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Tensor networks

Tensor networks are prominent tools for the representation or approximation of
multivariate functions or multidimensional arrays.

A long history in quantum physics.

Tree tensor networks appeared independently in numerical analysis, as an extension
of low-rank decompositions to high-order tensors.

Growing use in statistics, data science and probabilistic modelling.
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Computing with tensor networks

For the approximation of a known tensor u with respect to a certain norm, we aim
at finding a tensor network v with low complexity that minimizes

‖u − v‖.

Here, the aim is the compression of u or the extraction of information from u (data
analysis).

For the solution of an equation Au = b (e.g. in quantum physics, uncertainty
quantification, stochastic calculus), we aim at finding a tensor network v with low
complexity that minimizes some distance to u, e.g. some residual norm

‖Av − b‖.

The aim is here to obtain an approximation of the solution u with a low
computational complexity.
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Computing with tensor networks

In tensor completion, knowing some entries (u(i))i∈Ω of a multidimensional array, we
try to find a tensor network that suitably fit the data, e.g. by minimizing∑

i∈Ω

|u(i)− v(i)|2,

The aim is here to recover (or complete) a tensor from partial information, by
exploiting low-rank structures of the tensor.

For inverse problems, we want to identify a tensor u from indirect and partial
observations y = Au or y = Au + ε, where A is an observation map. We try to find
a tensor network that suitably fit the observations by minimizing some distance

d(y ,Av)

between observations and the prediction Av .
Exploiting low-rank structures in u allows to reduce the number of parameters to
estimate and possibly makes the problem well-posed.
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Computing with tensor networks

Approximating a function u from evaluations u(xk) at some points xk , e.g. by
minimizing

1
n

n∑
k=1

(u(xk)− v(xk))2.

Depending on the context, points can be given or chosen. Here we want to exploit
at best the given evaluations or obtain a good approximation using a small number
of evaluations.
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Computing with tensor networks

In supervised or unsupervised learning, tensor networks are used as a powerful model
class for high-dimensional tasks.
Supervised learning of the relation between a random variable Y and another
random variable X . Introduction of a risk functional

R(v) = E(`(Y , v(X )))

that quantifies some expected distance between observations Y and predictions
v(X ). In practice, using samples {(xk , yk)}nk=1, we optimize an empirical risk

1
n

n∑
k=1

`(y k , v(xk))

Estimation of the density of a random variable X from samples {xk}nk=1. If the
density u minimizes some functional

R(v) = E(γ(v ,X )),

we minimize in practice an empirical risk

1
n

n∑
k=1

γ(v , xk)

6 / 157



Outline of the course

Part I: Tensors, ranks and tensor networks

Part II: Approximation theory of tree tensor networks

Part III: Computational aspects
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Algebraic tensors

Given d index sets Iν = {1, . . . ,Nν}, 1 ≤ ν ≤ d , we introduce the multi-index set

I = I1 × . . .× Id .

An element v of the vector space RI is a tensor of order d .

It can be represented by a multidimensional array

(vi )i∈I = (vi1,...,id )i1∈I1,...,id∈Id

that contains the coefficients of v in the canonical basis of RI , also denoted

v(i) = v(i1, . . . , id).

The order d is the number of dimensions, also known as ways or modes.

d = 1 d = 2 d = 3
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Tensor diagram notations

A tensor is represented by a solid shape and tensor indices are notated by lines emanating
from this shape.

d = 1

i1

d = 2

i1

i2

d = 3

i1

i2

i3

Connecting two index lines means contraction (or summation) over the corresponding
indices.

i A v
j

=
∑
j

A(i , j)v(j)
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Algebraic tensors

Given d vectors v (ν) ∈ RIν , 1 ≤ ν ≤ d , the tensor product of these vectors

v := v (1) ⊗ . . .⊗ v (d)

is called an elementary tensor and is such that

v(i) = v (1)(i1) . . . v (d)(id)

d = 2

⊗ ≡

Using matrix notations, v ⊗ w is
identified with the matrix vwT .

d = 3

⊗ ⊗ ≡
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Algebraic tensors

The tensor space RI = RI1×...×Id , also denoted RI1 ⊗ . . .⊗ RId , is defined by

RI = RI1 ⊗ . . .⊗ RId = span{v (1) ⊗ . . .⊗ v (d) : v (ν) ∈ RIν , 1 ≤ ν ≤ d}

The canonical norm on RI , also called the Frobenius norm, is given by

‖v‖ =

√∑
i∈I

v(i)2

and makes RI a Hilbert space. It coincides with the natural norm on `2(I ). It is the only
norm associated with an inner product and having the crossnorm property

‖v (1) ⊗ . . .⊗ v (d)‖ = ‖v (1)‖2 . . . ‖v (d)‖2.

In tensor diagram notations

‖v‖2 =
∑
i∈I

v(i)2 = v v

i1
i2

id−1

id
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Tensor product of functions

Let Vν ⊂ RXν be a space of functions defined on Xν .

Xν can be (a subset of) R, C, N, Z, or a set of vectors, sequences, graphs, images...

The tensor product of functions v (ν) ∈ Vν , denoted

v = v (1) ⊗ . . .⊗ v (d),

is a multivariate function defined on X = X1 × . . .×Xd and such that

v(x1, . . . , xd) = v (1)(x1) . . . v (d)(xd)

Example

For i ∈ Nd
0 , the monomial x i = x i1

1 . . . x
id
d is an elementary tensor.
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Tensor product of functions

The algebraic tensor product of spaces Vν is defined as

V1 ⊗ . . .⊗ Vd = span{v (1) ⊗ . . .⊗ v (d) : v (ν) ∈ Vν , 1 ≤ ν ≤ d}

which is the space of multivariate functions v which can be written as a finite linear
combination of elementary (separated functions), i.e.

v(x1, . . . , xd) =
n∑

k=1

v
(1)
k (x1) . . . v

(d)
k (xd).

Example

A polynomial
∑

i aix
i with x i = x i1

1 . . . x
id
d .

Up to a formal definition of the tensor product ⊗, the above construction can be
extended to more general vector spaces (not only spaces of functions), including spaces
of matrices or operators.
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Infinite dimensional tensor spaces

For infinite dimensional spaces Vν , a Hilbert (or Banach) tensor space equipped with a
norm ‖ · ‖ is obtained by the completion (w.r.t. ‖ · ‖) of the algebraic tensor space

V
‖·‖

= V1 ⊗ . . .⊗ Vd
‖·‖
.

If the Vν are Hilbert spaces with inner products (·, ·)ν and associated norms ‖ · ‖ν , a
canonical inner product on V can be first defined for elementary tensors

(v (1) ⊗ . . .⊗ v (d),w (1) ⊗ . . .⊗ w (d)) = (v (1),w (1)) . . . (v (d),w (d))

and then extended by linearity to the whole space V .

The associated norm ‖ · ‖ is called the canonical norm.
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Infinite dimensional tensor spaces

Example (Lp spaces)

Let 1 ≤ p <∞. If Vν = Lp
µν (Xν), then

Lp
µ1(X1)⊗ . . .⊗ Lp

µd
(Xd) ⊂ Lp

µ(X1 × . . .×Xd)

with µ = µ1 ⊗ . . .⊗ µd , and

Lp
µ1(X1)⊗ . . .⊗ Lp

µd (Xd)
‖·‖

= Lp
µ(X1 × . . .×Xd)

where ‖ · ‖ is the natural norm on Lp
µ(X1 × . . .×Xd).

Example (Bochner spaces)

Let X be equipped with a finite measure µ, and let W be a Hilbert (or Banach) space.
For 1 ≤ p <∞, the Bochner space Lp

µ(X ;W ) is the set of Bochner-measurable functions
u : X →W with bounded norm ‖u‖p = (

∫
X ‖u(x)‖pWµ(dx))1/p, and

Lp
µ(X ;W ) = W ⊗ Lp

µ(X )
‖·‖p

.
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Infinite dimensional tensor spaces

Example (Sobolev spaces)

The Sobolev space Hk(X ) of functions defined on X = X1 × . . .×Xd , equipped with the
norm

‖u‖2Hk =
∑
|α|1≤k

‖Dαu‖2L2 ,

is a Hilbert tensor space

Hk(X ) = Hk(X1)⊗ . . .⊗ Hk(Xd)
‖·‖

Hk
.

The Sobolev space Hk
mix(X ) equipped with the norm

‖u‖2Hk
mix

=
∑
|α|∞≤k

‖Dαu‖2L2 ,

is a different tensor Hilbert space

Hk
mix(X ) = Hk(X1)⊗ . . .⊗ Hk(Xd)

‖·‖
Hk
mix .

‖u‖Hk
mix

is the canonical tensor norm on Hk(X1)⊗ . . .⊗ Hk(Xd).
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Tensor product basis

If {φ(ν)
i }i∈Iν is a basis of Vν , then a basis of V = V1 ⊗ . . .⊗ Vd is given by{

φi = φ
(1)
i1
⊗ . . .⊗ φ(d)

id
: i ∈ I = I1 × . . .× Id

}
.

A tensor v ∈ V admits a decomposition

v =
∑
i∈I

aiφi =
∑
i1∈I1

. . .
∑
id∈Id

ai1,...,idφ
(1)
i1
⊗ . . .⊗ φ(d)

id
,

and v can be identified with the set of its coefficients

a ∈ RI .
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Hilbert tensor spaces

If the {φ(ν)
i }i∈Iν are orthonormal bases of spaces Vν , then {φi}i∈I is an orthonormal basis

of the Hilbert tensor space V
‖·‖

equipped with the canonical norm. A tensor

v =
∑
i∈I

aiφi

is such that
‖v‖2 =

∑
i∈I

a2
i := ‖a‖2.

