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Context

Machine learning for “big data”
m Large-scale machine learning: large d, large n

m : dimension of each observation (input)
m 7. : number of observations

m Examples: computer vision, bioinformatics, advertising

m Ideal running-time complexity: O(dn)
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Machine learning for “big data”
m Large-scale machine learning: large d, large n

m : dimension of each observation (input)
m 7 : number of observations

m Examples: computer vision, bioinformatics, advertising
m ldeal running-time complexity: O(dn)

m Going back to simple methods

m Stochastic gradient methods (Robbins, Monro, 1951)
m Mixing statistics and optimization
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Stochastic Approximation for nonconvex optimization
Finite-sum optimisation

Empirical risk minimization
m Finite set of observations: 7;..... 7, (typically, Z;(V;, X;))
m Minimize the empirical risk: v/T(H) = % w1 000, 2;)

Batch stochastic gradient

mlet 5 C{l ..., n} be a mini-batch sampled with /without
replacement in {1..... n} with cardinal |5] = V.
m Define the mini-batch gradient

Vis(0)=(1/p)>_ Vel(0,Z)

€S
where p = /N or p = 1/(").
m Then, V /< is an unbiased estimator of V/, i.e.

E[Vfs(0)|(Zi)icqr...my] = VF(0) .
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Batch Stochastic Gradient

Empirical risk minimization
m Minimize the empirical risk: ,/T(H) = % w1 000, Z;)
Batch stochastic gradient

m Batch stochastic optimization consists in replacing Tf(\();,.) by the
minibatch estimate T}‘S, (01.) in the gradient descent scheme to
define the iterates (0.).c1,

Ori1 = O — Yer1V fs,, (Ok)

where (5. ) is an i.i.d. sequence of minibatches and (7, ).+ is a
sequence of stepsizes.
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Batch Stochastic Gradient

m (5% )rer- uniform with/without replacement non necessary the best
choice.
B (7 )rcn- is either held constant or decreasing going to (:

m constant stepsize: If 7, = -, the scheme does not converge in
general. {#]} is an ergodic Markov chain (under appropriate
conditions).

m decreasing stepsize: If lim;, ... 7. = 0, then {0, } converges a.s. to
0.. (also under appropriate conditions).

m This is a specific instance of stochastic approximation schemes.
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Online learning

Expected risk minimization

m Minimize the expected risk: [(0) = E[/(0.2)]
Online stochastic gradient

m Let (7)),cr- be ani.i.d. sequence.

m Define for any /i € N*,

Vi(0) = Vol(0, Z) .

m Then, V /, is an unbiased estimator of V /, i.e.
E[V fx(0)] = Vf(6)

where the expectation is taken over the data (7).
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Online learning

m Minimize the expected risk: [(0) = E[((0, Z)]
Online stochastic gradient

m Online stochastic gradient defines the iterates (0. ).,
H//+l — H/I - A‘nv,l,vf/mk\, (Hu ) s

where (74 )1+ is a sequence of stepsizes.
Remarks
B (7. )rcn- is either constant or decrease to 0.

m This scheme also belongs to the class of stochastic
approximation /optimization schemes.
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Stochastic gradient descent

m Minimize a function / defined on 2/
m given only unbiased estimates V /,, of V[,
m or Jf, of its subgradients 0.

Online learning

m loss for a single pair of observations: ‘ Jfn(0) = 0(Y,, (0, 2(X,,))) ‘

m[(0)=E[f,(0) =E[((Y,, (0, P(X,))) = generalization error
m Expected gradient:

Vf(60) = E[V fu(0)] = E[E(Yy, (6, 2(X))) D(Xn)]

m Non-asymptotic results

Number of iterations = number of observations
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Convex stochastic approximation

m Smoothness: [ B-Lipschitz continuous, V[ L-Lipschitz continuous
m Strong convexity: [ si-strongly convex
Key algorithm: Stochastic (sub)gradient descent (a.k.a. Robbins-Monro)

Hn — 9”,| - ﬂmvfn(enfl) 3 Hu — anl - ﬂ,"n(;)fu(ﬁnfl) ‘
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Convex stochastic approximation

Key properties of | and/or [,
m Smoothness: | B-Lipschitz continuous, V /' L-smooth
m Strong convexity: [ j-strongly convex
Key algorithm: Stochastic (sub)gradient descent (a.k.a. Robbins-Monro)

/)// U//*l A‘//V,/'H((}//fl ) ) ()// (//17\ A‘//(')./‘//(;()Ilfl ) ‘

m Polyak-Ruppert averaging: 0, — n ' sl

2k=0
m Which learning rate sequence ,,?7 Classical setting:
Desirable practical behavior
m Applicable (at least) to classical supervised learning problems
m Robustness to (potentially unknown) constants (L, 2, /:)
m Adaptive to problem behavior (e.g., convex / strongly convex)
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Stochastic Approximation for nonconvex optimization

Smoothness/convexity assumptions

Iteration /}1: ()//7I nv/z/( //7I

/17\

Polyak-Ruppert averaging 0,, = Z Ok

/,, Convex + L-Smooth : For each n ; | the function [, satisfies a.s.:
m convex;
m differentiable with /-Lipschitz-continuous gradient V f,,;
m bounded variance (bounded data): almost surely

E[|V fn41(0%)II°[Fn] <

| Strongly convex : The function [ is strongly convex with respect to the
norm |||» with convexity constant ;. > 0:

. . . . — M 2
m Invertible population covariance matrix or regularization by ;HH |

m — there exists a unique minimizer 0~
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Summary

Assumptions
m Stochastic gradient descent with learning rate v, = C'n=“, o «
m Strongly convex smooth objective functions

m Bounded variance (bounded data): w.p. I,
2(||V frg1 (0|12 Fn] < 0.
Results

m Old: O(n ') rate achieved without averaging for o = |

m New: O(n ') rate achieved with averaging for o < [1/2, 1]
m Non-asymptotic analysis with explicit constants

m Robust to the choice of
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Summary

Assumptions
m Stochastic gradient descent with learning rate v, = C'n= @, o € [0, 1
m Strongly convex smooth objective functions
m Bounded variance (bounded data): w.p. 1,
E[[|V frt1(67) 2‘]:12} <o
Results
m Old: O(n ') rate achieved without averaging for o = |
m New: O(n ') rate achieved with averaging for o < [1/2, 1]
m Non-asymptotic analysis with explicit constants
m Robust to the choice of
Convergence rate for [£]||0,, — 0*(|?] and E[||0,, — 0*[|°].
- without averaging: O(v,,) + O(e "7)||0, — 07|
- with averaging: O(n ')+ O(n %) + 20y — 07700 )
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Examples

e alpha (d =500, n = 500 000), news (d = 1 300 000, n = 20 000)

alpha square C=1 test alpha square C=opt test
1 1
_ 05 05
g o 0
s -05 -05
;é - 2 - 2
kel — 1R —CIR
-15 — R -15 — /R
2| —saAc 2| —saAG
0 2 4 6 0 2 4
log, o(n) log, (n)
news square C=1 test news square C=opt test
0.2 0.2
0 0
£ -02 0.2
T
= -04 -0.4
& -o6{|—1R’ -0.6{ —CIR’
——4/R%n'2 ——C/R%n'2
-0.8 ——SAG -0.8 ——SAG
0 2 4 0 2 4
log, o(n) log, (n)
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Stochastic approximation
Proximal methods
Applications

