Stochastic Approximation

Francis Bach, Aymeric Dieuleveut, Alain Durmus, Eric Moulines

Ecole Polytechnique, Centre de Mathematiques Appliquees

July 21, 2021

Context

Machine learning for "big data"

- Large-scale machine learning: large *d*, large *n*
 - d: dimension of each observation (input)
 - \blacksquare n: number of observations
- Examples: computer vision, bioinformatics, advertising
- Ideal running-time complexity: O(dn)

Context

Machine learning for "big data"

- Large-scale machine learning: large d, large n
 - d: dimension of each observation (input)
 - \mathbf{n} : number of observations
- Examples: computer vision, bioinformatics, advertising
- Ideal running-time complexity: O(dn)
- Going back to simple methods
 - Stochastic gradient methods (Robbins, Monro, 1951)

Context

Machine learning for "big data"

- Large-scale machine learning: large d, large n
 - d: dimension of each observation (input)
 - \blacksquare n: number of observations
- Examples: computer vision, bioinformatics, advertising
- Ideal running-time complexity: O(dn)
- Going back to simple methods
 - Stochastic gradient methods (Robbins, Monro, 1951)
 - Mixing statistics and optimization

Stochastic approximation Proximal methods Applications

Finite-sum optimization
Online learning
Smooth strongly convex case
Stochastic subgradient descent/method
Stochastic Approximation for nonconvex optimization

- 1 Stochastic approximation
- 2 Proximal methods
- 3 Applications

Finite-sum optimization
Online learning
Smooth strongly convex case
Stochastic subgradient descent/method
Stochastic Approximation for nonconvex optimization

- 1 Stochastic approximation
 - Finite-sum optimization
 - Online learning
 - Smooth strongly convex case
 - Stochastic subgradient descent/method
 - Stochastic Approximation for nonconvex optimization
- 2 Proximal methods
 - Proximal operator
 - Proximal gradient algorithm
 - Stochastic proximal gradient
- 3 Applications
 - Network structure estimation
 - High-dimensional logistic regression with random effect

Finite-sum optimization Smooth strongly convex case

Online learning

Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

Finite-sum optimisation

Empirical risk minimization

- Finite set of observations: Z_1, \ldots, Z_n (typically, $Z_i(Y_i, X_i)$)
- Minimize the empirical risk: $\hat{f}(\theta) = \frac{1}{n} \sum_{k=1}^{n} \ell(\theta, Z_i)$

Batch stochastic gradient

- Let $S \subset \{1, \ldots, n\}$ be a mini-batch sampled with/without replacement in $\{1,\ldots,n\}$ with cardinal |S|=N.
- Define the mini-batch gradient

$$\nabla \hat{f}_S(\theta) = (1/p) \sum_{i \in S} \nabla_{\theta} \ell(\theta, Z_i) ,$$

where
$$p = n/N$$
 or $p = 1/\binom{N}{n}$.

■ Then, $\nabla \hat{f}_S$ is an unbiased estimator of $\nabla \hat{f}$, i.e.

$$\mathbb{E}[\nabla \hat{f}_S(\theta)|(Z_i)_{i\in\{1,\dots,n\}}] = \nabla \hat{f}(\theta) .$$

on

Finite-sum optimization
Online learning
Smooth strongly convex case

Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

Batch Stochastic Gradient

Empirical risk minimization

■ Minimize the empirical risk: $\hat{f}(\theta) = \frac{1}{n} \sum_{k=1}^{n} \ell(\theta, Z_i)$

Batch stochastic gradient

■ Batch stochastic optimization consists in replacing $\nabla \hat{f}(\theta_k)$ by the minibatch estimate $\nabla \hat{f}_{S_{k+1}}(\theta_k)$ in the gradient descent scheme to define the iterates $(\theta_k)_{k\in\mathbb{N}}$,

$$\theta_{k+1} = \theta_k - \gamma_{k+1} \nabla \hat{f}_{S_{k+1}}(\theta_k) ,$$

where (S_k) is an i.i.d. sequence of minibatches and $(\gamma_k)_{k \in \mathbb{N}^*}$ is a sequence of stepsizes.

Finite-sum optimization
Online learning
Smooth strongly convex case
Stochastic subgradient descent/method
Stochastic Approximation for nonconvex optimization

Batch Stochastic Gradient

- $(S_k)_{k \in \mathbb{N}^+}$ uniform with/without replacement non necessary the best choice.
- $(\gamma_k)_{k\in\mathbb{N}^*}$ is either held constant or decreasing going to 0:
 - constant stepsize: If $\gamma_k \equiv \gamma$, the scheme does not converge in general. $\{\theta_k^{\gamma}\}$ is an ergodic Markov chain (under appropriate conditions).
 - decreasing stepsize: If $\lim_{k\to+\infty} \gamma_k = 0$, then $\{\theta_k\}$ converges a.s. to θ_* (also under appropriate conditions).
- This is a specific instance of stochastic approximation schemes.

Finite-sum optimization

Online learning Smooth strongly convex case

Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

Online learning

Expected risk minimization

■ Minimize the expected risk: $f(\theta) = \mathbb{E}[\ell(\theta, Z)]$

Online stochastic gradient

- Let $(Z_k)_{k \in \mathbb{N}^*}$ be an i.i.d. sequence.
- Define for any $k \in \mathbb{N}^*$,

$$\nabla f_k(\theta) = \nabla_{\theta} \ell(\theta, Z_k) .$$

■ Then, ∇f_k is an unbiased estimator of ∇f , i.e.

$$\mathbb{E}[\nabla \hat{f}_k(\theta)] = \nabla \hat{f}(\theta)$$

where the expectation is taken over the data $(Z_k)_{k\in\mathbb{N}^*}$.