Therefore, the map
a 7→

∑
i∈I

aiφi

defines a linear isometry from `2(I ) to V for finite dimensional spaces, and between `2(I )

and V
‖·‖

for infinite dimensional spaces.
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Tensor product feature map

If V is a space of functions defined on X = X1 × . . .×Xd , we introduce the feature map
φ(ν)(xν) = (φ

(ν)
iν

(xν))iν∈Iν ∈ RIν and the tensor product feature map Φ : X → RI such
that

Φ(x) = φ(1)(x1)⊗ . . .⊗ φ(d)(xd) ∈ RI

and a tensor v in V admits the representation

v(x) = (a,Φ(x)) =

a

φ(1)

x1

φ(2)

x2

... φ(d)

x1

i1 i2 id
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Rank of order-two tensors

The rank of an order-two tensor u ∈ V ⊗W , denoted rank(u), is the minimal integer r
such that

u =
r∑

k=1

vk ⊗ wk

for some vk ∈ V and wk ∈W .

A tensor u ∈ Rn ⊗Rm is identified with a matrix u ∈ Rn×m. The rank of u coincides with
the matrix rank, which is the minimal integer r such that

u =
r∑

k=1

vkw
T
k = VW T ,

where V = (v1, . . . , vr ) ∈ Rn×r and W = (w1, . . . ,wr ) ∈ Rm×r .

= + + =
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Singular value decomposition of order-two tensors

When V and W are Hilbert spaces (possibly infinite-dimensional), an algebraic tensor
u ∈ V ⊗W admits a singular value decomposition

u =
∑
k≥1

σkvk ⊗ wk ,

where vk and wk are orthonormal vectors (singular vectors) and σk ∈ R+ are the singular
values.

The rank of u is finite and coincides with the number of non-zero singular values,

rank(u) = #{k : σk 6= 0}.

Example (Singular value decomposition of matrices)

For V = Rn and W = Rm, u is identified with a matrix in Rn×m and

u =

rank(u)∑
k=1

σkvkw
T
k = VSWT

with orthogonal matrices V and W, and a diagonal matrix S.
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Singular value decomposition of order-two tensors

An algebraic tensor u ∈ V ⊗W can be identified with a linear operator from W to V
with rank equal to rank(u).

For infinite dimensional Hilbert spaces, the closure V ⊗W
‖·‖∨ of V ⊗W with respect to

the injective norm (corresponding to the operator norm or spectral norm) coincides with
the space of compact operators.

A tensor u ∈ V ⊗W
‖·‖∨ still admits a singular value decomposition

u =
∑
k≥1

σkvk ⊗ wk .

and the rank (number of non-zero singular values) is possibly infinite.
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Singular value decomposition of order-two tensors

Example (Proper Orthogonal Decomposition)

For Ω× I a space-time domain and V a Hilbert space of functions defined on Ω, a
function u ∈ L2(I ;V ) admits a singular value decomposition

u(t) =
∞∑
k=1

σkvkwk(t)

which is known as the Proper Orthogonal Decomposition (POD).

Example (Karhunen-Loeve decomposition)

For a probability space (Ω, µ), an element u ∈ L2
µ(Ω;V ) is a second-order V -valued

random variable. If u is zero-mean, the singular value decomposition of u is known as the
Karhunen-Loeve decomposition

u(ω) =
∞∑
k=1

σkvkwk(ω)

where wk : Ω→ R are uncorrelated (orthogonal) random variables.
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Low-rank format for order-two tensors

The set of tensors in V ⊗W with rank bounded by r , denoted

Rr = {v : rank(v) ≤ r},

is not a linear space nor a convex set. However, it has many favorable properties for a
numerical use.

The application v 7→ rank(v) is lower semi-continuous, and therefore the set Rr is
closed, which makes best approximation problems in Rr well posed.

Rr is the union of smooth manifolds of tensors with fixed rank.
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Canonical rank of higher-order tensors

For tensors u ∈ V1 ⊗ . . .⊗ Vd with d ≥ 3, there are different notions of rank.

The canonical rank, which is the natural extension of the notion of rank for order-two
tensors, is the minimal integer r such that

u(x1, . . . , xd) =
r∑

k=1

v
(1)
k (x1) . . . v

(d)
k (xd),

for some vectors v (ν)
k ∈ Vν .

Example

A monomial x i = x i1
1 . . . x

id
d has rank 1.

A polynomial
∑

i∈Λ aix
i has rank #Λ.

A Gaussian function exp(−α‖x − a‖22) =
∏d

i=1 exp(−α(xi − ai )
2) has rank 1.

The function 1
‖x‖2 has infinite rank.
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Canonical format

The subset of tensors in V = V1 ⊗ . . .⊗ Vd with canonical rank bounded by r is denoted

Rr = {v ∈ V : rank(v) ≤ r}.

A tensor in Rr has a representation

v(x1, . . . , xd) =
r∑

k=1

v
(1)
k (x1) . . . v

(d)
k (xd)

The storage complexity of tensors in Rr is

storage(Rr ) = r
d∑
ν=1

dim(Vν) = O(rdn)

for dim(Vν) = O(n).
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Canonical format

For d ≥ 3, the set Rr looses many of the favorable properties of the case d = 2.
Determining the rank of a given tensor is a NP-hard problem.
The set Rr is not an algebraic variety.
No notion of singular value decomposition.
The application v 7→ rank(v) is not lower semi-continuous and therefore, Rr is not
closed.

Example
Consider the order-3 tensor

v = a⊗ a⊗ b + a⊗ b ⊗ a + b ⊗ a⊗ a

where a and b are linearly independent vectors in Rm. The rank of v is 3. The sequence
of rank-2 tensors

vn = n(a +
1
n
b)⊗ (a +

1
n
b)⊗ (a +

1
n
b)− na⊗ a⊗ a

converges to v as n→∞.

The consequence is that for most problems involving approximation in canonical
format Rr , there is no robust method when d > 2.
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α-rank

For a non-empty subset α of D = {1, . . . , d}, a tensor u ∈ V = V1 ⊗ . . .⊗ Vd can be
identified with an order-two tensor

Mα(u) ∈ Vα ⊗ Vαc ,

where Vα =
⊗

ν∈α Vν , and αc = D \ α. The operatorMα = V → Vα ⊗ Vαc is called
the matricisation (or unfolding) operator.

M{1}←−−−−
M{2}−−−−→

The α-rank of u, denoted rankα(u), is the rank of the order-two tensorMα(u),

rankα(u) = rank(Mα(u)),

which is the minimal integer rα such that

Mα(u) =

rα∑
k=1

vαk ⊗ wαc

k

for some vαk ∈ Vα and wαc

k ∈ Vαc . We note that rankα(u) = rankαc (u).
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α-rank

A multivariate function u(x1, . . . , xd) with rankα(u) ≤ rα is such that

u(x) =

rα∑
k=1

vαk (xα)wαc

k (xαc )

for some functions vαk (xα) and wαc

k (xαc ) of groups of variables

xα = {xν}ν∈α and xαc = {xν}ν∈αc .
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α-rank

Example

u(x) = u1(x1) . . . ud(xd) can be written u(x) = uα(xα)uα
c

(xαc ), with
uα(xα) =

∏
ν∈α uν(xν). Therefore, for any α, rankα(u) = 1.

u(x) =
∑r

k=1 u
1
k (x1) . . . ud

k (xd) can be written
∑r

k=1 u
α
k (xα)uα

c

k (xαc ) with
uαk (xα) =

∏
ν∈α uνk (xν). Therefore, for any α, rankα(u) ≤ r , with equality if the

functions {uαk (xα)} and the functions {uα
c

k (xαc )} are linearity independent.

We deduce the following relation between α-ranks and canonical rank:

rankα(u) ≤ rank(u), for any α.

u(x) = u1(x1) + . . .+ ud(xd) can be written u(x) = uα(xα) + uα
c

(xαc ), with
uα(xα) =

∑
ν∈α uν(xν). Therefore, rankα(u) ≤ 2.

u(x) =
∏
α∈T uα(xα) with T a collection of disjoint subsets, is such that

rankα(u) = 1 for all α ∈ T , and rankγ(u) ≤
∏
α∈T ,α∩γ 6=∅ rankγ∩α(uα) for all γ.
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α-ranks and minimal subspaces

For a subset α of D = {1, . . . , d}, the minimal subspace

Umin
α (u)

of a tensor u ∈ V1 ⊗ . . .⊗ Vd is defined as the smallest subspace

Uα ⊂ Vα =
⊗
ν∈α

Vν

such that
Mα(u) ∈ Uα ⊗ Vαc .

The α-rank of u is the dimension of the minimal subspace Umin
α (u),

rankα(u) = dim(Umin
α (u)).

