— (2n)d /cos (wa—i- ¢(W))|]-“f(w)\dw

o ~~ will be used later for approximation rates

18/60



Approximation rates for shallow networks

How well can we approximate a function in dependence on
smoothness etc. 7

o smooth activation functions

o approximation rates using multivariate polynomials
o Barron's class
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approximation rates for smooth activation function

Mhaskar '96

o smooth activation function

()

B-smooth function (in L?-Sobolev sense)

©

©

proof first approximates polynomials of ridge functions and
then continues with polynomial approximation
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approximation rates for arbitrary activation function

o Petrushev '99

o good approximation rates can be obtained for functions that
are smoother than the activation function

o ~ effect becomes better as input dimension increases

o proof: reduce to ridge functions 4+ approximation of Radon
inversion 4+ polynomial eigenbasis

o proof is constructive ~~ several interesting conclusions
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remarks

proofs always relate shallow networks to polynomials

©

we could start directly with polynomials and would obtain the
same approximation rates

()

Next: Barron's result

©

22/60



Barron's approximation theorem

o for any sigmoidal activation function

©

any m > 1,

©

any function f

define

©

there exist shallow network such that

©

Remarks:
o rate m—1/2 does not depend on the dimension d

o do neural networks avoid curse of dimensionality?
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On the rate

©

Recall: Cr = [ |w|{|Ff(w)|dw
indeed there is nothing special about neural networks here

©

Candes '02 shows that truncated Fourier series achieves
approximation rate

©

for the same function class {f : Cr < oo}

©

gain is related to loss in Maurey's theorem

Up to now, no approximation problem has been found where
shallow networks outperform Fourier series or polynomial
approximation
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statistical model

o combine approximation theory with statistical analysis
o given an i.i.d. sample (X;,Y;) € R xR, i =1,...,n with
bounded responses |Y;| <1,

o want to recover the regression function

f(x) = E[Yi|Xj = x]

~ Y; € {0,1} and f(x) = P(Yi|X; = x)
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oracle inequality

o f be the

fe argmingcg Z (Yi— fg(X,-))2.
i=1

o standard exponential inequalities
~+ if © is a discrete set with cardinality |©], then
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statistical bounds for shallow networks

© © 06 0 o o

Barron '94

discretizes network parameters

study empirical risk minimizer

m(d + 2) is the number of parameters

log O] < m(d +2)logn

oracle inequality 4+ approximation theory ~~

bias variance trade-off ~~ m = \/n/logn
yields the rate
log n
n
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summary

o universal approximation
o approximation rates

o estimation risk bounds

no gain in terms of rates with respect to series estimators

next lecture discusses advantages of additional layers
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advantages of additional layers

localization

©

o approximation of polynomials with deep networks

©

Kolmogorov-Arnold representation theorem

©

advantages of deep ReLU networks
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localization with Heaviside activation function

o no localization for shallow networks in dimension d > 1 (?)

o for commonly used activation functions, taking two hidden
layers allows us to localize in arbitrary dimensions

Heaviside activation function og = 1(- > 0),

©

o ~- outer neuron only gets activated iff all the inner neurons
output one

this is the case iff —1 < x; < 1foralli=1,...,d

©
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localization by other activation functions

©

for sigmoidal activation function
o(ax) = og(x), for large a.
o for the ReLU o(x) = (x)4,
o(ax) —o(ax — 1) = op(x), for large a.

o approximation quality depends on «

©

~ results using neural networks with sigmoidal activation
often have conditions on the speed at which |o(x)| — 0 for
x — —o0, and |1 — o(x)| — 0 for x — +o0
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approximation of x2“ with deep networks

o for a smooth activation function, the function x — x2* lies in
the closure of a shallow network with 2% + 1 units
(" previous lecture)

o rescaled finite second order differences

o(t+2xh) — 20(t +xh) +o(t)
OJl(t)h2 ~ 4
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a graphical proof

ok
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improved representation theorems

o Kolmogorov-Arnold approximation theorem shows that every
continuous function can be represented by a specific two-layer
network

o very different structure if compared with the universal
approximation theorem for shallow networks