Smooth strongly convex case

Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

- 1 Stochastic approximation
 - Finite-sum optimization
 - Online learning
 - Smooth strongly convex case
 - Stochastic subgradient descent/method
 - Stochastic Approximation for nonconvex optimization
- 2 Proximal methods
 - Proximal operator
 - Proximal gradient algorithm
 - Stochastic proximal gradient
- 3 Applications
 - Network structure estimation
 - High-dimensional logistic regression with random effect

Online learning

Finite-sum optimization

Smooth strongly convex case

Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

Online learning

■ Minimize the expected risk: $f(\theta) = \mathbb{E}[\ell(\theta, Z)]$

Online stochastic gradient

• Online stochastic gradient defines the iterates $(\theta_k)_{k\in\mathbb{N}}$,

$$\theta_{n+1} = \theta_n - \gamma_{n+1} \nabla f_{n+1}(\theta_n) ,$$

where $(\gamma_k)_{k\in\mathbb{N}^*}$ is a sequence of stepsizes.

Remarks

- $(\gamma_k)_{k\in\mathbb{N}^*}$ is either constant or decrease to 0.
- This scheme also belongs to the class of stochastic approximation/optimization schemes.

ion

Finite-sum optimization
Online learning
Smooth strongly convex case

Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

Stochastic gradient descent

- Minimize a function f defined on \mathbb{R}^d
- lacksquare given only unbiased estimates ∇f_n of ∇f ,
- or ∂f_n of its subgradients ∂f .

Online learning

- loss for a single pair of observations: $f_n(\theta) = \ell(Y_n, \langle \theta, \Phi(X_n) \rangle)$
- $\qquad \qquad \mathbf{f}(\theta) = \mathbb{E}[f_n(\theta)] = \mathbb{E}[\ell(Y_n, \langle \theta, \Phi(X_n) \rangle)] = \text{generalization error}$
- Expected gradient:

$$\nabla f(\theta) = \mathbb{E}[\nabla f_n(\theta)] = \mathbb{E}[\dot{\ell}(Y_n, \langle \theta, \Phi(X_n) \rangle) \, \Phi(X_n)]$$

■ Non-asymptotic results

Number of iterations = number of observations

Smooth strongly convex case
Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

Convex stochastic approximation

- Smoothness: f B-Lipschitz continuous, ∇f L-Lipschitz continuous
- Strong convexity: $f \mu$ -strongly convex

Key algorithm: Stochastic (sub)gradient descent (a.k.a. Robbins-Monro)

$$\theta_n = \theta_{n-1} - \gamma_n \nabla f_n(\theta_{n-1}), \quad \theta_n = \theta_{n-1} - \gamma_n \partial f_n(\theta_{n-1})$$

Finite-sum optimization
Online learning
Smooth strongly convex case
Stochastic subgradient descent/method
Stochastic Approximation for nonconvex optimization

- 1 Stochastic approximation
 - Finite-sum optimization
 - Online learning
 - Smooth strongly convex case
 - Stochastic subgradient descent/method
 - Stochastic Approximation for nonconvex optimization
- 2 Proximal methods
 - Proximal operator
 - Proximal gradient algorithm
 - Stochastic proximal gradient
- 3 Applications
 - Network structure estimation
 - High-dimensional logistic regression with random effect

Finite-sum optimization
Online learning
Smooth strongly convex case

Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

Convex stochastic approximation

Key properties of f and/or f_n

- Smoothness: f B-Lipschitz continuous, ∇f L-smooth
- Strong convexity: $f \mu$ -strongly convex

Key algorithm: Stochastic (sub)gradient descent (a.k.a. Robbins-Monro)

$$\theta_n = \theta_{n-1} - \gamma_n \nabla f_n(\theta_{n-1}) , \quad \theta_n = \theta_{n-1} - \gamma_n \partial f_n(\theta_{n-1})$$

- Polyak-Ruppert averaging: $\bar{\theta}_n = n^{-1} \sum_{k=0}^{n-1} \theta_k$
- Which learning rate sequence γ_n ? Classical setting: $\gamma_n = C n^{-\alpha}$

Desirable practical behavior

- Applicable (at least) to classical supervised learning problems
- Robustness to (potentially unknown) constants (L,B,μ)
- Adaptive to problem behavior (e.g., convex / strongly convex)

Finite-sum optimization Online learning Smooth strongly convex

Smooth strongly convex case Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

Smoothness/convexity assumptions

Iteration
$$\theta_n = \theta_{n-1} - \gamma_n \nabla f_n(\theta_{n-1})$$
.

Polyak-Ruppert averaging
$$\overline{\theta}_n = \frac{1}{n} \sum_{k=0}^{n-1} \theta_k$$

 f_n Convex + L-Smooth : For each $n \ge 1$ the function f_n satisfies a.s.:

- convex;
- differentiable with *L*-Lipschitz-continuous gradient ∇f_n ;
- bounded variance (bounded data): almost surely

$$\mathbb{E}[\|\nabla f_{n+1}(\theta^*)\|^2|\mathcal{F}_n] \le \sigma^2.$$

f Strongly convex : The function f is strongly convex with respect to the norm $\|\cdot\|_2$ with convexity constant $\mu > 0$:

- lacksquare Invertible population covariance matrix or regularization by $rac{\mu}{2}\| heta\|^2$
- \blacksquare \Rightarrow there exists a unique minimizer θ^*

Finite-sum optimization

Online learning Smooth strongly convex case

Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

Summary

Assumptions

- Stochastic gradient descent with learning rate $\gamma_n = Cn^{-\alpha}$, $\alpha \in [0,1]$
- Strongly convex smooth objective functions
- Bounded variance (bounded data): w.p. 1, $\mathbb{E}[\|\nabla f_{n+1}(\theta^*)\|^2|\mathcal{F}_n] < \sigma^2.$

Results

- Old: $O(n^{-1})$ rate achieved without averaging for $\alpha = 1$
- New: $O(n^{-1})$ rate achieved with averaging for $\alpha \in [1/2, 1]$
- Non-asymptotic analysis with explicit constants
- Robust to the choice of C

Smooth strongly convex case Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

Summary

Assumptions

- Stochastic gradient descent with learning rate $\gamma_n = Cn^{-\alpha}$, $\alpha \in [0,1]$
- Strongly convex smooth objective functions
- Bounded variance (bounded data): w.p. 1, $\mathbb{E}[\|\nabla f_{n+1}(\theta^{\star})\|^2|\mathcal{F}_n] < \sigma^2.$

Results

- Old: $O(n^{-1})$ rate achieved without averaging for $\alpha = 1$
- New: $O(n^{-1})$ rate achieved with averaging for $\alpha \in [1/2, 1]$
- Non-asymptotic analysis with explicit constants
- Robust to the choice of C

Convergence rate for $\mathbb{E}[\|\theta_n - \theta^*\|^2]$ and $\mathbb{E}[\|\overline{\theta}_n - \theta^*\|^2]$.