If u admits the representation

u(x) =

rankα(v)∑
k=1

vαk (xα)vα
c

(xαc )

then Umin
α (u) = span{vαk : 1 ≤ k ≤ rankα(u)}.
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α-ranks and minimal subspaces

For any partition {α1, . . . , αm} of D, an algebraic tensor u is such that

u ∈ Umin
α1 (u)⊗ . . .⊗ Umin

αm
(u)

Moreover, for any α ⊂ D and any partition {β1, . . . , βs} of α, it holds

Umin
α (u) ⊂ Umin

β1 (u)⊗ . . .⊗ Umin
βs (u)

that implies

rankα(u) ≤
s∏

k=1

rankβk (u)

Also, for any p ∈ {1, ..., s}

rankβp (u) ≤ rankα(u)
s∏

k=1
k 6=p

rankβk (u)
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α-ranks and minimal subspaces

Example
The function

u(x1, x2, x3) = cos(x1 +x2)+x1(x2 +2x3) = cos(x1) cos(x2)−sin(x1) sin(x2)+x1x2 +2x1x3

has for minimal subspaces and ranks

Umin
1 (u) = span{cos(x1), sin(x1), x1}, r1 = 3

Umin
2 (u) = span{cos(x2), sin(x2), x2}, r2 = 3

Umin
3 (u) = span{1, x3}, r3 = 2

Umin
1,2 (u) = span{cos(x1 + x2), x1x2, x1}, r1,2 = 3

Umin
2,3 (u) = span{cos(x2), sin(x2), x2 + 2x3}, r2,3 = 3

Umin
1,3 (u) = span{cos(x1), sin(x1), x1, x1x3}, r1,3 = 4

In particular, we can check that

Umin
1,3 (u) ⊂ Umin

1 (u)⊗ Umin
3 (u) = span{cos(x1), sin(x1), x1, cos(x1)x3, sin(x1)x3, x1x3}

r1,3 ≤ r1r3, r1 ≤ r1,3r3, r3 ≤ r1,3r1
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Tree-based tensor format

Tree-based (Hierarchical) tensor formats [Hackbusch-Kuhn’09] are subsets of tensors

T T
r = {v ∈ V : rankα(v) ≤ rα, α ∈ T}

where r = (rα)α∈T and where T is a dimension partition tree T over D = {1, . . . , d},
with root D and leaves L(T ) = {{ν} : 1 ≤ ν ≤ d}. All nodes in T are non empty
subsets of D. The set of children of α ∈ T is either empty (for a leaf node) or is a
nontrivial partition of α (for an interior node).

{1, 2, 3, 4, 5, 6}

{1, 2, 3}

{1}

{2, 3}

{2} {3}

{4, 5, 6}

{4} {5} {6}

The tree-based rank of a tensor v is the tuple rankT (v) = (rankα(v))α∈T .

By convention, rankD(v) = 1.
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Tree-based tensor format

Elements of T T
r admit an explicit representation. Let v ∈ T T

r with T -rank r = (rα)α∈T .
At the first level, v admits the representation

v(x) =

rβ1∑
kβ1 =1

. . .

rβs∑
kβs =1

C
(D)
kβ1 ,...,kβs

v
(β1)
kβ1

(xβ1) . . . v
(βs )
kβs

(xβs )

where {β1, . . . , βs} = S(D) are the children of the root node D, and {v (β)
kβ
}1≤kβ≤rβ form

a basis of the minimal subspace Umin
β (v).

{1, 2, 3, 4, 5, 6}

{1, 2, 3} {4, 5, 6}

C (D)

v (1,2,3)

x1,2,3

k1,2,3

v (4,5,6)

x4,5,6

k4,5,6

40 / 157



Tree-based tensor format

Then, for an interior node α of the tree, with children S(α) = {β1, . . . , βs}, the functions
(or tensors) v (α)

kα
admit the representation

v
(α)
kα

(xα) =

rβ1∑
kβ1 =1

. . .

rβs∑
kβs =1

C
(α)
kα,kβ1 ,...,kβs

v
(β1)
kβ1

(xβ1) . . . v
(βs )
kβs

(xβs ).

{1, 2, 3, 4, 5, 6}

{1, 2, 3}

{1}{2, 3}

{4, 5, 6}

{4} {5} {6}

C (D)

C (1,2,3)

v (1)

x1

k1

v (2,3)

x2,3

k2,3

k1,2,3

C (4,5,6)

v (4)

x4

k4

v (5)

x5

k5

v (6)

x6

k6

k4,5,6
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Tree-based tensor format as a tree tensor network

Finally, the tensor v admits the representation

v(x) =
∑

1≤kβ≤rβ
β∈T

∏
α∈T\L(T )

C
(α)
(kβ )β∈S(α),kα

∏
ν∈L(T )

v
(ν)
kν

(xν)

where the parameters Cα and v (ν) form a tree tensor network.

{1, 2, 3, 4, 5, 6}

{1, 2, 3}

{1}

{2, 3}

{2} {3}

{4, 5, 6}

{4} {5} {6}

C (D)

C (1,2,3)

v (1)

x1

k1

C (2,3)

v (2)

x2

k2

v (3)

x3

k3

k2,3

k1,2,3

C (4,5,6)

v (4)

x4

k4

v (5)

x5

k5

v (6)

x6

k6

k4,5,6
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Tree-based tensor format as a tree tensor network

Given bases {φαiα(xα)}iα∈Iα of functions for the spaces Vα for α ∈ L(T ),

v(x) =
∑
i1∈I1

. . .
∑
id∈Id

a(i1, . . . , id)φi1(x1) . . . φid (xd)

with a(i1, . . . , id) =
∑

1≤kβ≤rβ
β∈T

∏
α∈T\L(T ) C

(α)
(kβ )β∈S(α),kα

∏
α∈L(T ) C

(α)
iα,kα

or using tensor

diagram notations

a(i1, . . . , id) =

C (D)

C (1,2,3)

C (1)

i1

k1

C (2,3)

C (2)

i2

k2

C (3)

i3

k3

k2,3

k1,2,3

C (4,5,6)

C (4)

i4

k4

C (5)

i5

k5

C (6)

i6

k6

k4,5,6
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Representation complexity

The representation complexity for the representation of a tensor in T T
r (V ) is

C(T , r) =
∑

α∈T\L(T )

rα
∏

β∈S(α)

rβ +
∑

ν∈L(T )

#Iαrα.

If rα = O(R) and #Iα = O(N),

C(T , r) = O(dNR + (#T − d − 1)R s+1 + R s),

where s = maxα∈T\L(T ) #S(α) is the arity of the tree.

Since #T ≤ 2d + 1,
C(T , r) = O(dNR + dR s+1 + R s)
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Tucker format

The Tucker format [Hitchcock’27] corresponds to a trivial tree with one level, arity
s = d , #T = d + 1,

{1, 2, 3, 4, 5}

{1} {2} {3} {4} {5}

The representation of a tensor u in T T
r is

x1 x2 x3 x4 x5

The representation complexity

C(T , r) = O(dNR + Rd)
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Tensor train Tucker format

The tensor train Tucker format corresponds to a linear binary tree

{1, 2, 3, 4, 5}

{1, 2, 3, 4}

{1, 2, 3}

{1, 2}

{1} {2}

{3}

{4}

{5}

The representation of a tensor u in T T
r is

x1 x2

x3

x4

x5

The representation complexity C(T , r) = O(dNR + (d − 2)R3 + R2).
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Tensor train format

The tensor train format [Oseledets-Tyrtyshnikov’09] was discovered independently in
quantum physics [Baxter’68 , Affleck’87] and coined Matrix Product State (MPS).
It corresponds to a degenerate tree-based format where T is a subset of a linear tree

T = {{1}, {1, 2}, {1, 2, 3}, . . . , {1, . . . , d}}

{1, 2, 3, 4, 5}

{1, 2, 3, 4}

{1, 2, 3}

{1, 2}

{1} {2}

{3}

{4}

{5}

The representation of a tensor u in T T
r is

x1 x2 x3 x4 x5

or explicitly

u(x1, . . . , xd) =

r1∑
k1=1

. . .

r1,...,d−1∑
kd−1=1

v
(1)
k1

(x1)v
(2)
k1,k2

(x2) . . . v
(d−1)
kd−2,kd−1

(xd−1)v
(d)
kd−1

(xd)

The complexity is C(T , r) = O(dNR2).
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Tree tensor networks as a compositional function network

By identifying a tensor C (α) ∈ Rn1×...×ns×rα with a Rrα -valued multilinear function

f (α) : Rn1 × . . .× Rns → Rrα ,

a function v in T T
r admits a representation as a tree-structured composition of

multilinear functions {f (α)}α∈T .

f 1,2,3,4,5

f 1,2,3

f 1 f 2,3

f 2 f 3

f 4,5

f 4 f 5

v(x) = f D(f 1,2,3(f 1(Φ1(x1)), f 2,3(f 2(Φ2(x2)), f 3(Φ3(x3))), f 4,5(f 4(Φ4(x4)), f 5(Φ5(x5))))

where Φν(xν) = (φνiν (xν))iν∈Iν ∈ R#Iν .
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Tree tensor networks as feed-forward neural networks

It corresponds to a sum-product feed forward neural network with a sparse architecture
(given by T ), a number of hidden layers equal to depth(T ) + 1 (including a featuring
layer), and width at level ` related to the α-ranks of the nodes α of level `.

C 1,...,8

C 1,...,4 C 5,...,8

C 1,2,3

C 4

C 5,6,7

C 8C 1

C 2,3 C 5,6

C 7C 2 C 3 C 5 C 6

φ1 φ2 φ3 φ4 φ5 φ6 φ7 φ8

x1 x2 x3 x4 x5 x6 x7 x8 x1 x2 x3 x4 x5 x6 x7 x8

Figure: Tree tensor network and corresponding feed-forward sum-product neural network with 10
features per variable xν (right)
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Properties of tree-based tensor formats

Many favorable properties inherited from the matrix case.

Complexity is linear in d and polynomial in the rank for storage, evaluation,
differentiation, integration...

Not so nonlinear approximation tool. A tensor u in tree-based format admits a
multilinear parametrization with parameters (Cα)α∈T forming a tree tensor network,
i.e.

u = R((Cα)α∈T )

with R a multilinear map.