Theorem (Braun '09): Fix d > 2. There are real numbers a, by, ¢4
and a continuous and monotone function 9 : R — R, such that for
any continuous function f : [0,1]¢ — R, there exists a continuous
function g : R — R with

2d d
Fxa, - oxa) = 8D bpthlxp + 6a) + ¢4 )
q=0 p=1
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remarks

o one inner function ¢ and one outer function g
o inner function is independent of f
o g-dependence in the first layer comes through the shifts ga.

o right hand side can be realized by a network with two hidden
layers, architecture p = (d, d,2d + 1,1), and 9 being the
activation function in the first layer.
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link to pre-training

o inner function in the Kolmogorov-Arnold representation
theorem is independent of the represented function f

o exploited in pre-training where a trained deep network from a
possibly completely different classification problem is taken
and only the last layer is learned by the new dataset

o fact that pre-training works shows that deep networks build
generic function systems in the first layers.
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deep RelLU networks

o representation of identity
o growth of number of linear pieces

o approximation by RelLU networks with small parameters
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deep RelLU networks can learn skip connections

o projection property

000 =0

o ~> pass a signal without change through several layers in the
network

~> network synchronization by adding hidden layers

©

related to skip connections and ResNets

©

for other activation functions it is much harder to approximate
the identity

©
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number of linear pieces of deep ReLU networks

o deep RelLU networks are piecewise linear functions of the input

Qo

o consider ReLU network with two hidden layers and width
vector (1, m,1,1) of the form

m
(D" lwx+v)+)
, +
j=1
o ~» number of added pieces by outer ReLU is proportional to
number of zero crossings of inner function
o any RelLU network with width vector (1, p1,...,p,1) has at
most
L
3\ L
(5) I+
j=1

pieces
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example of a highly oscillating function

Functions:
o let T:[0,1] — [1],

T(x):=2x)A (1 —-2x)=(2x)4y — (4x — 2)+

o can be realized by shallow network with two units
o Rk:[0,1] —[0,1],

Rk =ToTo... T

k times
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network representation
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multiplication

o crucial problem for approximation theory

o for deep networks this can be reduced to approximation of
square function x — x2 via

- (R ()

o has a surprising answer for ReLU networks

42 /60



approach from Lecture 2

o for twice differentiable activation function, we used

o(t + 2xh) — 20(t + xh) + o(xh)
h2a"(t)

—~x%2forh—0

o ~> network parameters become large

o for deep ReLU networks we use a different construction
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RelLU approximation of the square function

Functions:
o let Tk :[0,2272K] — [0,272K],

TH(x) = (x/2) A (217 = x/2) = (x/2)4 — (x = 217,

o R¥:[0,1] — [0,272],
R :=TkoTk 1o, .. TL

Lemma (Telgarsky '16, Yarotski '18, SH '17):

m

‘x(l EDY Rk(x)( <2 m

k=1
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rewriting approximation as network

deep ReLU approximation:

o m hidden layers

©

O(m) network parameters

©

bounded parameters

o approximation 277

©

for x(1 — x) a shallow ReLU network needs at least O(2™/?)
parameters to achieve approximation error 2=
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multiplication with deep ReLU networks

Lemma: There exists a network Mult,, with m + 4 hidden layers,
width vector (2,6,6,...,6,1) and all network parameters bounded
by one, such that

| Multm(x,y) —xy| <27, forall x,y € [0,1].

o use polarization identity

(37 - (%)

xy = -

Y 2 2

o separation of positive and negative part

o compute (x + y)/2 and (x — y)/2 in first layer
(non-negativity!)

o square network has to be incorporated twice (inefficient)
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a step in the proof
Src R¥(u) + h(u)

To(B™(w) 3o, BE(u) +h(u) T (R™(u))

|
i

Ty(R'u)  R'(u)+ h(u) T2 (R (u))

Ty (u) h(w) T (u)
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localization and approximation

o we have seen that with two hidden layers we can localize

o how can this be done for ReLU networks?