Sketch of proof

f strongly convex, f,, smooth, bounded variance
m Consider 9, = [|0,, — H*HQ.

m Then, we have almost surely

(577,+l — (577 * ",‘n+l<vfn,+l<€)n>-, 971 o ‘9*> + ’\y‘;ZIJrl var7+l(‘971)”2 .

m | is strongly convex:

E[(Snle‘]:n} — 671 o "m+l<vf<9n>- en o 6)*> + ’\//iJrlE[va‘errl(enHF |~Fn]

< (1 o /l’\,"nJrl)én + "r‘;zy,Jrl]E[“v.f.rl,%»l(H”) o Vf<9*>HZ ‘]:”] .

u}

)]
I

i
it
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optimization

Sketch of proof

| strongly convex, f,, smooth, bounded variance
m Consider 9, = [|0,, — G*HQ.

m | is strongly convex:

E[($7L+'I ‘-FIL] — (Sn, _ A,'/n,Jr'l <vf(€n) 971, o H*> + A/';Zz,Jr'lE[vanJr'l (9n>H2 |f7z,]

§ (l — HYn+1 )(571 + "/%Jr],E[vanJrl (977) o vf(ﬁ*)Hz ‘fn] .

m Since V[, 1 is a.s. Lipschitz with bounded variance at (",

E [V fut1(62) = V56"

]—"}

§ E {”vfn#’l(en) - v.f?l,+1<0*> + v,frH»](H*) - vf(e*)”z
< 2(L25, +0?) .

7
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Sketch of proof

| strongly convex, f,, smooth, bounded variance
= Consider 0, — |0, — 07|
m Since V[, 1 is a.s. Lipschitz with bounded variance at 0",
E [V fus1(0n) = VSO | )
<E IV fui1(00) — Vo (0 + Vs (0.) — V(6%
< 2(L%5, +0%).

7

m Conclusion:

[ 77+1‘]:71} < ( Yn+1 + 2]’ /n+1>o7l +20’ /nvl .
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Sketch of proof

| strongly convex, f,, smooth, bounded variance
m Consider 0, — [|0,, — 07|

m Conclusion:

E[(S,,,+1‘]‘—,”J < (1 — WY+l T+ 2L275+1>6n + 2(727721,+'1 .
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Convex Stochastic Approximation: take home message

m Pros

m Simple to implement
m Cheap
m No regularization needed
m Convergence guarantees
m Cons:
m Initial conditions can be forgotten slowly: could we use even
larger /fixed step sizes?
m For fixed step sizes, the previous bounds do not show that
E[[|6n — 6*]]*] /4 0 or E[||0,, — 6*
m We only have E|||0,, — 0" H = O(v) and [£] ‘(7,, — ()“ “): = 0(7y).
m We illustrate these two facts using numerical simulations

4 0.

)
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Motivation 1/ 2. Large step sizes!

=
&
S s e
| 2
< 25
5=
S~— _3
=
20
¥ 3
4|[—1/2R?
—1/2R*\/n g
45 . : ‘ ‘ ‘

1 2 3 4 5 6

logyo(n)

Logistic regression. Final iterate (dashed), and averaged recursion (plain).
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Motivation 1/ 2. Large step sizes, real data

) = f(67))

n

>

log (f(

IOglo(n)

Logistic regression, Covertype dataset, n = 581012, d = 54. Comparison
between a constant learning rate and decaying learning rate as ﬁ
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Motivation 2/ 2. Difference between quadratic and logistic

loss

4 {[—1/2R?
—1/2R*/n ,
1 2 3 4 5 6

45

Logistic Regression
Ef(0,) - f(6%) = O(+?)
with v = 1/(2R?)

Francis Bach, Aymeric Dieuleveut, Alain Durmus, Eric Moulines

v b pype A4 7Y

0 2 4 6

Least-Squares Regression

E/(6,) - 10 =0 1)

with v = 1/(2R?)

CEMRACS 2021



Finite-sum optimization

Stochastic approximation Online learning
Proximal methods Smooth strongly convex case
Applications Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

Constant learning rate SGD: convergence in the quadratic
case
Least-squares: [(/) = LE[(Y — (D(X).0))] with 0 ¢ 7
m SGD = least-mean-square algorithm
m With strong convexity assumption E}D(X) ® <I>(Xﬂ =H>p-1d

0* = H'E[Y ®(X)]

mo, —>60"asn— +oo
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Constant learning rate SGD: convergence in the quadratic
case
m Key identity:
Ont1—0" = (Id —vH)(0n — 0%) + ¥1t1(0n) , E[nt1(605)|Fn] =

Nnt1(0) = HO—EY &(X)] = (X 1) P(Xpi1) 0+ Y1 0(Xp1)

m Therefore,

Onyr — 0" = (Id—yH)" (6 — %) + 7 Z (Id =y H)™ F i1 (61) |
k=0
and
O, — 0" =(n+1)"" Z(@A. —0)~(n+1)"tH! Z e (0r)
k=0 k=0
o = - = = v
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Constant learning rate SGD: convergence in the quadratic
case
Least-squares: [(0) — L12/(Y — (9(X).0))°] with 0 27

H/l 1 7/-)* — (I(l*"H)(ﬁ” 70*)“"?"/1/\1((91:) )

m The sequence (¢,,),,~( is a homogeneous Markov chain
The distribution of (0,,),, - converges to a stationary distribution 7
0, converges to 0, = [, Jdm (J) (Birkhoff theorem)

m Identification of ¢,
| H: (‘}1; ~ Ty, then H\ ~ T~
m Taking expectation, and using I [1, ()] = 0 for any 6 ¢ R“,

/ HW —0")dr(9) =0= 0, =0".
m Conclusion 0,, — 0" as n — +oo if ergodic

m Question: What happens in the general case?
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SGD: an homogeneous Markov chain
m Consider a .—smooth and j—strongly convex function f.

m SGD with a step-size v > 0 is an homogeneous Markov chain:
0h 1 = 0] — Vi1 (0) = 00 —v[V(O)) +me+1(67)]
Met1(07) = V frer1(00) = VFO))  Elne1(00)Fx] = 0.