Topological properties ensure the well-posedness of optimization problems and
existence of stable algorithms

Geometrical properties can be exploited for optimization and dynamical
approximation.

Possible extensions of singular value decomposition for u in a Hilbert tensor space
V , and a way to obtain approximations ur in T T

r (V ) such that

‖u − ur‖ ≤ Cd inf
v∈T T

r (V )
‖u − v‖

with Cd ∼
√
d .
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General tensor networks

More general tensor networks are associated with graphs G = (N , E) with nodes
(vertices) N and edges E , d of the nodes being associated with variables xν , 1 ≤ ν ≤ d

v (1)

x1

v (2)

x2

v (3)

x3

v (4)

x4

C (5)

k1,2

k3,4

k2,4

k1,5

k2,5

k1,3

k3,5

They have a multilinear parametrization of the form

v(x1, . . . , xd) =
∑

1≤ke≤re
e∈E

d∏
ν=1

v (ν) (xν , (ke)e∈Eν )
N∏

ν=d+1

C (ν) ((ke)e∈Eν )

Tree tensor networks is a particular case where G is a tree.
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Examples of tensor networks

Tensor ring (MPS with periodic
boundary conditions)

PEPS MERA
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General tensor networks

When the graph contains cycles,

integers re (bond dimensions) may not have an interpretation as α-ranks,

no notion of singular value decomposition,

loss of nice geometrical and topological properties,

computational complexity increases,

but yet powerful for some high-dimensional applications.
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Tensorization of vectors

A vector v ∈ RN with N = bL can be identified with a tensor of order L

v ∈ Rb ⊗ . . .⊗ Rb = (Rb)⊗L

such that for i ∈ {0, . . . ,N − 1}

v(i) = v(i1, . . . , iL)

where (i1, . . . , iL) ∈ {0, . . . , b − 1} are the integers of the representation of i in base b

i =
d∑

k=1

ikb
L−k = [i1, . . . , iL]b.

The map which associates to v its tensorization v is a linear isometry from `2(RN) to
`2(Rb)⊗L.

Some matrix-vector operations can be efficiently implemented using tensor algebra, such
as the Hadamard transform

HLv ≡ (H1 ⊗ . . .⊗ H1)v
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Tensorization of tensors

A tensor v ∈ RN ⊗ . . .⊗ RN = (RN)⊗d with N = bL can be identified with a tensor of
order dL

v ∈ (Rb)⊗dL

with
v(i1, . . . , id) = v(i11 , . . . , i

L
1 , . . . , i

1
d , . . . , i

L
d )

where
iν = [i1ν . . . i

Lν
ν ]b

Other orderings of variables can be considered, such as

v(i1, . . . , id) = v(i11 , . . . , i
1
d , . . . , i

L
1 , . . . , i

L
d )

Tensors with different dimensions can be considered, i.e.

v ∈ RN1 ⊗ . . .⊗ RNd , Nν = bLν
ν

is identified with a tensor of order
∑d
ν=1 Lν .
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Tensorization of univariate functions

Consider a function f ∈ R[0,1) defined on the interval [0, 1).

For b, L ∈ N, we subdivide uniformly the interval [0, 1) into bL intervals. Any
x ∈ [0, 1) can be written

x = b−L(i + y), i ∈ {0, . . . , bL − 1}, y ∈ [0, 1).

0 1
•
x0 1 2 3

b−Ly

The integer i admits a representation in base b

i =
L∑

k=1

ikb
L−k = [i1 . . . iL]b, ik ∈ {0, . . . , b − 1}

0 100 01 10 11

f is thus identified with a multivariate function (tensor of order L + 1)

f ∈ (Rb)⊗L ⊗ R[0,1) such that f (x) = f (i1, . . . , iL, y)
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Tensorization of univariate functions

Examples of elementary tensors f (x) = v1(i1)...v
L(iL)v

L+1(y) (b = 2)

(a) δ0(i3) (b) δ1(i1)δ0(i3)δ0(i7) (c) δ0(i1)y (L = 4)
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Ranks of polynomials and splines

Polynomials
Consider a polynomial q(x) of degree p. For any α ⊂ {1, . . . , L},

q(x) = q(b−L(
L∑

k=1

ikb
L−k + y)) = q(g(iα) + g̃(iαc )) =

p∑
j=0

g(iα)jhj(iαc )

so that rankα(q) ≤ p + 1.

Trigonometric polynomials
The tensorization of function cos(ωx + ϕ) at resolution L has all ranks equal to 2.

Then a trigonometric polynomial q(x) of degree p is such that for any α ⊂ {1, . . . , L},

rankα(q) ≤ 2p + 1.
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Ranks of polynomials and splines

Splines
A spline ϕN of degree p over N b-adic intervals forming a partition of [0, 1) is such that

rank{1,...,ν}(ϕN) ≤

{
p + N, 1 ≤ ν < `.

p + 1, ` ≤ ν ≤ L.

where b−` is the minimal length of intervals.

60 / 157



Tensorization of multivariate functions

A function f (x1, . . . , xd) defined on [0, 1)d can be similarly identified with a tensor of
order (L + 1)d

f ∈ (Rb)⊗Ld ⊗ (R[0,1))⊗d

such that

f (x1, . . . , xd) = f (i11 , . . . , i
1
d , . . . , i

L
1 , . . . , i

L
d , y1, . . . , yd)

where xν = b−L(
L∑

k=1

ikνb
L−k + yν) = b−L([i1ν . . . i

L
ν ]b + yν)
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Tensorization of multivariate functions

The map Tb,d which associates to a function f its tensorization f is a linear isometry
from Lp([0, 1)d) to Lp({0, . . . , b − 1}Ld × [0, 1)d) for any 0 < p ≤ ∞.
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Approximation tools based on tree tensor networks

For the approximation of a target function u(x1, . . . , xd), a first approach is to introduce
subspaces V ν

Nν of finite dimension (e.g. polynomials, splines, wavelets...) and consider
tensor networks f ∈ T T

r (VN) with

VN = V 1
N1 ⊗ . . .⊗ V d

Nd

e.g. with the tensor train format

f (x1, . . . , xd) =

v1 v2 vd

φ1 φ2 φd

x1 x2 xd

with φν a feature map associated with V ν
Nν .

Spaces V ν
Nν have to be well chosen, e.g. polynomials for analytic functions, splines with a

degree adapted to the regularity of the target function...
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Approximation tools based on tree tensor networks

An approximation tool Φ = (Φn)n∈N is then defined by

Φn = {f ∈ T T
r (VN) : N ∈ Nd , r ∈ NT , compl(f ) ≤ n}.

The dimensions N and the ranks r are free parameters, and compl(·) is some complexity
measure.

68 / 157



Approximation tools based on tree tensor networks

An alternative is to rely on tensorization of functions. A d-variate function f is identified
with a tensor

f = Tb,d(f ) ∈ (Rb)⊗Ld ⊗ (R[0,1))⊗d

such that

f (x1, . . . , xd) = f (i11 , . . . , i
1
d , . . . , i

L
1 , . . . , i

L
d , y1, . . . , yd) with xν = b−L([i1ν . . . i

L
ν ]b + yν).

Then we consider functions whose tensorization at resolution L are in the tensor space

V L = (Rb)⊗Ld ⊗ S⊗d

with S ⊂ R[0,1) some subspace of univariate functions.

If S = Pm, VL = T−1
b,d (V L) is identified with the space of multivariate splines of degree m

over a uniform partition with bdL elements, i.e.

VL = V 1
N1 ⊗ . . .⊗ V d

Nd

with N1 = ... = Nd = bL and V ν
Nν a space of univariate splines of degree m over a

uniform partition with Nν = bL intervals.

Note that different resolutions Lν could be used to tensorize the different variables xν .
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Approximation tools based on tree tensor networks

Then as an approximation tool, we consider functions f whose tensorization is a tensor
network in T TL

r (V L), with TL a dimension tree over {1, . . . , Ld + d}.

Using the tensor train format, the corresponding function f (x1, . . . , xd) has the
representation

f (x1, . . . , xd) =

v1 v2 vLd vLd+1 vLd+d

i11 i12 iLd φS φS

y1 yd

with φS the feature map associated with S . This is similar to the quantized tensor train
(QTT) format [Kazeev, Khoromskij, Oseledets, Schwab, ...]

Later on, we consider S = Pm and φS(y) = (1, y , ..., ym+1) or any other polynomial basis.

70 / 157



Approximation tools based on tree tensor networks

An approximation tool Φ = (Φn)n∈N is then defined by

Φn = {f ∈ ΦL,TL,r : L ∈ N0, r ∈ NTL , compl(f ) ≤ n}

with ΦL,TL,r the functions whose tensorization at resolution L is in T TL
r (VL).

The resolution L and ranks r are free parameters, and compl(·) is some complexity
measure.
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Complexity measures and corresponding approximation tools

The complexity compl(f ) of f is defined as the complexity of the associated tensor
network v = {vα}α∈T .

Number of parameters (full tensors network)

complF (f ) =
∑
α

number_of_entries(vα)

Number of non-zero parameters (sparse tensors network)

complS(f ) =
∑
α

‖vα‖0

Complexity measures complF and complS yield two different approximation tools

ΦFn and ΦSn

such that
ΦFn ⊂ ΦSn
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Approximation with tree tensor networks

Given a function f from a Banach space X , the best approximation error of f by an
element of Φn is

E(f ,Φn)X := inf
g∈Φn

‖f − g‖X

Fundamental questions are:

does E(f ,Φn)X converge to 0 for any f ?
(universality)

does a best approximation exist ?
(proximinality)

how fast does it converge for functions from classical function classes ?
(expressivity)

what are the functions for which E(f ,Φn)X converges with some given rate ?
(characterization of approximation classes)

Another fundamental problem (addressed later) is to provide algorithms to practically
compute approximations using available information on the function (model equations,
samples...)
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Universality

First note that for any algebraic feature tensor space V , and any tree T ,⋃
r

T T
r (V ) = V .

so the question of universality of tree tensor networks boils down to conditions on the
tensor feature spaces.