- without averaging: $O(\gamma_n) + O(e^{-\mu n \gamma_n}) \|\theta_0 \theta^*\|^2$
- with averaging: $O(n^{-1}) + O(n^{-2\alpha}) + \mu^{-2} \|\theta_0 \theta^{\star}\|^2 O(n^{-2})$

Applications

Finite-sum optimization Online learning

Smooth strongly convex case

Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

Examples

• alpha (d = 500, n = 500, 000), news (d = 1, 300, 000, n = 20, 000)

Finite-sum optimization Online learning Smooth strongly convex case

Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

Sketch of proof

f strongly convex, f_n smooth, bounded variance

- Consider $\delta_n = \|\theta_n \theta^*\|^2$.
- Then, we have almost surely

$$\delta_{n+1} = \delta_n - \gamma_{n+1} \langle \nabla f_{n+1}(\theta_n), \theta_n - \theta^* \rangle + \gamma_{n+1}^2 \| \nabla f_{n+1}(\theta_n) \|^2.$$

f is strongly convex:

$$\mathbb{E}[\delta_{n+1}|\mathcal{F}_n] = \delta_n - \gamma_{n+1} \langle \nabla f(\theta_n), \theta_n - \theta^* \rangle + \gamma_{n+1}^2 \mathbb{E}[\|\nabla f_{n+1}(\theta_n)\|^2 |\mathcal{F}_n]$$

$$\leq (1 - \mu \gamma_{n+1}) \delta_n + \gamma_{n+1}^2 \mathbb{E}[\|\nabla f_{n+1}(\theta_n) - \nabla f(\theta^*)\|^2 |\mathcal{F}_n].$$

Sketch of proof

f strongly convex, f_n smooth, bounded variance

- Consider $\delta_n = \|\theta_n \theta^*\|^2$.
- f is strongly convex:

$$\mathbb{E}[\delta_{n+1}|\mathcal{F}_n] = \delta_n - \gamma_{n+1} \langle \nabla f(\theta_n), \theta_n - \theta^* \rangle + \gamma_{n+1}^2 \mathbb{E}[\|\nabla f_{n+1}(\theta_n)\|^2 |\mathcal{F}_n]$$

$$\leq (1 - \mu \gamma_{n+1}) \delta_n + \gamma_{n+1}^2 \mathbb{E}[\|\nabla f_{n+1}(\theta_n) - \nabla f(\theta^*)\|^2 |\mathcal{F}_n].$$

■ Since ∇f_{n+1} is a.s. Lipschitz with bounded variance at θ^* ,

$$\mathbb{E}\left[\left\|\nabla f_{n+1}(\theta_n) - \nabla f(\theta^*)\right\|^2 \middle| \mathcal{F}_n\right]$$

$$\leq \mathbb{E}\left[\left\|\nabla f_{n+1}(\theta_n) - \nabla f_{n+1}(\theta_*) + \nabla f_{n+1}(\theta_*) - \nabla f(\theta^*)\right\|^2 \middle| \mathcal{F}_n\right]$$

$$\leq 2(L^2\delta_n + \sigma^2).$$

Sketch of proof

f strongly convex, f_n smooth, bounded variance

- Consider $\delta_n = \|\theta_n \theta^*\|^2$.
- Since ∇f_{n+1} is a.s. Lipschitz with bounded variance at θ^* ,

$$\mathbb{E}\left[\left\|\nabla f_{n+1}(\theta_n) - \nabla f(\theta^*)\right\|^2 \middle| \mathcal{F}_n\right]$$

$$\leq \mathbb{E}\left[\left\|\nabla f_{n+1}(\theta_n) - \nabla f_{n+1}(\theta_*) + \nabla f_{n+1}(\theta_*) - \nabla f(\theta^*)\right\|^2 \middle| \mathcal{F}_n\right]$$

$$\leq 2(L^2\delta_n + \sigma^2).$$

Conclusion:

$$\mathbb{E}[\delta_{n+1}|\mathcal{F}_n] \le (1 - \mu \gamma_{n+1} + 2L^2 \gamma_{n+1}^2) \delta_n + 2\sigma^2 \gamma_{n+1}^2.$$

Sketch of proof

f strongly convex, f_n smooth, bounded variance

- Consider $\delta_n = \|\theta_n \theta^*\|^2$.
- Conclusion:

$$\mathbb{E}[\delta_{n+1}|\mathcal{F}_n] \le (1 - \mu \gamma_{n+1} + 2L^2 \gamma_{n+1}^2) \delta_n + 2\sigma^2 \gamma_{n+1}^2 .$$

1

Finite-sum optimization
Online learning

Smooth strongly convex case
Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

Convex Stochastic Approximation: take home message

Pros

- Simple to implement
- Cheap
- No regularization needed
- Convergence guarantees

Cons:

- Initial conditions can be forgotten slowly: could we use even larger/fixed step sizes?
- For fixed step sizes, the previous bounds do not show that $\mathbb{E}[\|\theta_n \theta^\star\|^2] \not\to 0$ or $\mathbb{E}[\|\bar{\theta}_n \theta^\star\|^2] \not\to 0$.
- We only have $\mathbb{E}[\|\theta_n \theta^*\|^2] = O(\gamma)$ and $\mathbb{E}[\|\bar{\theta}_n \theta^*\|^2] = O(\gamma)$.
- We illustrate these two facts using numerical simulations

n s Finite-sum optimization
Online learning
Smooth strongly convex case

Stochastic subgradient descent/method Stochastic Approximation for nonconvex optimization

Motivation 1/2. Large step sizes!