Assumptions
m V /) is almost surely /.-co-coercive: for any ¢;.0, ¢ R,

(Vfr(01) = V f(02), 61 — 05) > L1 |V fi(61) = V f(62)”

m Bounded moments for p large enough,

Elllme (0%)]1] < o0
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Stochastic gradient descent as a Markov Chain: Analysis
framework?

m Let be the Markov kernel associated with

m Existence of a stationary distribution for , and convergence to
this distribution.

m Behavior under the limit distribution ( ):

Provable convergence improvement with extrapolation tricks
used for numerical integration and applied probability.

m Analysis of the convergence of ¢ to through its
MSE.

2Bach, Dieuleveut, Durmus, AOS, 2020.
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Existence and convergence to a stationary distribution

Wasserstein distance: 7 and A\ probability measures on

is the set of probability measure ¢ s.t. ,

1

For , the chain admits a unique stationary distribution
and for all , :
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Existence of a limit distribution: proof | /IlI

m Coupling: 0',0” be independent and distributed according to A, A\,
respectively, and ( )7 (9(”) ~o SGD iterates:

91(214 =04 — [V r(6;) ) + M1 (0
P ; 2) |
02, =62 —A[Vi6P) + e (62)]

m for all /- > 0, the distribution of (0, .0," ) isin [1(\ /2" 0, 1)
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Existence of a limit distribution: proof 11/l
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Applications

optimization

1 (2
E (68, — 02,1

<E[I00) =2V fira (002) = (0 = 1V fira (0211
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Existence of a limit distribution: proof 11/l

1 2 ‘
E |60, — 082, 12)]

<E[I00) = 2V fir1 (002) = (0F) = 2V fira (00117

2
<k o) - o2

= 29(V S (61)) = Vi1 (60)), 61 — 6 ﬂ

+7°E UV.}‘}H(QE}%) — Vi1 (62)

)]

Francis Bach, Aymeric Dieuleveut, Alain Durmus, Eric Moulines CEMRACS 2021



Finite-sum optimization

Online learning

Smooth strongly convex case

Stochastic subgradient descent/method
ic Approxil ion for

Stochastic approximation
Proximal methods
Applications

optimization

Existence of a limit distribution: proof 11/l

1 2 :
E (101, - 60,1

2
<k o) - o3 -

2’7/<vf]ﬁ+l (91(.12/) o vf]\'?+l (92272,)‘ 9212/ o 9/522, >:|

B . 2

+9°E U(v,ﬁ.meﬁi) - Vi (0| }
coco o |12
e o -6 ]

— 2y(1 = L)E [( Vi1 (00)) = Va6, 02 — 02|

k7 Tk,
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Applications

Existence of a limit distribution: proof 11/l

1 2 ‘
B[l — o201
]

291 = YL)E [(Vfirr(62) = Vs (02,61 = 02))]

unbiased o |12
=g o) -0

~29(1 = L)E [(VF(61)) = VIO2), 00 — 012)]

coco

e 682 - o)

it
N
el
2
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Existence of a limit distribution: proof 11/l

2 -
Ell62,., feiﬁ_um}
unb?sed |:H0<l) :|

(1= [(9165) = V16108 - 03)
(- 21 - o) - o)

Hmﬂ .
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Existence of a limit distribution: proof 111/11]

m By induction:
WEOWR Ao2) < E 108~ 02 1]

< (1= 2py(1 —~yL)" / 161 — 62> dA1 (61)dA2(62) -

Jx,y

m Thus Wa(dp, RY, 0g, RY)<(1 — 2uy(1 — L))" |61 — 6)2\\2.
m Uniqueness, invariance, and Theorem follow:

W26 R, 7)< (1 - 2uy(1 — L))" / 10 — 9| e (9)
JRRd
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Proximal methods Smooth strongly convex case
Applications Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

Behavior under limit distribution.

m Then we have E[0,] — 6,. Where is 0,7 Close to 6*?
m In the quadratic case 0, = 0*
m In the general case, we show that

0, = 0* +~vA(0*) + O(v?)
A(0%) = f(07) l.f"”(()*)([,f'”((/*) QI+I® f”(ﬁ*)}*IE[//W*)“}) :
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Stochastic Approximation for nonconvex optimization

Richardson extrapolation

07— 0y = Op(*/?)
(

0, + A
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Richardson extrapolation

—r7 g’Y
n
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7~ by = 031/
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Stochastic Approximation for nonconvex optimization

Richardson extrapolation

07 — 6 = Op(v/?)
—r7 g'v ‘97 Op(, —1/2)
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Stochastic approximation Online learning
Proximal methods Smooth strongly convex case
Applications Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

Richardson extrapolation

0 — 6, = Op(v/2)
— ‘g'v ‘97 Op(n—l/Q)
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Stochastic approximation Online learning
Proximal methods Smooth strongly convex case
Applications Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

Richardson extrapolation

Recovering convergence closer to 6, by Richardson extrapolation
207 — 62
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Proximal methods

Applications

Experiments

Finite-sum optimization

Online learning

Smooth strongly convex case

Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

—1/R?
—1/2R?
—1/2R*\/n
—Richardson

-6 f|—Online-Newton

logyo [£(0) — £(6.)]

'
]

0 2

4 6
logyo(n)

Synthetic data, logistic regression, n = 8.10°
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Stochastic Approximation for nonconvex optimization

Experiments: Double Richardson

—

*

) -1F . . e ot
~— L TNV P N L AT N T N VRSN RN
S

| 2+

—

S

= S—1/R?

=] —1/2R?

§° 41 —1/4R?

—1/2R*\/n
-5 r|—Richardson

Richardson 3y
-6 r|—Online-Newton

0 2 4 6
logyo(n)
Synthetic data, logistic regression, n = 8.10°
“Richardson 3~": estimator built using Richardson on 3 different
sequences: 03 = 507 — 2027 4+ 161
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Finite-sum optimization

Stochastic approximation Online learning
Proximal methods Smooth strongly convex case
Applications Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

Real data

— 05 ; ‘
&
~— -1 i
~
I 15 J
S
' 2 |
&
S 25 —qR? 1
o0
2 3 T 12R? |
—Richardson
-3.5 | — Decaying Steps 1
— Online-newton
4 : ‘
0 2 4 6

logyo(n)
Figure: Logistic regression, Covertype dataset. n = 581012, d = 54.
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Stochastic approximation Online learning

Smooth strongly convex case

Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

Stochastic approximation
m Finite-sum optimization
m Online learning
m Smooth strongly convex case
m Stochastic subgradient descent/method
m Stochastic Approximation for nonconvex optimization
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Stochastic approximation Online learning
Proximal methods Smooth strongly convex case
Applications Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

Stochastic subgradient descent/method

Assumptions
m [, convex and 5-Lipschitz-continuous on {||0||, < D}
m (/) i.i.d. functions such that [/, (0)] = [(0)
m (. global optimum of [ on {||0|. < D}

2D
Algorithm: 0,, = 11p (9,11 —=0fn(0n—1 >)

Byn
Risk Bound: )

[f (l > W)} — J(0.) < ”}B |

k=0

=

m Minimax convergence rate
m Running-time complexity: O(dn) after n iterations
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Finite-sum optimization

Online learning

Smooth strongly convex case

Stochastic subgradient descent/method
ic Approxil ion for

Stochastic approximation
Proximal methods
Applications

optimization

Stochastic subgradient method - proof - |

0, =

Ip(0n—1—vn0fn(0n—1)) where F, = o((Vi, Xi), 7 <n).

