
Statistical theory for deep neural networks

Lectures 1 & 2

Johannes Schmidt-Hieber

1 / 60

The problem

general belief that no or little theory can be developed for modern
deep network architectures

complex data structures no available statistical models

combination of intricate network architectures with various
regularization methods

fitting a network is a non-linear problem in the network
parameters

non-convex function class

. . .

2 / 60

Why theory?

What is the use of theoretical results in a field that is (successfully)
driven by trial and error?

understand why deep learning works

deep learning is a chaotic field (thousands of publications)
 mathematical theory can be useful to extract key concepts

comparison with other methods

selection of tuning parameters

detecting limitations of deep learning

improvements

hybrid methods

3 / 60

organization of the course

Lectures:

Theory for shallow networks

Advantages of additional layers

Statistical theory for deep ReLU networks

Overparametrization

4 / 60

Shallow networks

shallow neural network with one output is a function
f : Rd → R of the form

f (x) =
m∑
j=1

cjσ
(
w>j x + vj

)
, wj ∈ Rd , vj , cj ∈ R.

activation function σ : R→ R

5 / 60

Feedforward neural networks

for v = (v1, . . . , vr)>, y = (y1, . . . , yr)> ∈ Rr , define the
shifted activation function σv : Rr → Rr as

σv = (σ(y1 − v1), . . . , σ(yr − vr))>.

network architecture (L,p)

positive integer L called number of hidden layers/depth
width vector p = (p0, . . . , pL+1) ∈ NL+2

Neural network with architecture (L,p) is

f (x) = WLσvLWL−1σvL−1
· · ·W1σv1W0x,

Wi is a pi × pi+1 weight matrix

vi ∈ Rpi is a shift vector

6 / 60

Feedforward neural networks

Neural network:

f (x) = WLσvLWL−1σvL−1
· · ·W1σv1W0x,

Comments:

feedforward information is passed in one direction through
the network

network functions are build by alternating matrix-vector
multiplications with the action of the non-linear activation
function σ

network architecture is given

parameters generating the underlying function class are the
matrices W0, . . . ,WL and the shift bectors v1, . . . , vL

7 / 60

Graph representation

in CS, neural networks are introduced via graph representation

nodes in the graph (also called units) are arranged in layers

input layer is the first layer and the output layer the last layer

layers that lie in between are called hidden layers

number of hidden layers corresponds to L and the number of
units in each layer generates the width vector p

Each node/unit in the graph representation stands for
operation σ(at ·+b)

8 / 60

Special types

Neural network:

f (x) = WLσvLWL−1σvL−1
· · ·W1σv1W0x,

Comments:

network is called sparse if Wi are sparse matrices

i-th layer is fully connected Wi is dense

for L = 1 network coincides with shallow networks

if L > 1, network is called deep

9 / 60

Depth

Source: Kaiming He, Deep Residual Networks

Networks are deep

version of ResNet with 152 hidden layers
networks become deeper

10 / 60

High-dimensionality

Source: arxiv.org/pdf/1605.07678.pdf

Number of network parameters is larger than sample size

AlexNet uses 60 million parameters for 1.2 million training
samples

11 / 60

functions generated by shallow networks

Consider function class

Fm,σ :=
{
f =

m∑
j=1

cjσ
(
w>j ·+vj

)
: wj ∈ Rd , vj , cj ∈ R

}
.

problems:

how large is this class?

how well can we approximate functions of a specific
smoothness?

or the function f (x1, x2) = x1x2?

12 / 60

universal approximation

Fm,σ :=
{
f =

m∑
j=1

cjσ
(
w>j ·+vj

)
: wj ∈ Rd , vj , cj ∈ R

}
.

functions in the class Fm,σ have m(d + 2) real parameters

nested spaces, e.g. Fm,σ ⊆ Fm′,σ whenever m′ ≥ m.

Universal approximation property: Shallow networks with
activation function σ have the universal approximation property if
for any ε > 0 and any continuous function f on [0, 1]d , there exists
an integer m = m(f , ε), such that

inf
g∈Fm,σ

‖f − g‖L∞([0,1]d) ≤ ε.