Logistic regression. Final iterate (dashed), and averaged recursion (plain).

Finite-sum optimization
Online learning
Smooth strongly convex case
Stochastic subgradient descent/method
Stochastic Approximation for nonconvex optimization

Motivation 1/2. Large step sizes, real data

 $\log_{10}(n)$

Logistic regression, Covertype dataset, n=581012, d=54. Comparison between a constant learning rate and decaying learning rate as $\frac{1}{\sqrt{n}}$.

Smooth strongly convex case

Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

Motivation 2/2. Difference between quadratic and logistic loss

Logistic Regression $\mathbb{E}f(\bar{\theta}_n) - f(\theta^*) = O(\gamma^2)$

with
$$\gamma=1/(2R^2)$$

Least-Squares Regression

$$\begin{split} \mathbb{E}f(\bar{\theta}_n) - f(\theta^\star) &= O\left(\frac{1}{n}\right) \\ \text{with } \gamma &= 1/(2R^2) \end{split}$$

Smooth strongly convex case

Stochastic subgradient descent/method Stochastic Approximation for nonconvex optimization

Constant learning rate SGD: convergence in the quadratic case

Least-squares: $f(\theta) = \frac{1}{2} \mathbb{E} [(Y - \langle \Phi(X), \theta \rangle)^2]$ with $\theta \in \mathbb{R}^d$

- SGD = least-mean-square algorithm
- With strong convexity assumption $\mathbb{E}[\Phi(X) \otimes \Phi(X)] = H \succcurlyeq \mu \cdot \mathrm{Id}$

$$\theta^{\star} = H^{-1}\mathbb{E}[Y\Phi(X)]$$

Smooth strongly convex case Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

Constant learning rate SGD: convergence in the quadratic case

Key identity:

$$\theta_{n+1} - \theta^* = (\operatorname{Id} - \gamma H)(\theta_n - \theta^*) + \gamma \eta_{n+1}(\theta_n) , \mathbb{E}[\eta_{n+1}(\theta_n) | \mathcal{F}_n] = 0 ,$$

$$\eta_{n+1}(\theta) = H\theta - \mathbb{E}[Y\Phi(X)] - \Phi(X_{n+1})\Phi(X_{n+1})^{\top}\theta + Y_{n+1}\Phi(X_{n+1}).$$

Therefore.

$$\theta_{n+1} - \theta^* = (\operatorname{Id} - \gamma H)^{n+1} (\theta_0 - \theta^*) + \gamma \sum_{k=0}^n (\operatorname{Id} - \gamma H)^{n-k} \eta_{k+1} (\theta_k) ,$$

and

$$\bar{\theta}_n - \theta^* = (n+1)^{-1} \sum_{k=0}^n (\theta_k - \theta^*) \approx (n+1)^{-1} H^{-1} \sum_{k=0}^n \eta_k(\theta_k) .$$

1

Finite-sum optimization Online learning

Smooth strongly convex case
Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

Constant learning rate SGD: convergence in the quadratic case

$$\begin{split} \text{Least-squares:} \ f(\theta) &= \tfrac{1}{2} \mathbb{E} \big[(Y - \langle \Phi(X), \theta \rangle)^2 \big] \text{ with } \theta \in \mathbb{R}^d \\ \theta_{n+1} - \theta^\star &= (\operatorname{Id} - \gamma H) (\theta_n - \theta^\star) + \gamma \eta_{n+1}(\theta_n) \ , \end{split}$$

- The sequence $(\theta_n)_{n\geq 0}$ is a homogeneous Markov chain
 - 1 The distribution of $(\theta_n)_{n\geq 0}$ converges to a stationary distribution π_{γ}
 - **2** $\bar{\theta}_n$ converges to $\bar{\theta}_{\gamma} = \int_{\mathbb{R}^d} \vartheta d\pi_{\gamma}(\vartheta)$ (Birkhoff theorem)
- Identification of θ_{γ}
 - If $\theta_0 \sim \pi_\gamma$, then $\theta_1 \sim \pi_\gamma$.
 - Taking expectation, and using $\mathbb{E}\left[\eta_1(\theta)\right] = 0$ for any $\theta \in \mathbb{R}^d$,

$$\int_{\mathbb{R}^d} H(\vartheta - \theta^*) d\pi_{\gamma}(\vartheta) = 0 \Rightarrow \bar{\theta}_{\gamma} = \theta^*.$$

- Conclusion $\bar{\theta}_n \to \theta^*$ as $n \to +\infty$ if ergodic
- Question: What happens in the general case?

1

Finite-sum optimization Online learning

Smooth strongly convex case
Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

SGD: an homogeneous Markov chain

- Consider a L-smooth and μ -strongly convex function f.
- SGD with a step-size $\gamma > 0$ is an homogeneous Markov chain:

$$\theta_{k+1}^{\gamma} = \theta_k^{\gamma} - \gamma \nabla f_{k+1}(\theta_k^{\gamma}) = \theta_k^{\gamma} - \gamma \left[\nabla f(\theta_k^{\gamma}) + \eta_{k+1}(\theta_k^{\gamma}) \right] ,$$

$$\eta_{k+1}(\theta_k^{\gamma}) = \nabla f_{k+1}(\theta_k^{\gamma}) - \nabla f(\theta_k^{\gamma}) , \mathbb{E}[\eta_{k+1}(\theta_k^{\gamma}) | \mathcal{F}_k] = 0 .$$

Assumptions

lacksquare $abla f_k$ is almost surely L-co-coercive: for any $heta_1, heta_2 \in \mathbb{R}^d$,

$$\langle \nabla f_k(\theta_1) - \nabla f_k(\theta_2), \theta_1 - \theta_2 \rangle \ge L^{-1} \|\nabla f_k(\theta_1) - \nabla f_k(\theta_2)\|^2$$
.