HHH - H*Hi S Henfl - 9* - A‘/n(A)fn,(Hn,fl)Hg

contractivity of projections
S Henfl 7 e*Hé + Bzﬁi -

27"71<9n71 - 6&: afn (6)7771)> H(‘),fn(enfl)HQ S B

Taking the conditional expectations of the both sides

E[Hen - H*H;“anl} S Hgnfl - H*Hi + Rz",y,z, - 2"/,1<<6)7171 - 9*)()‘/(9n7|)>

< |0n—1 = 0«12 + B*yn — 290 [f(0n-1) — f(0)] (subgradient property)
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Finite-sum optimization

Stochastic approximation Online learning
Proximal methods Smooth strongly convex case
Applications Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

Stochastic subgradient method - proof - |

O, = p(On—1 — V0 fn(0n_1)) where F,, = o((Yi, Xk),5 < n).

From

E{Hﬁ" H"Hg‘fﬂfl} S Hanl F)kui } Bz"}‘i

27 [f(On—1) — £(0")]

the tower property of conditional expectation implies

E[|6n — 6.113] < E[|[6n—1 — 613] + B*y5

leading to

{E[
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Finite-sum optimization

Online learning

Smooth strongly convex case

Stochastic subgradient descent/method
ic Approxil ion for

Stochastic approximation
Proximal methods
Applications

optimization

Stochastic subgradient

E[f(6u)] - F0) < 227 + L (B9,

2 2
2 29m = 0.][3 — E[|0n — 0.]3]

Constant step size

n

S E[f(Bu-1)] = £(9 >1gz

u=1

w1 — 07|3] —E[||6w — 07]13] }

u=1 u= l
B%y  4D?

< n ) e
2 27

Optimum stepsize v = 20 /(\/n13) (depends on the horizon).
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Finite-sum optimization

Online learning

Smooth strongly convex case

Stochastic subgradient descent/method
ic Approxil ion for

Stochastic approximation
Proximal methods
Applications

optimization

Stochastic subgradient

* Bz’vn, 1 2
E[f(6n-1)] = £0°) < 251" + 5 [Ellfn—1 — 023 — El|6 — 0. 3]
In
Constant step size
SSEF 6] - o) < 32 vt — 0*1B] —E [Jl6. — 0*3]}
u=1 u=1 u= l
nB%y  4D?
< : .
2 - 2y
Convexity [fixed horizon]:
n—1
1 2DB
So)| - s <
[ < k=0 v
[} [ = =

it
N
el
2
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Stochastic approximation Online learning
Proximal methods Smooth strongly convex case
Applications Stochastic subgradient descent/method
Stochastic Approximation for nonconvex optimization

Beyond convergence in expectation

INA
N
O
o]

Convergence in expectation: | {/' <n’l S, H,,.) - ,/‘(H*)}
High-probability bounds
m Markov inequality: P (f (m' - 9,,) — (%) > e> < 2pB
m Concentration inequality (Nemirovski et al., 2009; Nesterov and
Vial, 2008)

1= . .. _2DB, _, )
P (f (n Z(;,‘) - f(6") > ﬁ<z+~'1f)> < 2exp(—t7)

" k=0
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Finite-sum optimization

Stochastic approximation Online learning
Proximal methods Smooth strongly convex case
Applications Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

Stochastic subgradient method - proof - |

(9,, — HI)(()nf'l - A711,([),[”(07771)) with ]-—'n, — (7<<}7AXA)/ S 77,).

|60 — (LHE < ||Op—1 —0s — 7,7,("),}“,,((),7,1)\@ contractivity of projections
S H()n 1= ()>H§ + B‘Z",i - 2’\3’n<()u 1= OXfi),fIZ,(OlI, 1)> H()fn (()n 1>H2 S B

Define by Z,, the error (approximation of the "true” subgradient by its noisy

version)
Z'n — 2<01171 H*g(')f'n<0r7—l> (})f(enfl>>

and using the convexity we get

Hen o Q*H:)) S Henfl T H*Hj + Bzﬁ;?, o 2’}'7! U‘(H/zfl) o /(H*)] + 2771271
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Finite-sum optimization

Online learning

Smooth strongly convex case

Stochastic subgradient descent/method
ic Approxil ion for

Stochastic approximation
Proximal methods
Applications

optimization

Stochastic subgradient method - proof - Il

Zn - 7<9n*1 - 0*70][‘77,(917,71) - é‘)f(erlfl)>

From the inequality

16 = 67113 < [10n—1 — 0”113 + B*vn = 29a[f (Bn—1) = f(6°)] + 2vn Zn

we get

FO) = £O7) < g {10es = 0" 3 = 0. — 073} + Bon sz,
Summing up this identity

n

Z[/‘<ew>—f‘<9*>}g23“ +Z—{uew 0 10,0121+ Z

u=1 u=1 u=1

u=1

[} [ = =
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Stochastic approximation Online learning

Proximal methods Smooth strongly convex case

Applications Stochastic subgradient descent/method
Stochastic Approximation for nonconvex optimization

Stochastic subgradient method - proof - Il

Zn = —(0n-1—0",0fn(0n-1) — Of(0r_1))

Setting .. = 20 /(13./n) [depending on the horizon 1] in

S U (Ou)—f(67)] < Z +Zf{\|mq 0™ (15— 16.—0"|3 }+Zzu

u=1

LS e - e <2224 137,

u=1 u=1

u}

)]
I
i
it
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Proximal methods Smooth strongly convex case
Applications Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

Stochastic subgradient method - proof - Il

Zp = —=(On—1—0",0fn(0n-1) = 0f(0n-1))

Setting ., = 200 /(5+/n) [depending on the horizon ] in

n

- g o [ Nk . BQ",’H 1 * 112 * 12 E
SO < 30 TS {10 B0 B} Y 2

u=1 u=1 u=1 u=1

we get

L~ ey 2DB 1L
o 2O = FO} < =7 ﬁgzu

Require to study ' >} | Z, where (Z,);~1 is a bounded martingale
increment sequence: |7, | < 4DDB.

u=1
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Stochastic Approximation for nonconvex optimization

Stochastic subgradient method - proof - Il

Zn = 7<0”*1 o 0*1(),#1(01771) - é)f(0r771)>

Setting ., = 200 /(3/n) [depending on the horizon ] in

S fEy < 30 B +Z—4Wu 0034 2

u=1 u=1 u=1

n

;wan4<n2?)lza

n
u=1

u=1

Azuma-Hoeffding inequality for bounded martingale increments:

n
u=1
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Proximal methods Smooth strongly convex case
Applications Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

Stochastic subgradient method - proof - Il

Zn — 7<0nfl - U*()]Ln (07171) - ()f(07171>>

Setting ., = 200 /(B+/n) [depending on the horizon ] in

n n

zmwwm#WHgij —%er >ﬂmekQ:4

u=1 u=1 u=1 u=1

we get

LS e - e <2241y,

u=1 u=1
Moment bounds can be deduced from Burkholder-Rosenthal-Pinelis
inequality (Pinelis, 1994)
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Stochastic approximation
m Finite-sum optimization
m Online learning
m Smooth strongly convex case
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ic Approxil ion for optimization

Stochastic approximation beyond convex optimization

Stochastic approximation goes far beyond convex optimization.