13 / 60

reduction to ridge functions

many proofs first show universal approximation in dimension
one

univariate functions {σ(w ·+v) : w , v ∈ R} span the space of
continuous functions

statement does not involve scalar products anymore

afterwards, it is enough to show that the function space spanned
by so called ridge functions

f =
m∑
j=1

gj(w>j ·)

with gj univariate and continuous has the universal approximation
property

14 / 60

universal approximation for univariate functions

Theorem: Shallow networks with smooth activation function that
is not a polynomial have universal approximation property for
d = 1.

Proof:

∆1
hσ(t) := (σ(t + xh)− σ(t))/h

∆k
hσ(t) := ∆1

h(∆k−1
h σ)(t)

definition of the k-th derivative ∣∣∣∆k
hσ(t)

xk
− σ(k)(t)

∣∣∣→ 0, as h→ 0

15 / 60

universal approximation for univariate functions (ctd.)

σ not a polynomial there exists for each k a real number tk
with σ(k)(tk) 6= 0

multiplying with xk and division σ(k)(tk) yields∣∣∣∆k
hσ(tk)

σ(k)(tk)
− xk

∣∣∣→ 0, as h→ 0.

for any h > 0, (σ(k)(tk))−1∆k
hσ(tk) can be realized by a

shallow network with k + 1 units

 build networks approximating the function x 7→ xk

arbitrarily well in sup-norm

apply Weierstrass approximation theorem

16 / 60

some comments on the proof

proof provides explicit construction of networks that closely
resemble polynomials

construction requires that some parameters are extremely
small and others are very large

uses only one point of the activation function to generate a
specific power

 small perturbations of the activation function can lead to
completely different properties

networks can ”zoom in” at local features of the activation
function

the universal approximation theorem can be extended to
continuous activation functions using local smoothing

17 / 60

universal approximation via Fourier transform

Fourier transform F f (ξ) =
∫
e−iξ

>xf (x) dx

inverse Fourier transform F−1f (x) = (2π)−d
∫
e ix
>ξf (ξ) dξ

f = F−1F f
for any complex number z , z = |z |e iφ for some real number
φ = φ(z)

 there exists a real valued function φ(w) such that
F f (w) = e iφ(w)|F f (w)|
Fourier inversion

f (x) =
1

(2π)d
Re

∫
e iw
>xe iφ(w)|F f (w)|dw

=
1

(2π)d

∫
cos
(
w>x + φ(w)

)
|F f (w)|dw

discretization of the integral on the right hand side gives the
structure of a shallow network with activation function cos()

 will be used later for approximation rates

18 / 60

Approximation rates for shallow networks

How well can we approximate a function in dependence on
smoothness etc. ?

smooth activation functions

approximation rates using multivariate polynomials

Barron’s class

19 / 60

approximation rates for smooth activation function

Mhaskar ’96

smooth activation function

β-smooth function (in L2-Sobolev sense)

rate of approximation over all shallow networks with m units
is m−β/d with d the dimension

proof first approximates polynomials of ridge functions and
then continues with polynomial approximation

20 / 60

approximation rates for arbitrary activation function

Petrushev ’99

good approximation rates can be obtained for functions that
are smoother than the activation function

Theorem: if activation function is s-smooth (Sobolev), optimal
approximation rates are obtained for s + (d − 1)/2-smooth
functions

 effect becomes better as input dimension increases

proof: reduce to ridge functions + approximation of Radon
inversion + polynomial eigenbasis

proof is constructive several interesting conclusions

21 / 60

remarks

proofs always relate shallow networks to polynomials

we could start directly with polynomials and would obtain the
same approximation rates

does not help to identify problems where neural networks
perform better than other methods

Next: Barron’s result

22 / 60

Barron’s approximation theorem

for any sigmoidal activation function

any m ≥ 1,

any function f

define Cf :=
∫
|w|1F(f)(w)dw

there exist shallow network such that

∥∥∥f (·)− f (0)−
m∑
j=1

cjσ(w>j ·+vj)
∥∥∥ ≤ 2Cf

(2π)d
√
m
,

Remarks:

rate m−1/2 does not depend on the dimension d

do neural networks avoid curse of dimensionality?