■ Bounded moments for p large enough,

$$\mathbb{E}[\|\eta_k(\theta^\star)\|^p] < \infty .$$

Finite-sum optimization

Online learning Smooth strongly convex case

Stochastic gradient descent as a Markov Chain: Analysis framework²

- Let R_{γ} be the Markov kernel associated with $(\theta_n^{\gamma})_{n \in \mathbb{N}}$.
- **E**xistence of a stationary distribution π_{γ} for R_{γ} , and convergence to this distribution.
- Behavior under the limit distribution $(\gamma \to 0)$: $\theta_{\gamma} = \theta^{\star} + ?$ Provable convergence improvement with extrapolation tricks used for numerical integration and applied probability.
- Analysis of the convergence of $\bar{\theta}_n^{\gamma}$ to $\bar{\theta}_{\gamma} = \int_{\mathbb{R}^d} \vartheta d\pi_{\gamma}(\vartheta)$ through its MSE.

²Bach, Dieuleveut, Durmus, AOS, 2020.

Online learning

Finite-sum optimization Smooth strongly convex case

Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

Existence and convergence to a stationary distribution

Definition

Wasserstein distance: ν and λ probability measures on \mathbb{R}^d

$$W_2(\lambda, \nu) := \inf_{\xi \in \Pi(\lambda, \nu)} \left(\int \|\theta - \eta\|^2 \xi (d\theta \cdot d\eta) \right)^{1/2}$$

 $\Pi(\lambda, \nu)$ is the set of probability measure ξ s.t. $A \in \mathcal{B}(\mathbb{R}^d)$, $\xi(A \times \mathbb{R}^d) = \lambda(A), \ \xi(\mathbb{R}^d \times A) = \nu(A).$

Theorem

For $\gamma < L^{-1}$, the chain $(\theta_k^{\gamma})_{k \geq 0}$ admits a unique stationary distribution π_{γ} and for all $\theta \in \mathbb{R}^d$, $n \in \mathbb{N}$:

$$W_2^2(\delta_{\theta}R_{\gamma}^n, \pi_{\gamma}) \le (1 - 2\mu\gamma(1 - \gamma L))^n \int_{\mathbb{R}^d} \|\theta - \vartheta\|^2 d\pi_{\gamma}(\vartheta).$$

Finite-sum optimization
Online learning
Smooth strongly convex case
Stochastic subgradient descent/method
Stochastic Approximation for nonconvex optimization

Existence of a limit distribution: proof I /III

■ Coupling: θ^1, θ^2 be independent and distributed according to λ_1, λ_2 respectively, and $(\theta_{k,\gamma}^{(1)})_{\geq 0}, (\theta_{k,\gamma}^{(2)})_{k\geq 0}$ SGD iterates:

$$\begin{cases} \theta_{k+1,\gamma}^{(1)} &= \theta_{k,\gamma}^{(1)} - \gamma \left[\nabla f(\theta_{k,\gamma}^{(1)}) + \eta_{k+1}(\theta_{k,\gamma}^{(1)}) \right] \\ \theta_{k+1,\gamma}^{(2)} &= \theta_{k,\gamma}^{(2)} - \gamma \left[\nabla f(\theta_{k,\gamma}^{(2)}) + \eta_{k+1}(\theta_{k,\gamma}^{(2)}) \right] . \end{cases}$$

• for all $k \geq 0$, the distribution of $(\theta_{k,\gamma}^{(1)}, \theta_{k,\gamma}^{(2)})$ is in $\Pi(\lambda_1 R_{\gamma}^k, \lambda_2 R_{\gamma}^k)$

Proximal methods

Finite-sum optimization Online learning

Smooth strongly convex case Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

Existence of a limit distribution: proof II/III

$$\mathbb{E}\left[\|\theta_{k+1,\gamma}^{(1)} - \theta_{k+1,\gamma}^{(2)}\|^{(2)}\right]$$

$$\leq \mathbb{E}\left[\|\theta_{k,\gamma}^{(1)} - \gamma \nabla f_{k+1}(\theta_{k,\gamma}^{(1)}) - (\theta_{k,\gamma}^{(2)} - \gamma \nabla f_{k+1}(\theta_{k,\gamma}^{(2)}))\|^{2}\right]$$

Finite-sum optimization Online learning Smooth strongly convex case

Stochastic subgradient descent/method Stochastic Approximation for nonconvex optimization

$$\mathbb{E}\left[\|\theta_{k+1,\gamma}^{(1)} - \theta_{k+1,\gamma}^{(2)}\|^{(2)}\right] \\
\leq \mathbb{E}\left[\|\theta_{k,\gamma}^{(1)} - \gamma \nabla f_{k+1}(\theta_{k,\gamma}^{(1)}) - (\theta_{k,\gamma}^{(2)} - \gamma \nabla f_{k+1}(\theta_{k,\gamma}^{(2)}))\|^{2}\right] \\
\leq \mathbb{E}\left[\|\theta_{k,\gamma}^{(1)} - \theta_{k,\gamma}^{(2)}\|^{2} - 2\gamma \left\langle \nabla f_{k+1}(\theta_{k,\gamma}^{(1)}) - \nabla f_{k+1}(\theta_{k,\gamma}^{(2)}), \theta_{k,\gamma}^{(1)} - \theta_{k,\gamma}^{(2)} \right\rangle\right] \\
+ \gamma^{2} \mathbb{E}\left[\|\nabla f_{k+1}(\theta_{k,\gamma}^{(1)}) - \nabla f_{k+1}(\theta_{k,\gamma}^{(2)})\|^{2}\right]$$