Problem: find the roots of the mean field function /,, i.e. solve
h(6) = 0.

Stochastic gradient: h = Vf.

The function /. is not known in closed form, but

h(0) = / H (0, x)v(dx)

where H : © x X — O is a known function and v is a probability
distribution over X.
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ic Approxil ion for optimization

Robbins Monro set up

m Assume that there is an i.i.d. sequence { X, n € N} distributed
according to

m The stochastic approximation procedure:
()/7:011 1'7,,H((},, l~AX/r)W|th~[hu n ‘fu l} :]7<0N l)

where 7, | is the o-algebra of summarizing " past” observations.

m Can alternatively be written
HN — Hu 1+ f,,/}(ﬁ,, l) + A“nJ[n

where 1/, — [1(0, 1. X,,) — hi0,).

m Under the stated assumptions, £ [/, | 7, 1] = 0, i.e. the sequence
{M,,, n e N} is a martingale increment sequence.
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ic Approxi ion for optimization

Limiting ODE

m The limiting ODE which the SA procedure might be expected to

track is
m In absence of noise ( ), the recursion
is the Euler discretization of the ODE with stepsize

m Many asymptotic convergence results (see Kushner and Yin (2003),
Borkar (2008)) but few quantitative results.
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Randomized Stochastic Gradient (RGSD) Method

Stochastic oracle: for 0 ¢ R?,
m Unbiasedness E[G/(0,&)] = V f(0)
m Bounded variance E[||G:(0, &) — Vf(0)]]?] < o2
Stochastic gradient:
m Initial point 0, iteration limit /V, stepsizes {7/\.};‘}':(,1 and probability

over [l on {0..... ] N}

m step 0. Draw 7 from [1

m step 1. for b e {1,.. ., R}, call the stochastic oracle /(0. 1. &)
and set

O = Ot — G0k, Ex)
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ic Approxi ion for optimization

RSGD convergence

Suppose that the stepsizes and the probability 11 satisfies,
and,

For any , we have

where, denoting | denotes the optimal value,
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Stochastic approximation Online learning
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ic Approxi ion for optimization

RSGD convergence

Suppose that the stepsizes and the probability 11 satisfies,
and,

If in addition [ is convex with an optimal solution 0™, then for any

where
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Stochastic A imation for

Stochastic approximation
Proximal methods
Applications

RSGD convergence: Proof 1

Denote 0, = ¢ (Qk,l,ék:) - Vf (Qk'fl) k> 1. Then
: : A L, f
S (0) < F (Bxr) + (VS (Br-1) . 0x — O51) + SR NIG (B, &)

= f(Or=1) = (Vf(Or),G(Or-1,&)) + é G (01, &)
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Proximal methods
Applications

RSGD convergence: Proof 1

Denote 0, = G (0, 1.&,) — V[ (0p—1) .k > 1. Then

F(0) < F Bt) + {9 F Brr) Or — 05) + 297 |G Orr, €)1
=f (01\71) — e IV f Ok-0)I* = 7k (V. (k1) , 6k)

~

S (IVF Ok=2)II* + 2(V £ (6r-1) , 63) + |6 ]”

l\D
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Stochastic A imation for

Stochastic approximation
Proximal methods
Applications

RSGD convergence: Proof 1

Denote 0, = G/ (0. 1, &) — V[ (0 1),k > 1. Then
PO < T Bx) + (7 O 1) O~ b5) + ARG (05,60
— [ (014:71) - (7% - s’?f) ||Vf (gktf'l)HQ

. : . L o5
= (v = L) (Vf (Or—1) . 80 + 5% 10k
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Proximal methods Smooth strongly convex case
Applications Stochastic subgradient descent/method
Stoch ic A i ion for imization

RSGD convergence: Proof 2

Summing up the above inequality and rearranging terms

N
L. ‘
> (“m - )A;2> IVf (Ok—1)ll

k=1
N N
< f(80) = FOx) = (v — L) (VF Br1) ,86) + 2 D72

k=1 k=1

H‘Q

O
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Stoch ic A i ion for imization

RSGD convergence: Proof 2

Summing up the above inequality and rearranging terms

N
L . : 2
> (w - 502) 194 Gl
k=1
N L N
. o : . N 21 112
<00~ £ =3 (= L92) (VF Brm) o) + 2 D0 53 el
k=1 k=1
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RSGD convergence: Proof 2

Summing up the above inequality and rearranging terms

N
L , i ‘
> (wk - ,,:»;> IV f (O—1)I”
k=1 -
N I N
< f(00) — f* - ; (v = LAR) AV f (Os-1) 00) + 5 ;; e

Taking expectation and using [ {H&A.HQ} < o7 we get

k=1

N L, Io )
Z(,l - [>EVf Or-1)|I* < £ (00) — f* + 5 Z“;'/?
k=1
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RSGD convergence: Proof 2

Summing up the above inequality and rearranging terms

N

L . ) .
> (o - 592) 197 @)l
k=1
N L XN
< f(0o) — f" - Z (v6 = LYR) (V f (Br—1) , k) + B Z”;Z 16
k=1 T k=1

Dividing both sides by .5, | (7, — L~/ /2) we conclude

Lo Tro 2 i 2 (00) = 1) , 252
“E |V (0 ,
B 197 0] < v Lt
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Stochastic approximation
Proximal methods

Applications
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Proximal operator
Proximal methods Proximal gradient algorithm
Stochastic proximal gradient

B Proximal methods
m Proximal operator
m Proximal gradient algorithm
m Stochastic proximal gradient
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Proximal operator
Proximal methods Proximal gradient algorithm
Stochastic proximal gradient

Definition

Definition (Proximal mapping)

: closed convex function; : stepsize

m The uniqueness of the minimizer stems from the strong convexity of
the function

m If , where /C is a closed convex set, then is the
Euclidean projection on

m The proximal operator may be seen as a generalisation of the
projection on closed convex sets.
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Proximal operator

If and , then

Francis Bach, Aymeric Dieuleveut, Alain Durmus, Eric Moulines CEMRACS 2021



Proximal operator
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Proximal operator

If and , then
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Proximal operator
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A characterization of the proximal operator

Let ¢ be a convex function on ©, ,

i.e. p is the unique element of © satisfying
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Proximal operator
Proximal methods Proximal gradient algorithm
Stochastic proximal gradient

A characterization of the proximal operator

Let ¢ be a convex function on ©, ,
i.e. p is the unique element of © satisfying

Follows also from the characterization of the subdifferential

is the minimizer of
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Stochastic approximation
Proximal methods

Proximal operator
Applications

Proximal gradient algorithm
Stochastic proximal gradient

Proximal operator: LASSO and Elastic net

w If g(0) = > 7 A, 10;] then prox_ s shrinkage (soft threshold)
operation
0i —YAi 0; =\
[Sx~(0)]; = 40

10;] <\
0; + i
m 1f g(0) = X ((1—a)/2)|0]3 + al|6]|1)

0; < =X\

(Prox. ¢(

), !