23 / 60

On the rate

Recall: Cf =
∫
|w|1|F f (w)|dw

indeed there is nothing special about neural networks here

Candes ’02 shows that truncated Fourier series achieves faster
approximation rate

m−1/2−1/d

for the same function class {f : Cf <∞}
gain is related to loss in Maurey’s theorem

Up to now, no approximation problem has been found where
shallow networks outperform Fourier series or polynomial

approximation

24 / 60

statistical model

combine approximation theory with statistical analysis

given an i.i.d. sample (Xi ,Yi) ∈ Rd × R, i = 1, . . . , n with
bounded responses |Yi | ≤ 1,

want to recover the regression function

f (x) = E
[
Yi |Xi = x

]
covers binary classification
 Yi ∈ {0, 1} and f (x) = P(Yi |Xi = x)

25 / 60

oracle inequality

f̂ be the empirical risk minimizer

f̂ ∈ argminθ∈Θ

n∑
i=1

(
Yi − fθ(Xi)

)2
.

standard exponential inequalities
 if Θ is a discrete set with cardinality |Θ|, then

Ef

[
‖f̂ − f ‖2

2

]
≤ C inf

θ∈Θ
‖f − fθ‖2

2 + C
log |Θ|

n

26 / 60

statistical bounds for shallow networks

Barron ’94

discretizes network parameters

study empirical risk minimizer

m(d + 2) is the number of parameters

log |Θ| . m(d + 2) log n

oracle inequality + approximation theory

Ef

[
‖f̂ − f ‖2

2

]
. m−1 +

m log n

n
.

if Cf =
∫
|w|1|F f (w)|dw <∞.

bias variance trade-off m =
√
n/ log n

yields the rate √
log n

n

27 / 60

summary

shallow networks:

universal approximation

approximation rates

estimation risk bounds

no gain in terms of rates with respect to series estimators

next lecture discusses advantages of additional layers

28 / 60

advantages of additional layers

localization

approximation of polynomials with deep networks

Kolmogorov-Arnold representation theorem

advantages of deep ReLU networks

29 / 60

localization with Heaviside activation function

no localization for shallow networks in dimension d > 1 (?)

for commonly used activation functions, taking two hidden
layers allows us to localize in arbitrary dimensions

Heaviside activation function σ0 = 1(· ≥ 0),

1(x ∈ [−1, 1]d) = σ0

(d∑
i=1

σ0(xi + 1) + σ0(−xi + 1)− 2d +
1

2

)

 outer neuron only gets activated iff all the inner neurons
output one

this is the case iff −1 ≤ xi ≤ 1 for all i = 1, . . . , d

30 / 60

localization by other activation functions

for sigmoidal activation function

σ(αx) ≈ σ0(x), for large α.

for the ReLU σ(x) = (x)+,

σ(αx)− σ(αx − 1) ≈ σ0(x), for large α.

approximation quality depends on α

 results using neural networks with sigmoidal activation
often have conditions on the speed at which |σ(x)| → 0 for
x → −∞, and |1− σ(x)| → 0 for x → +∞
localization might be a useful property for approximation,
being non-local might be helpful for the (stochastic) gradient
descent

31 / 60

approximation of x2k

with deep networks

for a smooth activation function, the function x 7→ x2k lies in
the closure of a shallow network with 2k + 1 units
(↗ previous lecture)

stacking layers on top of each other, this can be reduced to
O(k) units in k layers

rescaled finite second order differences

σ(t + 2xh)− 2σ(t + xh) + σ(t)

σ′′(t)h2
≈ x2.

32 / 60

a graphical proof

33 / 60

improved representation theorems

Kolmogorov-Arnold approximation theorem shows that every
continuous function can be represented by a specific two-layer
network

very different structure if compared with the universal
approximation theorem for shallow networks

indicates that additional layers can lead to new features of
network functions

Theorem (Braun ’09): Fix d ≥ 2. There are real numbers a, bp, cq
and a continuous and monotone function ψ : R→ R, such that for
any continuous function f : [0, 1]d → R, there exists a continuous
function g : R→ R with

f (x1, . . . , xd) =
2d∑
q=0

g
(d∑

p=1

bpψ(xp + qa) + cq
)
.

34 / 60

remarks

f (x1, . . . , xd) =
2d∑
q=0

g
(d∑

p=1

bpψ(xp + qa) + cq
)
.

one inner function ψ and one outer function g

inner function is independent of f

q-dependence in the first layer comes through the shifts qa.

right hand side can be realized by a network with two hidden
layers, architecture p = (d , d , 2d + 1, 1), and ψ being the
activation function in the first layer.