Consider the first family of approximation tools with variable feature spaces VN ,
N ∈ Nd .

If
⋃

N VN is dense in X , then the tools are universal for functions in X .

In particular, this is true for X = Lp((0, 1)d), p <∞, and for polynomial or splines
spaces VN .

Consider the second family of approximation tools using tensorization.

If
⋃

L VL is dense in X , then the tools are universal for functions in X .

In particular, this is true for X = Lp((0, 1)d), p <∞, assuming that S contains the
function one.
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Proximinality

For any tree T , any T -rank r , and any finite dimensional tensor space V of X , T T
r (V ) is

a closed set in V .

Φn is a finite union of such sets, all contained in a single finite dimensional space V ∗.
Then Φn is a closed set of a finite dimensional space V ∗ and is therefore proximinal in X .
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Expressivity

Different ways to analyse the expressivity of tree tensor networks

Exploit known results on other approximation tools and estimate the complexity to
encode these tools using tree tensor networks.

Directly encode a function using tree tensor networks (with controlled errors)

Analyse the convergence of bilinear approximations

u(xα, xαc ) ≈
rα∑
k=1

uαk (xα)uα
c

k (xαc )

or the approximability of partial evaluations u(·, xαc ) by linear approximation spaces
of dimension rα
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Approximation of functions from smoothness classes

We consider approximation tools based on tensorization and functions from classical
smoothness classes:

Sobolev and Besov functions

Analytic functions

Analytic functions with singularities
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Approximation of functions from Besov spaces Bα
q (L

p)

From results on spline approximation and their encoding with tensor networks, we obtain

Theorem
Let f ∈ Bα∞(Lp) with α > 0 and 0 < p ≤ ∞. Then

E(f ,ΦFn )Lp ≤ Cn−α̃/d |f |Bα∞(Lp)

for arbitrary α̃ < α.

Tensor networks achieve (near to) optimal performance for any Besov regularity
order (measured in Lp norm).

They perform as well as optimal linear approximation tools (e.g. splines), without
requiring to adapt the tool to the regularity order α.

The depth (resolution L) of the network is crucial to capture extra regularity.
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Approximation of functions from Besov spaces Bα
q (L

τ )

Now consider the much harder problem of approximating functions from Besov spaces
Bαq (Lτ ) where regularity is measured in a Lτ -norm weaker than Lp-norm.

From results on best n-term approximation using dilated splines, we obtain

Theorem
Let f ∈ Bαq (Lτ ) with α > 0, 0 < q ≤ τ < p <∞, 1 ≤ p <∞ and

α

d
>

1
τ
− 1

p
.

Then
E(f ,ΦSn )Lp ≤ Cn−α

′/d |f |Bαq (Lτ ), E(f ,ΦFn )Lp ≤ Cn−α
′/(2d)|f |Bαq (Lτ ),

for arbitrary α′ < α.

Sparse tensor networks achieve arbitrarily close to optimal rates in O(n−α/d) for
functions with any Besov smoothness α (measured in Lτ norm), without the need to
adapt the tool to the regularity order α.

Here depth and sparsity are crucial for obtaining near to optimal performance.

Full tensor networks have slightly lower performance in O(n−α/(2d)).

80 / 157



Analytic functions

For function f : [0, 1] with analytic extension on an open complex domain

Dρ = {z ∈ C : dist(z , [0, 1])) <
ρ− 1
2
}, ρ > 1,

we obtain an exponential convergence

E(f ,ΦFn )L∞ ≤ Cγ−n1/3 ,

with γ = min{ρ, b(m+1)/b}.

The proof relies on the approximation of analytic functions with polynomials and the
encoding of polynomials with tree tensor networks: a chebychev polynomial p of deree m̄
is such that

‖f − p‖L∞ ≤
2

ρ− 1
‖f ‖L∞(Dρ)ρ

−m̄

A polynomial of degree m̄ can be approximated by ϕ in ΦL,r,m with an error in
O(b−L(m+1)), so that

‖f − ϕ‖L∞ . ρ−m̄ + b−L(m+1)

We obtain the result by choosing m̄ ∼ n1/3 and L ∼ b−1n1/3, so that complF (ϕ) ≤ n.
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Functions with singularities

Consider the approximation u(x) = xα, 0 < α ≤ 1, in L∞.

Piecewise constant linear approximation.

u ∈ Bα∞(L∞), u /∈ Bβ∞(L∞) for β > α,

and a piecewise constant approximation on a uniform mesh with n elements gives a
convergence in O(n−α) in L∞,

Piecewise constant nonlinear approximation.

u ∈ BV ⊂ B1
∞(L1),

and a piecewise constant approximation on an optimal mesh with n elements gives a
convergence in O(n−1) in L∞,

Piecewise constant approximation and tensor networks.
A piecewise constant approximation on a uniform mesh with 2d elements exploiting
low-rank structures gives an exponential convergence in O(β−n), where n is the
complexity of the representation. Achieves the performance of h-p methods.
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High-dimensional approximation

For Besov spaces Bαq (Lp), tensor networks achieve (near to) optimal rate in
O(n−α/d) which deteriorates with d , that is the curse of dimensionality.

For Besov spaces with mixed smoothness MBαq (Lp) , sparse tensor networks achieve
near to optimal performance in O(n−α log(n)d). But still the curse of dimensionality.

For Besov spaces with anisotropic smoothness ABα
q (Lp), sparse tensor networks also

achieve near to optimal rates in O(n−s(α)/d) with

s(α)/d = (α−1
1 + . . .+ α−1

d )−1

the aggregated smoothness. Curse of dimensionality can be circumvented with
sufficient anisotropy.

Curse of dimensionality can be circumvented for non usual function classes such as
compositions of smooth functions (see Bachmayr, Nouy and Schneider 2021).
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Compositional functions

Consider a tree-structured composition of smooth functions {fα : α ∈ T}, see [Mhaskar,
Liao, Poggio 2016] for deep neural networks.

f1,2,3,4 (f1,2 (f1(x1), f2(x2)) , f3,4 (f3(x3), f4(x4)))

{1, 2, 3, 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}

Assuming that the functions fα ∈W k,∞ with ‖fα‖L∞ ≤ 1 and ‖fα‖W k,∞ ≤ B, the
complexity to achieve an accuracy ε

C(ε) . ε−3/k(L + 1)3B3Ld1+3/2k

with L = log2(d) for a balanced tree and L + 1 = d for a linear tree.

Bad influence of the depth through the norm B of functions fα (roughness).

For a balanced tree, complexity scales polynomially in d : no curse of dimensionality !

For B ≤ 1 (and even for 1-Lipschitz functions), the complexity only scales
polynomially in d whatever the tree: no curse of dimensionality !
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Canonical versus tree-based format

Consider a finite dimensional tensor space V = V 1 ⊗ . . .⊗ V d with dim(Vν) = RN ,
which is identified with RN×...×N . Denote by T T

r = {v : rankα(v) ≤ r , α ∈ T}.
From canonical format to tree-based format.
For any v in V and any α ⊂ D, the α-rank is bounded by the canonical rank:

rankα(v) ≤ rank(v).

Therefore, for any tree T ,
Rr ⊂ T T

r ,

so that an element in Rr with storage complexity O(dNr) admits a representation in
T T
r with a storage complexity O(dNr + dr s+1) where s is the arity of the tree T .

From tree-based format to canonical format. For a balanced or linear binary tree,
the subset

S = {v ∈ T T
r : rank(v) < qd/2}, q = min{N, r},

is of Lebesgue measure 0.

Then a typical element v ∈ T T
r with storage complexity of order dNr + dr3 admits a

representation in canonical format with a storage complexity of order dNqd/2.

86 / 157



Influence of the tree

For some functions, the choice of tree is not crucial. For example, an additive
function

u1(x1) + . . .+ ud(xd)

has α-ranks equal to 2 whatever α ⊂ D.

But usually, different trees lead to different complexities of representations.

{1, 2, 3, 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}

TB (Balanced tree)
{1} {2}

{3}

{4}

T L (Linear tree)

• If rankTL(u) ≤ r then rankTB (u) ≤ r2

• If rankTB (u) ≤ r then rankTL(u) ≤ r log2(d)/2
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Influence of the tree

Given a tree T and a permutation σ of D = {1, . . . , d}, we define a tree Tσ

Tσ = {σ(α) : α ∈ T}

having the same structure as T but different nodes.

{1, 2, 3, 4}

{1, 2}

{1} {2}

{3, 4}

{3} {4}

T

{1, 2, 3, 4}

{1, 3}

{3} {1}

{2, 4}

{2} {4}

Tσ with σ = (3, 1, 2, 4)

If rankT (u) ≤ r then rankTσ (u) typically depends on d .
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Influence of the tree

Consider the Henon-Heiles potential

u(x) =
1
2

d∑
i=1

x2
i + 0.2

d−1∑
i=1

(xix
2
i+1 − x3

i ) +
0.22

16

d−1∑
i=1

(x2
i + x2

i+1)2

Using a linear tree T = {{1}, {2}, . . . , {d}, {1, 2}, {1, 2, 3}, . . . , {1, . . . , d − 1},D},

rankT (u) ≤ 4, storage(u) = O(d)

but for the permutation

σ = (1, 3, . . . , d − 1, 2, 4, . . . , d) (?)

and the corresponding linear tree Tσ,

rankTσ (u) ≤ 2d + 1, storage(u) = O(d3).