Finite-sum optimization Online learning

Smooth strongly convex case Stochastic subgradient descent/method Stochastic Approximation for nonconvex optimization

$$\mathbb{E}\left[\left\|\theta_{k+1,\gamma}^{(1)} - \theta_{k+1,\gamma}^{(2)}\right\|^{(2)}\right] \\
\leq \mathbb{E}\left[\left\|\theta_{k,\gamma}^{(1)} - \theta_{k,\gamma}^{(2)}\right\|^{2} - 2\gamma\left\langle\nabla f_{k+1}(\theta_{k,\gamma}^{(1)}) - \nabla f_{k+1}(\theta_{k,\gamma}^{(2)}), \theta_{k,\gamma}^{(1)} - \theta_{k,\gamma}^{(2)}\right\rangle\right] \\
+ \gamma^{2}\mathbb{E}\left[\left\|\nabla f_{k+1}(\theta_{k,\gamma}^{(1)}) - \nabla f_{k+1}(\theta_{k,\gamma}^{(2)})\right\|^{2}\right] \\
\stackrel{\text{coco}}{\leq} \mathbb{E}\left[\left\|\theta_{k,\gamma}^{(1)} - \theta_{k,\gamma}^{(2)}\right\|^{2}\right] \\
- 2\gamma(1 - \gamma L)\mathbb{E}\left[\left\langle\nabla f_{k+1}(\theta_{k,\gamma}^{(1)}) - \nabla f_{k+1}(\theta_{k,\gamma}^{(2)}), \theta_{k,\gamma}^{(1)} - \theta_{k,\gamma}^{(2)}\right\rangle\right]$$

Proximal methods

Finite-sum optimization Online learning

Smooth strongly convex case Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

$$\begin{split} & \mathbb{E}\left[\|\boldsymbol{\theta}_{k+1,\gamma}^{(1)} - \boldsymbol{\theta}_{k+1,\gamma}^{(2)}\|^{(2)}\right] \\ & \overset{\boldsymbol{coco}}{\leq} \mathbb{E}\left[\left\|\boldsymbol{\theta}_{k,\gamma}^{(1)} - \boldsymbol{\theta}_{k,\gamma}^{(2)}\right\|^{2}\right] \\ & - 2\gamma(1 - \gamma L)\mathbb{E}\left[\left\langle\nabla f_{k+1}(\boldsymbol{\theta}_{k,\gamma}^{(1)}) - \nabla f_{k+1}(\boldsymbol{\theta}_{k,\gamma}^{(2)}), \boldsymbol{\theta}_{k,\gamma}^{(1)} - \boldsymbol{\theta}_{k,\gamma}^{(2)}\right\rangle\right] \\ & \overset{\boldsymbol{unbiased}}{\leq} \mathbb{E}\left[\left\|\boldsymbol{\theta}_{k,\gamma}^{(1)} - \boldsymbol{\theta}_{k,\gamma}^{(2)}\right\|^{2}\right] \\ & - 2\gamma(1 - \gamma L)\mathbb{E}\left[\left\langle\nabla f(\boldsymbol{\theta}_{k,\gamma}^{(1)}) - \nabla f(\boldsymbol{\theta}_{k,\gamma}^{(2)}), \boldsymbol{\theta}_{k,\gamma}^{(1)} - \boldsymbol{\theta}_{k,\gamma}^{(2)}\right\rangle\right] \end{split}$$

Proximal methods

Finite-sum optimization Online learning Smooth strongly convex case

Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

$$\begin{split} & \mathbb{E}\left[\|\boldsymbol{\theta}_{k+1,\gamma}^{(1)} - \boldsymbol{\theta}_{k+1,\gamma}^{(2)}\|^{(2)}\right] \\ & \overset{\textit{unbiased}}{\leq} \mathbb{E}\left[\left\|\boldsymbol{\theta}_{k,\gamma}^{(1)} - \boldsymbol{\theta}_{k,\gamma}^{(2)}\right\|^{2}\right] \\ & - 2\gamma(1 - \gamma L)\mathbb{E}\left[\left\langle\nabla f(\boldsymbol{\theta}_{k,\gamma}^{(1)}) - \nabla f(\boldsymbol{\theta}_{k,\gamma}^{(2)}), \boldsymbol{\theta}_{k,\gamma}^{(1)} - \boldsymbol{\theta}_{k,\gamma}^{(2)}\right\rangle\right] \\ & \overset{\textit{s.cvx.}}{\leq} (1 - 2\mu\gamma(1 - \gamma L))\mathbb{E}\left[\left\|\boldsymbol{\theta}_{k,\gamma}^{(1)} - \boldsymbol{\theta}_{k,\gamma}^{(2)}\right\|^{2}\right] \;. \end{split}$$

n s Finite-sum optimization Online learning

Smooth strongly convex case

Stochastic subgradient descent/method Stochastic Approximation for nonconvex optimization

Existence of a limit distribution: proof III/III

■ By induction:

$$W_2^2(\lambda_1 R_{\gamma}^n, \lambda_2 R_{\gamma}^n) \le \mathbb{E}\left[\|\theta_{n,\gamma}^{(1)} - \theta_{n,\gamma}^{(2)}\|^2\right]$$

$$\le (1 - 2\mu\gamma(1 - \gamma L))^n \int_{x,y} \|\theta_1 - \theta_2\|^2 d\lambda_1(\theta_1) d\lambda_2(\theta_2) .$$

- Thus $W_2(\delta_{\theta_1}R_{\gamma}^n, \delta_{\theta_2}R_{\gamma}^n) \leq (1 2\mu\gamma(1 \gamma L))^n \|\theta_1 \theta_2\|^2$.
- Uniqueness, invariance, and Theorem follow:

$$W_2^2(\delta_{\theta}R_{\gamma}^n, \pi_{\gamma}) \le (1 - 2\mu\gamma(1 - \gamma L))^n \int_{\mathbb{R}^d} \|\theta - \vartheta\|^2 d\pi_{\gamma}(\vartheta).$$

Finite-sum optimization

Online learning Smooth strongly convex case

Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

Behavior under limit distribution.