35 / 60

link to pre-training

inner function in the Kolmogorov-Arnold representation
theorem is independent of the represented function f

in deep learning it has been observed that the first layers build
function systems which can be used for other classification
problems

exploited in pre-training where a trained deep network from a
possibly completely different classification problem is taken
and only the last layer is learned by the new dataset

fact that pre-training works shows that deep networks build
generic function systems in the first layers.

36 / 60

deep ReLU networks

we discuss several advantages of deep ReLU networks

representation of identity

growth of number of linear pieces

approximation by ReLU networks with small parameters

37 / 60

deep ReLU networks can learn skip connections

σ(x) = max(x , 0)

projection property

σ ◦ σ = σ

 pass a signal without change through several layers in the
network

 network synchronization by adding hidden layers

related to skip connections and ResNets

for other activation functions it is much harder to approximate
the identity

38 / 60

number of linear pieces of deep ReLU networks

deep ReLU networks are piecewise linear functions of the input

adding layers highly oscillating functions with few
parameters

consider ReLU network with two hidden layers and width
vector (1,m, 1, 1) of the form(m∑

j=1

cj(wjx + vj)+

)
+

 number of added pieces by outer ReLU is proportional to
number of zero crossings of inner function

any ReLU network with width vector (1, p1, . . . , pL, 1) has at
most (3

2

)L L∏
j=1

(pj + 1)

pieces

39 / 60

example of a highly oscillating function

Functions:

let T : [0, 1]→ [1],

T (x) := (2x) ∧ (1− 2x) = (2x)+ − (4x − 2)+

can be realized by shallow network with two units

Rk : [0, 1]→ [0, 1],

Rk := T ◦ T ◦ . . .T︸ ︷︷ ︸
k times

40 / 60

network representation

41 / 60

multiplication

how can we (approximately) multiply two inputs with a network?

crucial problem for approximation theory

for deep networks this can be reduced to approximation of
square function x 7→ x2 via

xy =
(x + y

2

)2
−
(x − y

2

)2

has a surprising answer for ReLU networks

42 / 60

approach from Lecture 2

network approximation of the function x 7→ x2 is very important!

for twice differentiable activation function, we used

σ(t + 2xh)− 2σ(t + xh) + σ(xh)

h2σ′′(t)
→ x2 for h→ 0

 network parameters become large

for deep ReLU networks we use a different construction

43 / 60

ReLU approximation of the square function

Functions:

let T k : [0, 22−2k]→ [0, 2−2k],

T k(x) := (x/2) ∧ (21−2k − x/2) = (x/2)+ − (x − 21−2k)+

Rk : [0, 1]→ [0, 2−2k],

Rk := T k ◦ T k−1 ◦ . . .T 1.

Lemma (Telgarsky ’16, Yarotski ’18, SH ’17):

∣∣∣x(1− x)−
m∑

k=1

Rk(x)
∣∣∣ ≤ 2−m.

44 / 60

rewriting approximation as network

∣∣∣x(1− x)−
m∑

k=1

Rk(x)
∣∣∣ ≤ 2−m.

deep ReLU approximation:

m hidden layers

O(m) network parameters

bounded parameters

approximation 2−m

shallow ReLU network

for x(1− x) a shallow ReLU network needs at least O(2m/2)
parameters to achieve approximation error 2−m

45 / 60

multiplication with deep ReLU networks

Lemma: There exists a network Multm with m + 4 hidden layers,
width vector (2, 6, 6, . . . , 6, 1) and all network parameters bounded
by one, such that∣∣Multm(x , y)− xy

∣∣ ≤ 2−m, for all x , y ∈ [0, 1].