©

goes back to Yarotsky '18

()

define D(M) as all grid points on the grid

{(fj//\/l)jzl,...,, 0= (l,...,0)e{0,1,..., M}f}

r

M
S T - b i) = [T 300~ Ml — /m)). =1,

xgeD(M) j=1 j=1+¢=0

localized functions
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local Taylor approximation

o on each localized bit (a € D(M)) do a Taylor approximation

o this can be approximately realized by a deep ReLU network

o many technicalities occur (see the article SH '17)
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approximation rate

Theorem: For any -smooth function f : [0,1]” — R and any
integers m, N > 1, there exists a ReLU network with

o depth L xm

o width in each layer bounded by < N

o number of non-zero network parameters s < Nm
such that

~ A
— 0o n < -m -
IIf —fl, (0,1 < N2 + N

small for deep networks  approx. rate
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remarks

small for deep networks  approx. rate

()

for deep networks first term is of smaller order

©

second term becomes suboptimal for large depth
trade-off

o sparse networks

©
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risk bounds for deep RelLU networks

Framework:
o we now study a statistical problem
o requires that we first need to specify a statistical model

o we study nonparametric regression
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mathematical problem

X ={images}

fiX—Y

—> Y ={ cat’,“dog”}

The data are used to fit a network, i.e. estimate the network
parameters.

How fast does the estimated network

converge to the truth f as sample size increases?

Do
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statistical analysis

o we observe n i.i.d. copies (X1, Y1),...,(Xn, Yn),

Yi =f(Xj)+ei, e ~N(0,1)

o X; €RY Y; €R,
o goal is to reconstruct the function f : RY — R

o has been studied extensively
(kernel smoothing, wavelets, splines, ...)
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the estimator

o choose network architecture (L, p) and sparsity s
o denote by F(L,p,s) the class of all networks with

o architecture (L, p)
o number of active (e.g. non-zero) parameters is s

o our theory applies to any estimator f,, taking values in
F(L,p,s)
o prediction error

~

R(fa, £) = Er[(fa(X) — £(X))?],

with X 2 X; being independent of the sample
o study the dependence of n on R(f,,, f)
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function class

o classical idea: assume that regression function is S-smooth
o optimal nonparametric estimation rate is n—28/(26+d)

o suffers from curse of dimensionality

o to understand deep learning this setting is therefore useless

o ~» make a good structural assumption on f
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hierarchical structure

lines —» letters —» words —» sentences

/
¢ H  HELLO  HELLO WORLD

o Important: Only few objects are combined on deeper
abstraction level
o few letters in one word
o few words in one sentence
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function class

o We assume that

f=gq0...080
with
o gi:RY — R+,
o each of the djy; components of g; is Bj-smooth and depends
only on t; variables
o t; can be much smaller than dj;
o effective smoothness
q
B =8 [] (Ben1).
r=it1
o we show that the rate depends on the pairs

(t,67), i=0,...,q.

o similar conditions have been proposed by Horowitz & Mammen
(2007), Kohler & Kryzak (2017), Bauer & Kohler (2017),
Kohler & Langer (2018)
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example

)

060
0400

f(xi,..., X5) = h(gl(Xl, x3,X4), 8&2(x1, X4, X5), gs(Xz))

here: g =1, (do, di, Cl'2) = (5,3, 1), to =1t = 3.
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main result
Theorem: If

(i) depth < logn
17)
(ii) width > network sparsity < max;—g, . q n®*7*t log n

Then, for any network reconstruction method f,,

(up to log n-factors) with

A, = E[l Z(v,- CR(XK)2 - inf L znj(v,- — f(X;))?

n feF(Lp,s) N
] eF(Lps) N =
and
_
¢n:= max n *Fith,
i:07"'7q
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