- Then we have $\mathbb{E}[\bar{\theta}_n] \to \bar{\theta}_{\gamma}$. Where is $\bar{\theta}_{\gamma}$? Close to θ^{\star} ?
- In the quadratic case $\bar{\theta}_{\gamma} = \theta^{\star}$
- In the general case, we show that

$$\bar{\theta}_{\gamma} = \theta^{\star} + \gamma \Delta(\theta^{\star}) + O(\gamma^{2})$$

$$\Delta(\theta^{\star}) = f''(\theta^{\star})^{-1} f'''(\theta^{\star}) \left(\left[f''(\theta^{\star}) \otimes I + I \otimes f''(\theta^{\star}) \right]^{-1} \mathbb{E}[\eta(\theta^{\star})^{\otimes 2}] \right).$$

Linearization of the proof for the least-square

Finite-sum optimization Online learning

Smooth strongly convex case

Stochastic subgradient descent/method Stochastic Approximation for nonconvex optimization

Finite-sum optimization Online learning

Smooth strongly convex case

Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

Richardson extrapolation

 θ_*

$$\overline{\theta}_{\gamma} \bullet - \theta_* + \gamma \Delta$$

Proximal methods **Applications** Finite-sum optimization Online learning

Smooth strongly convex case Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

Proximal methods **Applications** Finite-sum optimization Online learning

Smooth strongly convex case

Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

Finite-sum optimization Online learning

Smooth strongly convex case

Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

Applications

Finite-sum optimization Online learning

Smooth strongly convex case Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

Richardson extrapolation

Recovering convergence closer to θ_* by **Richardson extrapolation** $2\bar{\theta}_{n}^{\gamma} - \bar{\theta}_{n}^{2\gamma}$

Stochastic approximation

Proximal methods
Applications

Finite-sum optimization
Online learning

Smooth strongly convex case Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

Experiments

Synthetic data, logistic regression, $n=8.10^6$

Finite-sum optimization Smooth strongly convex case

Online learning

Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

Experiments: Double Richardson

Synthetic data, logistic regression, $n = 8.10^6$

"Richardson 3γ ": estimator built using Richardson on 3 different sequences: $\theta_n^3 = \frac{8}{3}\bar{\theta}_n^{\gamma} - 2\bar{\theta}_n^{2\gamma} + \frac{1}{3}\bar{\theta}_n^{4\gamma}$

Applications

Finite-sum optimization Online learning

Smooth strongly convex case

Stochastic subgradient descent/method Stochastic Approximation for nonconvex optimization

Real data

Figure: Logistic regression, Covertype dataset. n = 581012, d = 54.

- 1 Stochastic approximation
 - Finite-sum optimization
 - Online learning
 - Smooth strongly convex case
 - Stochastic subgradient descent/method
 - Stochastic Approximation for nonconvex optimization
- 2 Proximal methods
 - Proximal operator
 - Proximal gradient algorithm
 - Stochastic proximal gradient
- 3 Applications
 - Network structure estimation
 - High-dimensional logistic regression with random effect

Finite-sum optimization Online learning

Smooth strongly convex case Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

Stochastic subgradient descent/method

Assumptions

- f_n convex and B-Lipschitz-continuous on $\{\|\theta\|_2 \leq D\}$
- \bullet (f_n) i.i.d. functions such that $\mathbb{E}[f_n(\theta)] = f(\theta)$
- \bullet global optimum of f on $\{\|\theta\|_2 \leq D\}$

Algorithm:
$$\theta_n = \Pi_D \left(\theta_{n-1} - \frac{2D}{B\sqrt{n}} \partial f_n(\theta_{n-1}) \right)$$

Risk Bound:

$$\mathbb{E}\left[f\left(\frac{1}{n}\sum_{k=0}^{n-1}\theta_k\right)\right] - f(\theta_*) \le \frac{2DB}{\sqrt{n}}.$$

- Minimax convergence rate
- **Running-time complexity:** O(dn) after n iterations

Finite-sum optimization Online learning Smooth strongly convex

Smooth strongly convex case
Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

Stochastic subgradient method - proof - I

$$\theta_n = \Pi_D(\theta_{n-1} - \gamma_n \partial f_n(\theta_{n-1}))$$
 where $\mathcal{F}_n = \sigma((Y_k, X_k), j \leq n)$.

$$\begin{split} &\|\theta_n - \theta_*\|_2^2 \leq \|\theta_{n-1} - \theta_* - \gamma_n \partial f_n(\theta_{n-1})\|_2^2 & \text{contractivity of projections} \\ &\leq \|\theta_{n-1} - \theta_*\|_2^2 + B^2 \gamma_n^2 - 2\gamma_n \langle \theta_{n-1} - \theta_*, \partial f_n(\theta_{n-1}) \rangle & \|\partial f_n(\theta_{n-1})\|_2 \leq B \end{split}$$

Taking the conditional expectations of the both sides

$$\begin{split} & \mathbb{E}\big[\|\theta_n - \theta_*\|_2^2 |\mathcal{F}_{n-1}\big] \leq \|\theta_{n-1} - \theta_*\|_2^2 + B^2 \gamma_n^2 - 2\gamma_n \langle (\theta_{n-1} - \theta_*), \partial f(\theta_{n-1}) \rangle \\ & \leq \|\theta_{n-1} - \theta_*\|_2^2 + B^2 \gamma_n^2 - 2\gamma_n \big[f(\theta_{n-1}) - f(\theta^*)\big] \text{ (subgradient property)} \end{split}$$

Finite-sum optimization
Online learning
Smooth strongly convex

Smooth strongly convex case
Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

Stochastic subgradient method - proof - I

$$\theta_n = \Pi_D(\theta_{n-1} - \gamma_n \partial f_n(\theta_{n-1}))$$
 where $\mathcal{F}_n = \sigma((Y_k, X_k), j \leq n)$.