Proof:

use polarization identity

xy =
(x + y

2

)2
−
(x − y

2

)2

separation of positive and negative part

compute (x + y)/2 and (x − y)/2 in first layer
(non-negativity!)

square network has to be incorporated twice (inefficient)

46 / 60

a step in the proof

47 / 60

localization and approximation

we have seen that with two hidden layers we can localize

how can this be done for ReLU networks?

goes back to Yarotsky ’18

define D(M) as all grid points on the grid{
(`j/M)j=1,...,r : ` = (`1, . . . , `r) ∈ {0, 1, . . . ,M}r

}
partition of unity on unit cube

∑
x`∈D(M)

r∏
j=1

(1−M|xj − x`j |)+︸ ︷︷ ︸
localized functions

=
r∏

j=1

M∑
`=0

(1−M|xj − `/M|)+ = 1,

48 / 60

local Taylor approximation

on each localized bit (a ∈ D(M)) do a Taylor approximation

f (x) ≈ Pβa f (x) :=
∑

0≤|α|<β

(∂αf)(a)
(x− a)α

α!
=

∑
0≤|γ|<β

xγcγ

this can be approximately realized by a deep ReLU network

many technicalities occur (see the article SH ’17)

49 / 60

approximation rate

Theorem: For any β-smooth function f : [0, 1]r → R and any
integers m,N ≥ 1, there exists a ReLU network with

depth L � m

width in each layer bounded by . N

number of non-zero network parameters s . Nm

such that

‖f̃ − f ‖L∞([0,1]r) . N2−m︸ ︷︷ ︸
small for deep networks

+ N−
β
r︸︷︷︸

approx. rate

.

50 / 60

remarks

‖f̃ − f ‖L∞([0,1]r) . N2−m︸ ︷︷ ︸
small for deep networks

+ N−
β
r︸︷︷︸

approx. rate

.

for deep networks first term is of smaller order

second term becomes suboptimal for large depth

trade-off

sparse networks

51 / 60

risk bounds for deep ReLU networks

Framework:

we now study a statistical problem

requires that we first need to specify a statistical model

we study nonparametric regression

52 / 60

mathematical problem

The data are used to fit a network, i.e. estimate the network
parameters.

How fast does the estimated network
converge to the truth f as sample size increases?

53 / 60

statistical analysis

we observe n i.i.d. copies (X1,Y1), . . . , (Xn,Yn),

Yi = f (Xi) + εi , εi ∼ N (0, 1)

Xi ∈ Rd , Yi ∈ R,
goal is to reconstruct the function f : Rd → R

has been studied extensively
(kernel smoothing, wavelets, splines, . . .)

54 / 60

the estimator

choose network architecture (L,p) and sparsity s

denote by F(L,p, s) the class of all networks with

architecture (L,p)
number of active (e.g. non-zero) parameters is s

our theory applies to any estimator f̂n taking values in
F(L,p, s)

prediction error

R(f̂n, f) := Ef

[(
f̂n(X)− f (X)

)2]
,

with X
D
= X1 being independent of the sample

study the dependence of n on R(f̂n, f)

55 / 60

function class

classical idea: assume that regression function is β-smooth

optimal nonparametric estimation rate is n−2β/(2β+d)

suffers from curse of dimensionality

to understand deep learning this setting is therefore useless

 make a good structural assumption on f

56 / 60

hierarchical structure

Important: Only few objects are combined on deeper
abstraction level

few letters in one word
few words in one sentence

57 / 60

function class
We assume that

f = gq ◦ . . . ◦ g0

with
gi : Rdi → Rdi+1 .
each of the di+1 components of gi is βi -smooth and depends
only on ti variables
ti can be much smaller than di
effective smoothness

β∗
i := βi

q∏
`=i+1

(β` ∧ 1).

we show that the rate depends on the pairs

(ti , β
∗
i), i = 0, . . . , q.

similar conditions have been proposed by Horowitz & Mammen
(2007), Kohler & Kryzak (2017), Bauer & Kohler (2017),
Kohler & Langer (2018)

58 / 60

example

f (x1, . . . , x5) = h
(
g1(x1, x3, x4), g2(x1, x4, x5), g3(x2)

)
here: q = 1, (d0, d1, d2) = (5, 3, 1), t0 = t1 = 3.

59 / 60

main result
Theorem: If

(i) depth � log n

(ii) width ≥ network sparsity � maxi=0,...,q n
ti

2β∗
i

+ti log n

Then, for any network reconstruction method f̂n,

prediction error � φn + ∆n

(up to log n-factors) with

∆n := E
[1

n

n∑
i=1

(Yi − f̂n(Xi))2 − inf
f ∈F(L,p,s)

1

n

n∑
i=1

(Yi − f (Xi))2
]

and

φn := max
i=0,...,q

n
− 2β∗i

2β∗
i

+ti .

60 / 60