T — YA if T > v\
=——— <71+t ya ifn < -yl
1T+ 921 — ) T'+ N

otherwise
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Fixed points of the proximal operator

Let ¢ be a proper convex function on ©. The set of fixed points

coincide with the set of global minimum of
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Proximal operator
Proximal methods Proximal gradient algorithm
Stochastic proximal gradient

Fixed points of the proximal operator

Let ¢ be a proper convex function on ©. The set of fixed points

coincide with the set of global minimum of

m Characterization of the proximal point

m Sub-gradient: for all ,

Conclusion
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Firm non-expansiveness

If ¢ is a proper convex function, then and are firmly
non-expansive (or co-coercive with constant 1), i.e. for all ,
where and
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Firm non-expansiveness

If ¢ is a proper convex function, then and are firmly
non-expansive (or co-coercive with constant 1), i.e. for all ,
where and

Adding these two equations yield

Cancliida ki vcidln~
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Assumptions

(P) min F(0) F(0) = f(0)+ g(0),

HeRrd
Assumptions
mg: RY (o0, 00| closed convex

B [ :© — R is convex continuously differentiable and V [ is gradient
Lipshitz: for all 0.0 < O,

IVF(O) = VO < Lllo -0,
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B Proximal methods
m Proximal operator
m Proximal gradient algorithm
m Stochastic proximal gradient
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Proximal gradient algorithm

HnJr'l - PI‘OX*‘V',,-l.,r/ (Hn — VYn+1 vf(en))

where
1 .

Prox, (1) = 18%1(5)1 9(0) + 2
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Proximal methods Proximal gradient algorithm
Applications Stochastic proximal gradient

Majorization-Minimization interpretation

m Since /[ is gradient Lipshitz, for all v < (0, 1/L]

F() = f(n) + 9(n) < F(6) + (V7(6)n — 6) + 510~ nll* + ()

m Consider the following surrogate function

Q+(016) = £(6) + (V7(6),m— 0) + o= 10—l + g(n)

m Forall 0 € ©, 1 (), (n]0) is strongly convex and has a unique
minimum and

F(n) < Q(nl0) F(0) = Q,(6]9)
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Proximal operator
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Majorization-Minimization interpretation

ac . l c
(n0) < £(0) + (V£(0),n — 6) + 5l = 011 + g(n)

f(0>+* ln— (0 =~V F©O)]* - *HW @)%+ g(n) ,
The iterates of the proximal gradient algorithms may be rewritten as
Opin =71, . (0,) with the point-to-point map 7', defined by

def

T, () = Proxy.qa (0 —yVf(0))

— 5\1gnlln//%Dmn(_{/)(27 (1/‘9> :
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Proximal gradient

m If g(0) = 0, — gradient proximal = classical stochastic gradient

()n — 01171 - ﬂ/nvfu)nf])
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Proximal gradient

m If g(0) = 0, — gradient proximal = classical stochastic gradient

()n — 01171 - A/nvfu)nf])

mIf g(0) =0if 0 € C and g(#) = +oo otherwise where ( is a closed
convex set,
Prox,,q(7) = min || — 0||?
TOX+,¢(T) min |7 I

— gradient proximal = projected gradient

()n — HC ((/nfl - A,'rzv,/‘(()n,fl))

Francis Bach, Aymeric Dieuleveut, Alain Durmus, Eric Moulines CEMRACS 2021
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Proximal operator
Applications

Proximal gradient algorithm
Stochastic proximal gradient

Proximal gradient for the elastic net penalty
If g(6) = X (352110113 + ]|]]1)

1
(Proxy 4(7)),

Ti — YA«
T 1+ YAl — @)

if 7, > v\
i+ a  if T < =y«

: otherwise
<~ Proximal gradient= soft-thresholded gradient

‘9r1,+l — Su./\.“,77 F1 (‘9r1,

A//n,+lvf<en,>>
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Stationary points of the proximal gradient

where is the proximal map,

The fixed points of the proximal map are the global minimizers of
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Fixed points of the proximal map

Since

we get
0€dF(0) <= 0e€OvF(0)
0€~Vf(0)+ 0vg(0)
0 —yVf(0) € (0+~99(9))

(I
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Stochastic approximation Proximal operator
Proximal methods Proximal gradient algorithm
Applications

Stochastic proximal gradient
Fixed points of the proximal map
Since

we get

F(0) = f(0) +9(0)
0€dF(0) <= 0e€OvF(0)
<~ 0€~Vf(0)+ 0vg(0)
= 0—7Vf(0) € (6 +~99(0))
Recall that, for any 7

p = prox.,(n) <= (n—p) € 79g9(p) <= n € p+9g(p).
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Proximal methods Proximal gradient algorithm
Applications Stochastic proximal gradient

Fixed points of the proximal map

Since

we get
0€dF(0) <= 0e€OvF(0)
0€~Vf(0)+ 0vg(0)
0 —yVf(0) € (0+~99(9))

(I

Recall that, for any 7

p = prox.,(n) <= (n—p) € 79g9(p) <= n € p+9g(p).
Hence, taking p < 0 and 1) < 0 — 4V [(0)
0€0F(0) < 0="1T,(0)
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Lyapunov function

Qy16) = F(6) + (V. F(6), 1~ 6) + 516l + g(0)

mForall 0 c ©, FoT (0) < F(0):
FoT,(0) < Q(T,(0)|6) < Q,(6]6) = F ()

Moreover, the inequality is strict unless ¢ is a fixed point of the
mapping 7.

m /' is a Lyapunov function for the proximal map 7°,.
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Convergence result

m the objective function always converge {F'(6,),n > 0}

m f is convex: then {6,,, n € N} converges to 0,, where 6, is a
minimizer of F'.

m F(0,) — F(0,) =O0(1/n).
m Results similar to smooth optimization (O(1/n) where n is the
number of iterations)

m Acceleration methods: Nesterov, 2007; Beck and Teboulle, 2009.
(O(1/n?)) [algorithm FISTA]
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B Proximal methods
m Proximal operator
m Proximal gradient algorithm
m Stochastic proximal gradient
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Stochastic proximal gradient