For a typical tensor in T T
r with T a binary tree, its representation in tree based

format with tree Tσ, with σ as in (?), has a complexity scaling exponentially with d .
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Influence of the tree

Consider the probability distribution f (x) = P(X = x) of a Markov chain
X = (X1, . . . ,Xd) given by

f (x) = f1(x1)f2|1(x2|x1) . . . fd|d−1(xd |xd−1)

where bivariate functions fi|i−1 have a rank r .

• With the linear tree T containing interior nodes
{1, 2}, {1, 2, 3}, . . . , {1, . . . , d − 1}, f admits a representation in tree-based
format with storage complexity in r4.

• The canonical rank of f is exponential in d .
• But when considering the linear tree Tσ obtained by applying permutation
σ = (1, 3, . . . , d − 1, 2, 4, . . . , d) to the tree T , the storage complexity in
tree-based format is also exponential in d .
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How to choose a good tree ?

A combinatorial problem...

{2} {3}

{7}

{5} {4}

{8}

{1} {6} {2} {7}

{4}

{8} {1} {5} {3}

{6}

{1} {4}{2} {8}

{3} {7} {6}

{5}

{3} {2}{4}

{7}{5}

{8}{6} {1}
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Properties of tree tensor networks

We here consider approximation tools based on tensor networks with tensorized functions
(with or without sparsity).

They satisfy

(P1) Φ0 = {0}, 0 ∈ Φn

(P2) aΦn = Φn for any a ∈ R \ {0} (cone)
(P3) Φn ⊂ Φn+1 (nestedness)

(P4) Φn + Φn ⊂ Φcn for some constant c (not too nonlinear)

For X = Lp, they further satisfy

(P5)
⋃

n Φn is dense in Lp for 0 < p <∞ (universality),

(P6) for each f ∈ Lp for 0 < p ≤ ∞, there exists a best approximation in Φn (proximinal
sets).
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Approximation classes

For an approximation tool Φ = (Φn)n∈N, we define for any α > 0 the approximation class

Aα∞(Lp) := Aα∞(Lp,Φ)

of functions f ∈ Lp such that
E(f ,Φn)Lp ≤ Cn−α

Properties (P1)-(P4) of Φ imply that Aα∞(Lp) is a quasi-Banach spaces with
quasi-semi-norm

|f |Aα∞ := sup
n≥1

nαE(f ,Φn)Lp

Full and sparse complexity measures yield two different approximation spaces

Fα∞(Lp) = Aα∞(Lp,ΦF ), Sα∞(Lp) = Aα∞(Lp,ΦS)

such that
Fα∞(Lp) ↪→ Sα∞(Lp) ↪→ Fα/2∞ (Lp)
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Direct embeddings

From results on the approximation properties for Besov spaces, we have the following
results.

Let α > 0 and 0 < p ≤ ∞. For arbitrary α̃ < α,

Bαq (Lp) ↪→ F α̃/dq (Lp)

and
MBαq (Lp) ↪→ Sα̃q (Lp).

For arbitrary s̃ < s(α) := d(α−1
1 + . . .+ α−1

d )−1,

ABα
q (Lp) ↪→ S s̃/d

q (Lp)

For α > 0, 1 ≤ p <∞, 0 < q ≤ τ < p <∞ and α
d
> 1

τ
− 1

p
,

Bαq (Lτ ) ↪→ Sα̃/d∞ (Lp)↪→ F α̃/(2d)
∞ (Lp)

for arbitrary α̃ < α, and similar results for anisotropic and mixed smoothness.
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No inverse embedding

For any α > 0, q ≤ ∞, and any β,

Fα∞(Lp) 6↪→ Bβ∞(Lp).

That means that approximation classes contain functions that have no smoothness in a
classical sense.

Tensor networks may be useful for the approximation of functions beyond standard
smoothness classes.
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Open questions

What are the properties of the approximation tool with free tree

Φn = {f ∈ ΦL,TL,r : L ∈ N0,TL ⊂ 2{1,...,(L+1)d}, r ∈ N#T , compl(f ) ≤ n}

Higher expressivity (or larger approximation classes) but how much higher ?

What about expressivity and approximation classes of more general tensor networks ?
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Computing with tensor networks

We here present some algorithms for the approximation of tensors (or functions) using
tensor networks.

Different contexts depending on the available information on the tensor:

all entries of the tensor,

equations satisfied by the tensor,

some entries, either arbitrary or structured,

more general functionals of the tensor.
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Available software

tensap. A Python package for the approximation of functions and tensors. (link to
GitHub page).

ApproximationToolbox. An object-oriented MATLAB toolbox for the approximation
of functions and tensors. (link to GitHub page).
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Hilbertian setting

We consider a tensor u in a Hilbert tensor space V 1 ⊗ . . .⊗ V d and we assume that u is
given as a full tensor or in a certain low-rank format.

We present truncation schemes for finding a low-rank approximation of u with reduced
complexity, relying on the standard singular value decomposition of order-two tensors.

We denote by ‖ · ‖ the canonical norm on V 1 ⊗ . . .⊗ V d .

For an algebraic tensor in RI1 ⊗ . . .⊗ RId , ‖ · ‖ is the Frobenius norm

‖u‖2 =
∑
i1∈I1

. . .
∑
id∈Id

u(i1, . . . , id)2
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Truncated singular value decomposition for order-two tensors

An order-two tensor u in V 1 ⊗ V 2 admits a singular value decomposition

u =
∑
k≥1

σkv
1
k ⊗ v2

k ,

where the singular values σ(u) = {σk}k≥1 are sorted by decreasing order.

An element of best approximation of u in the set of tensors with rank bounded by r is
provided by the truncated singular value decomposition

ur =
r∑

k=1

σkv
1
k ⊗ v2

k ,

with an error
‖u − ur‖2 = min

rank(v)≤r
‖u − v‖2 =

∑
k≥r+1

σ2
k .
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Truncated singular value decomposition for order-two tensors

An approximation ur with relative precision ε, such that

‖u − ur‖ ≤ ε‖u‖,

can be obtained by choosing a rank r such that∑
k≥r+1

σ2
k ≤ ε2

∑
k≥1

σ2
k .

The complexity of computing the singular value decomposition of a tensor u is O(n3) if
dim(V 1) = dim(V 2) = n. If u is given in low-rank format u =

∑R
k=1 ak ⊗ bk , with a rank

R < n, the complexity breaks down to O(R3 + 2Rn2).
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Higher-order singular value decomposition

For a non-empty subset α in D = {1, . . . , d}, a tensor u ∈ V 1 ⊗ . . .⊗ V d can be
identified with its matricisation

Mα(u) ∈ V α ⊗ V αc

,

an order-two tensor which admits a singular value decomposition

Mα(u) =
∑
k≥1

σαk v
α
k ⊗ wαc

k ≡ u.

σα(u) := {σαk }k≥1 are the α-singular values of u.

The α-rank of u is the number of non-zero α-singular values

rankα(u) = ‖σα(u)‖0.
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Higher-order singular value decomposition

By sorting the α-singular values by decreasing order, an approximation ur with α-rank r
can be obtained by retaining the r largest α-singular values, i.e.

ur ≡
r∑

k=1

σαk v
α
k ⊗ wαc

k ,

The vectors {vα1 , . . . , vαrα} are the dominant α-singular vectors of u or α-principal
components of u.

The space Uαrα = span{vα1 , . . . , vαrα} is the dominant α-principal subpace of u.

Denote by PUαrα
the orthogonal projection from V α to Uαrα and by PUαrα

= PUαrα
⊗ idαc

the orthogonal projection defined on V such that for vα ⊗ wαc

∈ V α ⊗ V αc

,

PUαrα
(vα ⊗ wαc

) = (PUαrα
vα)⊗ wαc

We have
ur = PUαrα

u

and
‖u − ur‖2 = min

rankα(v)≤r
‖u − v‖2 =

∑
k>r

(σαk )2.
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Truncation scheme for tree-based tensor formats

For tree-based tensor formats

T T
r (V ) = {v ∈ V : rankα(v) ≤ rα, α ∈ T},

where T is a dimension partition tree over D = {1, . . . , d}, different variants of higher
order singular value decomposition (also called hierarchical singular value decomposition)
can be defined from singular value decompositions of matricisationsMα(u) of a tensor
u.
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Leaves to root truncation scheme for tree-based tensor formats

For each leaf node α, let Uαrα be the rα-dimensional α-principal subspace of u.

For each interior node α ∈ T \ {D} with children S(α), define a tensor space

Vα =
⊗
β∈S(α)

Uβrβ

and let Uαrα ⊂ Vα be the rα-dimensional α-principal subspace of

uα = PVαu
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Leaves to root truncation scheme for tree-based tensor formats

Finally define ur as the orthogonal projection onto the tensor space VD =
⊗

α∈S(D) Uα

ur = P(1)
r u = P(1)

r . . .P(L)
r u
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Leaves to root truncation scheme for tree-based tensor formats

The obtained approximation ur is such that

‖u − ur‖2 ≤
∑

α∈T\D

min
rankα(v)≤rα

‖u − v‖2 =
∑

α∈T\D

∑
kα>rα

(σαkα)2,

from which we deduce that ur is a quasi-optimal approximation of u in T T
r such that

‖u − ur‖ ≤ C(T ) min
v∈T T

r

‖u − v‖,

where C(T ) =
√

#T − 1 is the square root of the number of projections applied to the
tensor. The number of nodes of a dimension partition tree T being bounded by 2d − 1,

C(T ) ≤
√
2d − 2.