Stochastic proximal gradient

Objective

m Exact algorithm :
H/7+1 — I)IA()X"‘,, 11,9 (H/Z — Tn+1 vf(en))

m Pertubed algorithm :

()u+| - [)1'(—)}\",, 1,9 (()u - ?’/1+\Hn+1)

where /1, | is a noisy approximation of the true gradient V[ (0,,)
m Problem find sufficient conditions on the stochastic error
M1 = Hpp1 — Vf(0n)

to preserve convergence (closely related to SA).
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Convergence of the parameter

Assume [ is [.-smooth and the set is non-empty.
Assume in addition that for any and

If the following series converge

then there exists such that
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Convergence of the function

Assume [ is [.-smooth and the set is non-empty.
Assume that and let be nonnegative weights.
Then, for any and ,

where
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Applications Stochastic proximal gradient
Sanity check
m Assume that the gradient is exact, i.e. 7, = (. Set 4, = > )
Then
F (;—l,,l Z ()‘,> —minF < A, Z a;F(0;) — min F
j=1 j=1

l k Qp— a 2
5 — ) 0k -1 — 041 + = 1160 — 6. ]|
2 k=1 270

m Setting o, = 1 and . = 1 /L

: ZF)_,) —minF <n! ZF(#}/) —minF
Jj=1

j=1

m Up to constant, this is the same bound than the gradient algorithm for
smooth convex function.
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Proximal methods Proximal gradient algorithm
Applications Stochastic proximal gradient
Perturbed gradient
m Take ap =, for ke {1,..., n}. Then, forany 0, ¢ L and n > 1,

n 1 .
F r;l V0 | —min F < —1|6y — 6, 2
( > o, 1o =01

—T) T (Or—1) = O + T D A7 Il -

k=1 k=1

m Problem: Control the sequences > ' |~ (7%, (0, 1) —0..7) and
777 in expectation or using high-probability bounds.
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Robbins-Monro setting

Vo) = / Hy(z)m(dz)

JX

m Set

M1

—1 (7
H”+| - 7”’71+l Z H(‘)n(‘xrglﬁl)

Jj=1

where 772,, 1 is the size of the batch and {XSZQ]. L <J<myii}is
a sample from 7 independent of o (0,, [ < n).

m In such case, N
E[Hpir | Fo) = myty ST E | H, (XY)) (f} — Vf(6,) and
M1 = Hypp — YV f(0,) is a martingale increment.
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Bounded case / Constant stepsizes - Risk Bounds

m Assume that | /y(2)| < B, then 1,11/ < 2B and the stepsizes are
constant v, = 1 /B/n for ke {1,..., n}.
m On one hand :
0ot D villmwesall <
= V '

m Risk bound: since E [ (7, (0 1) — 0..n) | Fr—1] = 0 (since
Ene | Fr1 = 0/=0), the risk bound is

& B 4B
Fn! 0, i 0o — 0, .
<,, ;L)] < 2o 12

m Same risk bound than the Stochastic subgradient method (minimax
rate)
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Bounded case / Constant stepsizes - Concentration

m Azuma-Hoeffding inequality for bounded martingale increments
{Z;‘.. ke N}

1< Ct ,
Pl - 7 > — | <exp(—t°/2
(134> %) <onten

m Apply it to
Zp = (Ty, (Ox—1) — Ou, i) -
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Applications
m Network structure estimation
m High-dimensional logistic regression with random effect
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Applications

Network structure estimation

m Problem fitting a discrete graphical models in a setting where the
number of nodes in the graph is large compared to the sample size.

m Formalization Let A be a nonempty finite set, and p > 1 an integer.

Consider a graphical model on with p.m.f.
for a non-zero function and a symmetric non-zero
function

m The term is the normalizing constant of the distribution (the

partition function), which cannot (in general) be computed explicitly.
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S High-dimensional logistic regression with random effect
Applications

Network structure estimation

m Problem fitting a discrete graphical models in a setting where the
number of nodes in the graph is large compared to the sample size.

m Formalization Let A be a nonempty finite set, and p > 1 an integer.

Consider a graphical model on with p.m.f.
for a non-zero function and a symmetric non-zero
function

m The real-valued symmetric matrix ¢ defines the graph structure and
is the parameter of interest. Same interpretation as the precision
matrix in a multivariate Gaussian distribution.
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Network structure estimation

m Problem: Estimate ¢ from realizations where
under sparsity constraint.

m Applications biology, social sciences,

m Main difficulty: the log-partition function is intractable in
general.

- Most of the existing results use a pseudo-likelihood function.

- One exception is [hoefling09], using an active set strategy (to
preserve sparsity), and the junction tree algorithm for computing the
partial derivatives of the log-partition function. However, this
algorithm does not scale
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High-dimensional logistic regression with random effect

Model

m Penalized likelihood F'(#) = —((6) + g(0) where

.
1 « _ N
z‘(e):fE 0, B(z'")) —log Zg and g(0) = A § 10

i=1 1<k<j<p

the matrix-valued function B : X — RP*7 is defined by

Byr(x) = Bo(z) Byj(z) = B(zg,x;) k£ 7 .

m Intractable canonical exponential model.
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logistic reg;

with random effect

m Penalized likelihood F'(0)

((6) + g(0) where

N
= & g (0, B(a

—logZpand g(0) =X > [0l:

1<k<j<p
the matrix-valued function /7 : X — "7 is defined by
Byr(z) = Bo(z) Byj(x) = B(:
m (> —/(0)is convex and

vxi)  k#g.

1L
=N ZB(.Q:(]’))
i=1
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Applications

Implementation

m Direct simulation from the distribution is not feasible.

m If X is not too large, then a Gibbs sampler that samples from the full
conditional distributions of f, can be easily implemented.

m Gibbs sampler is a generic algorithm that in some cases is known to
mix poorly. Whenever possible we recommend the use of specialized
problem-specific MCMC algorithms with better mixing properties...
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Set up

m X={1,...,M}, By(r) =0, and B(z,y) = 1=y}, which
corresponds to the Potts model.
m We use M = 20, By(z) =z, N = 250 and for p € {50,100, 200}.

m We generate the ‘true’ matrix 6y, such that it has on average p
non-zero elements off-diagonal which are simulated from a uniform
distribution on (—4, —1) U (1,4).

m All the diagonal elements are set to 0.
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Algorithms

m Two versions of the stochastic proximal gradient are considered

Solver 1: A version with a fixed Monte Carlo batch size m,, = 500,
and decreasing step size v, = % nOI,.
Solver 2: A version with increasing Monte Carlo batch size
— 1.2 . H _ 25 1
my, = 500+ n"=, and fixed step size v, = T 7
m The set-up is such that both solvers draw approximately the same

number of Monte Carlo samples.
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Algorithms

m Two versions of the stochastic proximal gradient are considered

Solver 1: A version with a fixed Monte Carlo batch size m,, = 500,

. . _ 25 1
and decreasing step size v, = 0T

Solver 2: A version with increasing Monte Carlo batch size
— 1.2 . H _ 25 1
my, = 500+ n"=, and fixed step size v, = T 7
m We evaluate the convergence of each solver by computing the
relative error ||0,, — 0 ||/||0]|, along the iterations, where 6,

denotes the value returned by the solver on its last iteration.
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Algorithms

m Two versions of the stochastic proximal gradient are considered

Solver 1: A version with a fixed Monte Carlo batch size m,, = 500,
and decreasing step size v, = % .

Solver 2: A version with increasing Monte Carlo batch size
mn = 500 +n'?, and fixed step size y, = % \/157).

m We compare the optimizer output to 6., not Gy ldeally, we would
like to compare the iterates to the solution of the optimization
problem. However in the present setting a solution is not available in
closed form (and there could be more than one solution).
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When
measured as
function of
resource used,
Solver 1 and
. Solver 2 have
i roughly the
same
convergence
rate.

o

Figure: Relative errors plotted as function of computing time
for Solver 1 and Solver 2.
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Sensitivity and Precision

.. def .
m We also compute the statistic F,, = % which measures the

recovery of the sparsity structure of 6., along the iteration.

m In this definition Sen,, is the sensitivity, and Prec,, is the precision

defined as
Sen. — Zj<i 1{|9n,ij\>0}1{\0m,ij\>0}
n =
D j<i Wlbo.iy1>0)
Prec. — Zj<i 1{|9n,1'j|>0}1{|090,ij|>0}
n - .

> j<i 1l0m 1150}
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Sensitivity and Precision

2 — Sover 1 2 — Salver 1 2 — Solver 1
~~ Solver2 ~~ Solver2 ~~ Solver2

< T T T T T < T T T T < T T T T
0 2 W 60 0 o 50 100 150 0 S0 1000 1500 2000 2500 3000

Figure: Statistic F,, plotted as function of computing time for Solver 1 and
Solver 2.
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Applications
m Network structure estimation
m High-dimensional logistic regression with random effect
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High-dimensional logistic regression with random effects

m Observations : V' observations ¥ < {0, 1}

m Random effect : Conditionally to U, forall 7 = 1,--- IV,

}'[ il}\(}- B OXP(U/)
1 + exp(n;)

a

| 1 | =XB, +0.2U
s

m The regressors X < [R"*7 and the factor loadings Z ¢ RV >,
known.

where

m Objective: estimate 3. < R” o, > (.
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Penalized likelihood
m log-likelihood : Taking U ~ N, (0, I), setting
0= (3,0) Fy) = —P)_
1+ exp(n)
the log-likelihood of the observations Y (with respect to 6) is

N
00) = 1()g/H {(F(X:.8+0(ZU))}" {1 — F(X:.8+0(ZU);)} " ¢(u)du
Y=l
m Elastic net penalty
-

o .
nal®) = A (1521618 + el

N 0 igeC
3 (0) = { i

+00 otherwise
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Penalized likelihood

mingeo (f(0) +g(0)) , f(0) =—£(0),

£(0) = log /‘exp( (0lu)) ¢(u)du
N
L(O]u) = Z (X;.0+0(ZU);) —In (1 + exp (X;.0+ 0(ZU);))}

Gradient : .
V((G) — /v{/’y((e‘u)ﬂ—()(u)du

where 7y(u) is the posterior distribution of the random effect given the
observations

7o) = exp (£.(6]w) — £(6)) é(u)
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Penalized likelihood

logistic

where

mingee (f(0) + 9(0))

1 —«
gre(0) = A <

o)
2

2+ (1<||31) +1c(6)
0 if 0 eC
HC(Q) — {

+00 otherwise

C compact convex set
< proper convex,

lower-semi continuous, not differentiable.
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Applications

MCMC algorithm

m The distribution 7y is sampled using the MCMC sampler proposed in
(Polson et al, 2012) based on data-augmentation.

m We write =V/(0) = [, pv Ho(u)7To(u, w) dudw where 7g(u, w)
is defined for u € R? and w = (wy,--- ,wy) € RY by

m in this expression, Tpg(+; ¢) is the density of the Polya-Gamma
distribution on the positive real line with parameter c given by

where p(w) Zkzo(*l)k@k + 1) exp(—(2k + 1)%/(8w) )w3/?
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Applications

MCMC algorithm

m The distribution 7y is sampled using the MCMC sampler proposed in
(Polson et al, 2012) based on data-augmentation.

m We write —V/(0) = [zq, pn Ho(u)Tg(u, w) dudw where 7g(u, w)
is defined for u € R? and w = (wy,--- ,wy) € RY by

m Thus, we have

where InCy = —NIn2 — £(8) + 32 (Vi — 1/2)a),5.
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Applications

MCMC algorithm

m The distribution 7y is sampled using the MCMC sampler proposed in
(Polson et al, 2012) based on data-augmentation.

m We write —V/(0) = [, pv Ho(u)7Tg(u, w) dudw where 7g(u, w)
is defined for u € R? and w = (wy,--- ,wy) € RY by

m This target distribution can be sampled using a Gibbs algorithm

Francis Bach, Aymeric Dieuleveut, Alain Durmus, Eric Moulines CEMRACS 2021



Network structure estimation
High-di i logistic reg; ion with random effect

Applications

Numerics

m We test the algorithms with N = 500, p = 1,000 and ¢ = 5.

m We generate the N X p covariates matrix X columnwise, by
sampling a stationary RV -valued autoregressive model with
parameter p = 0.8 and Gaussian noise \/1 — p? Ny (0, I).

m We generate the vector of regressors Birue from the uniform
distribution on [1, 5] and randomly set 98% of the coefficients to
zero.

m The variance of the random effect is set to 02 = 0.1.
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Applications

Numerics

We first illustrate the ability of Monte Carlo Proximal Gradient
algorithms to find a minimizer of F'. We compare the Monte Carlo
proximal gradient algorithm
with fixed batch size: 7, = 0.01/y/n and m,, = 275 (Algo 1);
Yn = 0.5/n and m,, = 275 (Algo 2).
HA with increasing batch size: v,, = v = 0.005, m,, = 200+ n (Algo 3);
Yn =7 = 0.001, m,, = 200 + n (Algo 4); and ~,, = 0.05/+/n and
my =270 + [/n] (Algo 5).
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Figure: [left] The support of the sparse vector o, obtained by Algo 1 to
Algo 5; for comparison, the support of Sine is on the bottom row. [right]
Relative error along one path of each algorithm as a function of the total
number of Monte Carlo samples.
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Figure: The sensitivity Sen,, [left] and the precision Prec,, [right] along a path,
versus the total number of Monte Carlo samples up to time n
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