Also, if we select the ranks (rα)α∈T\D such that for all α∑
kα>rα

(σαkα)2 ≤ ε2

C(T )2

∑
kα≥1

(σαkα)2 =
ε2

C(T )2 ‖u‖
2,

we finally obtain an approximation ur with relative precision ε,

‖u − ur‖ ≤ ε‖u‖.
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Leaves to root truncation scheme for tree-based tensor formats

If u is in some tensor space W = W1 ⊗ . . .⊗Wd and V = V1 ⊗ . . .⊗ Vd is a
finite-dimensional tensor subspace of W , an approximation in the tensor format T T

r (V )
can be obtained by modifying the procedure for the leaves.

For each leaf node α, Uαrα is defined as a α-principal subspace of uα = PVαu.

Theorem (Fixed rank)

For a given T -rank, we obtain an approximation ur ∈ T T
r (V ) such that

‖ur − u‖2 ≤ C(T )2 min
v∈T T

r

‖v − u‖2 +
∑

leaves α

‖u − PVαu‖
2

Theorem (Fixed precision)

For a desired precision ε, if the α-ranks are determined such that

‖PUαrα
uα − uα‖ ≤

ε

C(T )
‖uα‖,

we obtain an approximation ur such that

‖ur − u‖2 ≤ ε2‖u‖2 +
∑

leaves α

‖u − PVαu‖
2.

114 / 157



Efficient truncation algorithms

Recent works for efficient truncation algorithms

Randomized linear algebra [Che/Wei’19,Sun’20,Huber’17]

Block-wise tensor compressions [Ehrlacher’21]

Parallel algorithms [Grigori/Kumar’20,Daas’20]

...
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Learning from structured evaluations

For the approximation of a tensor (or function) in tree-based format from evaluations of
the tensor at some entries, different strategies have been proposed, either based on cross
approximation [Oseledets’10, Ballani’13] or principal component analysis [Nouy’19,
Haberstich’21].

These methods rely on structured evaluations

u(x i
α, x

j
αc )

where x i
α are samples of the variables xα, and x j

αc samples of the variables xαc .
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Learning from principal component analysis

Assume that X = (X1, . . . ,Xd) has a probability measure µ = µ1 ⊗ . . .⊗ µd with support
X = X1 × . . .×Xd .

Consider a multivariate function u ∈ L2
µ(X ) and assume that we can evaluate the

function for arbitrary instance x of X .

For each a subset of variables α and its complementary subset αc = D \ α, u is identified
with a bivariate function which admits a singular value decomposition

u(xα, xαc ) =

rankα(u)∑
k=1

σαk v
α
k (xα)vα

c

k (xαc )
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Learning from principal component analysis

The subspace of α-principal components

Uα = span{vα1 , . . . , vαrα}

is such that
urα(·, xαc ) = PUαu(·, xαc )

It is solution of
min

dim(Uα)=rα
‖u − PUαu‖

2

that is for ‖ · ‖ the L2
µ(X )-norm,

min
dim(Uα)=rα

E
(
‖u(·,Xαc )− PUαu(·,Xαc )‖2L2

µα
(Xα)

)
where u is seen as a function-valued random variable

u(·,Xαc ) ∈ L2
µα(Xα).
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Learning algorithm based on principal component analysis

In order to construct an approximation in the tree-based format T T
r (V ), with V some

feature tensor space, we apply the root to leaves procedure.

For a feasible algorithm using samples:

Replacement of orthogonal projections by sampled-based projections.

Statistical estimation of principal subspaces.
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From orthogonal to sampled-based projections

Orthogonal projections PVα on subspaces Vα are replaced by oblique projections IVα
using samples, typically interpolation or least-squares projection.

For a function u and a given value xαc of the group of variables Xαc ,

IVαu(·, xαc ) =

Mα∑
i=1

ai (xαc )ψαi (·)

where the ψαi form a basis of Vα, and the coefficients ai (xαc ) depend on evaluations
u(xk

α, xαc ) for some samples xk
α of Xα (interpolation points or random samples).

In practice,

for interpolation, possible use of magic points x i
α [Nouy ’19],

for least-squares projection, possible use of optimal weighted least-squares for a
control of the norm of operators IVα [Cohen/Migliorati’17,Habertisch ’21].
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Statistical estimation of principal subspaces

The α-principal subspaces Uα of uα = IVαu are defined by

min
dim(Uα)=rα

E
(
‖IVαu(·,Xαc )− PUαIVαu(·,Xαc )‖2L2

µα
(Xα)

)
Principal subspaces can be estimated using i.i.d. samples u(·, x j

αc ) of this random variable
and by solving

min
dim(Uα)=rα

1
Nα

Nα∑
j=1

‖IVαu(·, x j
αc )− PUαIVαu(·, x j

αc )‖2L2
µα

(Xα)

where {x j
αc }Nαj=1 are i.i.d. samples of the group of variables Xαc .

If the projection IVα is based on a set of Mα samples of Xα, this requires the evaluation
of u at the Mα × Nα points

{(x i
α, x

j
αc ) : 1 ≤ i ≤ Mα, 1 ≤ j ≤ Nα}.
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Direct optimization in subsets of tensor networks

Consider a subset of tensorsMr that admits a multilinear parametrization of the form

v(x1, . . . , xd) =

r1∑
k1=1

. . .

rL∑
kL=1

d∏
ν=1

v (ν) (xν , (ki )i∈Sν )
M∏

ν=d+1

v (ν) ((ki )i∈Sν )

where v = {v (ν)}Mν=1 is a tensor network, and each tensor v (ν) is in a space P(ν).

We have
Mr = {v = Ψ(v (1), . . . , v (M)) : v (ν) ∈ P(ν), 1 ≤ ν ≤ M},

where Ψ is a multilinear map.

The problem
min
v∈Mr

J (v)

can be written as an optimization problem over the parameters

min
v (1)

. . .min
v (M)
J (Ψ(v (1), . . . , v (M))).
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Alternating minimization algorithm

The alternating minimization algorithm consists in solving successively minimization
problems

min
v (ν)∈P(ν)

J (Ψ(v (1), . . . , v (ν), . . . , v (M))) := min
v (ν)∈P(ν)

Jν(v (ν)) (1)

over the parameter v (ν), letting the other parameters v (η), η 6= ν, fixed.

When P(ν) is a linear vector space, problem (1) is a linear approximation problem.

If J is a convex (resp. differentiable) functional, then Jν is a convex (resp.
differentiable) functional.
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Direct optimization in subsets of tensor networks

Other optimization algorithms (e.g. gradient descent, Newton) can be used, possibly
exploiting the geometry of tree tensor networks manifolds.

Under rather standard assumptions, some results have been obtained for the convergence
of algorithms: local convergence to a global optimizer, or global convergence to
stationary points.

But no guaranty for obtaining a global optimizer of a general (even convex) functional in
subsets of tensor networks (NP-hard problem).
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Rank adaptation

For the adaptation of ranks, different strategies have been proposed:

Modified alternating minimization algorithms [Holtz et al ’12] or DMRG, where rank
adaptation is performed during optimization,

Alternating minimal energy methods [Dolgov et al ’14], where optimization is also
combined with rank adaptation,

Optimization in a subset with fixed rank followed by rank adaptation
[Grelier/Nouy/Chevreuil’18, Grelier/Nouy/Lebrun’19,Grasedyck/Kramer ’19]

127 / 157



Modified alternating minimization algorithm

Modified alternating minimization algorithm1 is a modification of the alternating
minimization algorithm which allows for an rank adaptation "on the fly".

It can be used for optimization with tree tensor nteworks or more general tensor networks.

At each step of the algorithm, we consider two nodes ν and η connected by an edge e
and we update simultaneously the associated parameters p(ν) and p(η).

ν η
e

1known as DMRG algorithm (for Density Matrix Renormalization Group) for tensor networks.
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Modified alternating minimization algorithm

In the expression of a tensor v = Ψ(v (1), . . . , v (M)), the two tensors v (ν) and v (η)

connected by the edge e appear as

re∑
ke=1

v (ν)(ke , ...)v
(η)(ke , ...) := v (e)(...)

where v (e) is a tensor of order

order(v (e)) = order(v (ν)) + order(v (η))− 2.

v (ν) v (η)

ke
←→ v (e)

This corresponds to a new tensor networks where the nodes ν and η and edge e are
replaced by a single node e, and a new parametrization

v = Ψe(. . . , v (e), . . .).
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Modified alternating minimization algorithm

We first solve an optimization problem

min
v (e)
J (Ψe(. . . , v (e), . . .))

for obtaining an new value of the tensor v (e).

Then, we compute a low-rank approximation of the tensor v (e)

v (e)(...) ≈
re∑

ke=1

v (ν)(ke , ...)v
(η)(ke , ...)

where the rank re in general differs from the initial rank.

In practice, the approximation is obtained using truncated singular value decomposition.
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Iterative methods with tensor truncation

Another strategy for solving an operator equation

Au = b

or a more general optimization problem

min
v∈V
J (v)

is to rely on classical iterative methods by interpreting all standard algebraic operations
on vector spaces as algebraic operations in tensor spaces.
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Iterative methods with tensor truncation

As a motivating example, consider a simple Richardson algorithm

un = un−1 − ω(Aun−1 − b).

For A and b given in tensor formats, computing un involves standard algebraic
operations.

However, the representation rank of the iterates dramatically increases since

rank(un) ≈ rank(A) rank(un−1) + rank(un−1) + rank(b).

This requires additional truncation steps for reducing the ranks of the iterates, such as

un = T (un−1 − ω(Aun−1 − b)),

where T (v) provides a low-rank approximation of v .

We now analyze the behavior of these algorithms depending on the properties of the
truncation operator T .
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Fixed point iterations algorithm

Let us consider a problem which can be written as a fixed point problem

F (u) = u,

where F : V → V is a contractive map, such that for all u, v ∈ V ,

‖F (u)− F (v)‖ ≤ ρ‖u − v‖,

with 0 ≤ ρ < 1.

Then, consider the fixed point iterations algorithm

un+1 = F (un)

which provides a sequence (un)n≥1 which converges to u, such that

‖u − un‖ ≤ ρn‖u − u0‖.

Example
For a problem Au = b, consider F (u) = u − ω(Au − b), with ω such that ‖I − ωA‖ < 1.
Fixed point iterations un+1 = un − ω(Aun − b) correspond to Richardson iterations.
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Perturbed fixed point iterations algorithm

Now consider the perturbed fixed point iterations

vn+1 = F (un), un+1 = T (vn+1)

where T is a mapping which for a tensor v provides an approximation (called truncation)
T (v) in a certain low-rank formatMr .
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Truncations with controlled relative precision

Suppose that the mapping T provides an approximation with relative precision ε, i.e.

‖T (v)− v‖ ≤ ε‖v‖.

This is made possible by using an adaptation of the ranks.

Then the sequence (un)n≥1 is such that

‖u − un‖ ≤ γn‖u − u0‖+
ε

1− γ ‖u‖,

with γ = ρ(1 + ε). Therefore, if γ < 1

lim sup
n→∞

‖u − un‖ ≤ ε

1− γ ‖u‖

which means that the sequence tends to enter a neighborhood of u with radius ε
1−γ ‖u‖.

The drawback of this algorithm is that the ranks of the iterates are not controlled and
may become very high during the iterations.
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Truncations in fixed subsets

Now consider that the mapping T provides an approximation in a fixed subset of tensors
Mr with rank bounded by r .

Let us assume that for all v , T (v) provides a quasi-optimal approximation of v such that

‖T (v)− v‖ ≤ C min
w∈Mr

‖v − w‖. (2)

A practical realization of a mapping T verifying (2) is provided by truncated higher-order
singular value decompositions, where

C = O(
√
d).
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Truncations in fixed subsets

Let ur be an element of best approximation of u, with

‖u − ur‖ = min
v∈Mr

‖u − v‖.

The sequence (un)n≥1 is such that

‖u − un‖ ≤ γn‖u − u0‖+
C

1− γ ‖u − ur‖,

with γ = ρ(1 + C). If γ < 1 (which may be quite restrictive on ρ), we obtain

lim sup
n→∞

‖u − un‖ ≤ C

1− γ min
v∈Mr

‖u − v‖,

which means that the sequence tends to enter a neighborhood of u with radius C
1−γ σr ,

where σr is the best approximation error of u by elements ofMr .

An advantage of this approach is that the ranks of the iterates are controlled. A
drawback is that the condition γ < 1 imposes to rely on an iterative method with small
contractivity constant ρ < (1 + C)−1, which may be quite restrictive (requires good
preconditioners).
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Truncations with non-expansive maps

Now we assume that the mapping T providing an approximation in low-rank format is
non-expansive, i.e.

‖T (v)− T (w)‖ ≤ ‖v − w‖ (3)

The sequence un is defined by
un+1 = G(un),

where G = T ◦ F is a contractive mapping with the same contractivity constant ρ as F .
Therefore, the sequence un converges to the unique fixed point u? of G such that

G(u?) = u?,

with
‖u? − un‖ ≤ ρn‖u? − u0‖.

The obtained approximation u? is such that

(1 + ρ)−1‖u − T (u)‖ ≤ ‖u − u?‖ ≤ (1− ρ)−1‖u − T (u)‖.

A practical realization of a mapping T verifying (2) is provided by a truncation operator
based on soft thresholding of singular values. The ranks of the iterates are not controlled.
However, it is observed in practice that the ranks of iterates are usually lower than with
truncations with controlled relative precision.

139 / 157



Outline

9 Higher-order singular value decomposition and tensor truncation

10 Learning from structured evaluations

11 Direct optimization in subsets of tensor networks

12 Iterative methods with tensor truncation

13 Thresholding of singular values and relaxation methods

140 / 157



Thresholding of singular values

Consider an order two tensor u in a Hilbert tensor space V ⊗W . equipped with the
canonical norm.
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Hard thresholding of singular values

The hard singular value thresholding operator HTτ is defined for an order-two tensor u
with singular value decomposition

∑
k≥1 σkvk ⊗ wk by

HTτ (u) =
∑
k≥1

HTτ (σk)vk ⊗ wk ,

where HTτ (t) = t 1|t|>τ is the hard thresholding function such that

HTτ (σk) =

{
σk if σk > τ

0 if σk ≤ τ
.

The error after hard thresholding is

‖u −HTτ (u)‖2 =
∑
k≥1

σ2
k 1σk≤τ .

HTτ (u) is a solution of the problem

min
v
‖u − v‖2 + τ2 rank(v)

where rank(v) = ‖σ(v)‖0.
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Soft thresholding of singular values

The soft singular value thresholding operator STτ is defined for a tensor u with singular
value decomposition

∑
k≥1 σkvk ⊗ wk by

STτ (u) =
∑
k≥1

STτ (σk)vk ⊗ wk ,

where STτ (t) = (|t| − τ)+ sign(t) is the soft thresholding function, such that

STτ (σk) = (σk − τ)+ =

{
σk − τ if σk ≥ τ
0 if σk < τ

.

The error after soft thresholding is

‖u − STτ (u)‖2 =
∑
k≥1

(σk − (σk − τ)+)2 =
∑
σk≤τ

σk
2 +

∑
σk>τ

τ2.
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Soft thresholding of singular values

STτ (u) is a solution of the problem

min
v

1
2
‖u − v‖2 + τ‖σ(v)‖1

where ‖σ(v)‖1 is the nuclear norm of v , which is a convex regularization of the
functional v 7→ rank(v).

In convex analysis, STτ is known as the proximal operator of the convex function
v 7→ τ‖σ(v)‖1.

The operator STτ is non-expansive, that means for all u, v ,

‖STτ (u)− STτ (v)‖ ≤ ‖u − v‖,

which is an important property for the analysis of algorithms with tensor truncations.
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Convex relaxation

A general optimization problem over a subset of tensors with bounded rank

min
rank(v)≤r

J (v)

is equivalent to
min
v
J (v) + τ rank(v)

for some value of τ .

A convex optimization problem is obtained by replacing rank(v) = ‖σ(v)‖0 by the
function ‖σ(v)‖1 = ‖v‖∗ (the nuclear norm of v)

min
v
J (v) + τ‖v‖∗

145 / 157



Proximal algorithms

Consider the problem
min
v
J (v) + τ‖v‖∗

A proximal algorithm constructs a sequence (un)n≥1 as follows.

At iteration n, we linearize the function J around un and define un+1 as the solution of

min
v
J (un) + (∇J (un), v − un) +

β

2
‖u − un‖2 + τ‖v‖∗

where β is a parameter.

This is equivalent to solving

min
v

1
2
‖v − (un − β−1∇J (un))‖2 +

τ

β
‖v‖∗

whose solution is provided by

un+1 = STτ/β(un − β−1∇J (un))

where STτ/β is the proximal operator of v 7→ τ
β
‖v‖∗.
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Hard and soft singular values thresholding for higher order tensors

For a higher order tensor u in a Hilbert tensor space V = V1 ⊗ . . .⊗Vd , we can naturally
define hard and soft singular values thresholding operators HSατ and ST ατ associated
with the singular value decomposition of the matricisationMα(u) of u.

These operators are such that

HSατ (u) = arg min
v
‖u − v‖2 + τ2 rankα(v),

and
ST ατ (u) = arg min

v

1
2
‖u − v‖2 + τ‖σα(u)‖1.
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Hard and soft singular values thresholding for higher order tensors

Hard and soft thresholding operators can then be defined for the approximation in a
tree-based format T T

r (V ), with T a dimension tree (or a subset T of a dimension tree),

Hard and soft thresholding operators HT T
τ and ST T

τ can be respectively defined as
compositions of hard and soft thresholding operators (sequence of truncations from the
root to the leaves),

HT T
τ = HT αM

τ ◦ . . . ◦ HT α1
τ

and
ST T

τ = ST αM
τ ◦ . . . ◦ ST α1

τ

where the set of nodes {α1, . . . , αM} = T \ {D} is sorted by increasing level.

The soft-thresholding operator ST T
τ is non-expansive, i.e.

‖ST T
τ (u)− ST T

τ (v)‖ ≤ ‖u − v‖

for all tensors u, v .

See [Rauhut’17] and [Bachmayr’16] for further details and applications to tensor
completion and solution of operator equations.
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Convex relaxation for tree-based formats

Given a tree-based format T T
r (V ), a convex relaxation of the problem

min
v∈T T

r (V )
J (v)

can be defined as
min
v∈V
J (v) + τ

∑
α∈T\{D}

‖σα(u)‖1. (?)

Algorithms based on soft thresholding of singular values appear as specific
algorithms for solving the relaxed optimization problem (?).

But this relaxation is known to be far from optimal convex relaxation.

For Tucker tensors, a better convex relaxation is based on tensor nuclear norm
[Yuan/Zhang’16].

Finding a good convex relaxation for general tree-based formats remains an open
problem.
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