From

$$\mathbb{E}[\|\theta_n - \theta_*\|_2^2 |\mathcal{F}_{n-1}] \le \|\theta_{n-1} - \theta_*\|_2^2 + B^2 \gamma_n^2 - 2\gamma_n [f(\theta_{n-1}) - f(\theta^*)]$$

the tower property of conditional expectation implies

$$\mathbb{E}[\|\theta_n - \theta_*\|_2^2] \le \mathbb{E}[\|\theta_{n-1} - \theta_*\|_2^2] + B^2 \gamma_n^2 - 2\gamma_n \left[\mathbb{E}[f(\theta_{n-1})] - f(\theta^*)\right]$$

leading to

$$\mathbb{E}[f(\theta_{n-1})] - f(\theta^*) \le \frac{B^2 \gamma_n}{2} + \frac{1}{2\gamma_n} \left\{ \mathbb{E}[\|\theta_{n-1} - \theta_*\|_2^2] - \mathbb{E}[\|\theta_n - \theta_*\|_2^2] \right\}$$

Finite-sum optimization Online learning

Smooth strongly convex case

Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

Stochastic subgradient

$$\mathbb{E}[f(\theta_{n-1})] - f(\theta^*) \le \frac{B^2 \gamma_n}{2} + \frac{1}{2\gamma_n} \left[\mathbb{E} \|\theta_{n-1} - \theta_*\|_2^2 - \mathbb{E} \|\theta_n - \theta_*\|_2^2 \right]$$

Constant step size

$$\sum_{u=1}^{n} \left[\mathbb{E}[f(\theta_{u-1})] - f(\theta^{*}) \right] \leq \sum_{u=1}^{n} \frac{B^{2} \gamma}{2} + \sum_{u=1}^{n} \frac{1}{2 \gamma} \left\{ \mathbb{E} \left[\|\theta_{u-1} - \theta^{*}\|_{2}^{2} \right] - \mathbb{E} \left[\|\theta_{u} - \theta^{*}\|_{2}^{2} \right] \right\}$$

$$\leq \frac{nB^{2} \gamma}{2} + \frac{4D^{2}}{2 \gamma}.$$

Optimum stepsize $\gamma = 2D/(\sqrt{n}B)$ (depends on the horizon).

Finite-sum optimization Online learning Smooth strongly convex case

Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

Stochastic subgradient

$$\mathbb{E}[f(\theta_{n-1})] - f(\theta^*) \le \frac{B^2 \gamma_n}{2} + \frac{1}{2\gamma_n} \left[\mathbb{E} \|\theta_{n-1} - \theta_*\|_2^2 - \mathbb{E} \|\theta_n - \theta_*\|_2^2 \right]$$

Constant step size

$$\sum_{u=1}^{n} \left[\mathbb{E}[f(\theta_{u-1})] - f(\theta^{*}) \right] \leq \sum_{u=1}^{n} \frac{B^{2} \gamma}{2} + \sum_{u=1}^{n} \frac{1}{2 \gamma} \left\{ \mathbb{E} \left[\|\theta_{u-1} - \theta^{*}\|_{2}^{2} \right] - \mathbb{E} \left[\|\theta_{u} - \theta^{*}\|_{2}^{2} \right] \right\}$$

$$\leq \frac{nB^{2} \gamma}{2} + \frac{4D^{2}}{2 \gamma}.$$

Convexity [fixed horizon]:

$$\mathbb{E}\left[f\left(\frac{1}{n}\sum_{k=0}^{n-1}\theta_k\right)\right] - f(\theta_*) \le \frac{2DB}{\sqrt{n}}$$

Finite-sum optimization

Online learning

Smooth strongly convex case Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

Beyond convergence in expectation

Convergence in expectation: $\mathbb{E}\left[f\left(n^{-1}\sum_{k=0}^{n-1}\theta_k\right)-f(\theta^\star)\right] \leq \frac{2DB}{\sqrt{n}}$ High-probability bounds

- Markov inequality: $\mathbb{P}\left(f\left(n^{-1}\sum_{k=0}^{n-1}\theta_k\right) f(\theta^\star) \geq \epsilon\right) \leq \frac{2DB}{\sqrt{n}\epsilon}$
- Concentration inequality (Nemirovski et al., 2009; Nesterov and Vial. 2008)

$$\mathbb{P}\left(f\left(\frac{1}{n}\sum_{k=0}^{n-1}\theta_k\right) - f(\theta^*) \ge \frac{2DB}{\sqrt{n}}(2+4t)\right) \le 2\exp(-t^2)$$

1

Finite-sum optimization Online learning

Smooth strongly convex case
Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

Stochastic subgradient method - proof - I

$$\theta_n = \Pi_D(\theta_{n-1} - \gamma_n \partial f_n(\theta_{n-1}))$$
 with $\mathcal{F}_n = \sigma((Y_k, X_k), j \leq n)$.

$$\begin{split} &\|\theta_n - \theta_*\|_2^2 \leq \|\theta_{n-1} - \theta_* - \gamma_n \partial f_n(\theta_{n-1})\|_2^2 & \text{contractivity of projections} \\ &\leq \|\theta_{n-1} - \theta_*\|_2^2 + B^2 \gamma_n^2 - 2\gamma_n \langle \theta_{n-1} - \theta_*, \partial f_n(\theta_{n-1}) \rangle & \|\partial f_n(\theta_{n-1})\|_2 \leq B \end{split}$$

Define by Z_n the error (approximation of the "true" subgradient by its noisy version)

$$Z_n = -2\langle \theta_{n-1} - \theta^*, \partial f_n(\theta_{n-1}) - \partial f(\theta_{n-1}) \rangle$$

and using the convexity we get

$$\|\theta_n - \theta^*\|_2^2 \le \|\theta_{n-1} - \theta^*\|_2^2 + B^2 \gamma_n^2 - 2\gamma_n [f(\theta_{n-1}) - f(\theta^*)] + 2\gamma_n Z_n$$

Finite-sum optimization
Online learning
Smooth strongly convex case

Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

Stochastic subgradient method - proof - II

$$Z_n = -\langle \theta_{n-1} - \theta^*, \partial f_n(\theta_{n-1}) - \partial f(\theta_{n-1}) \rangle$$

From the inequality

$$\|\theta_n - \theta^*\|_2^2 \le \|\theta_{n-1} - \theta^*\|_2^2 + B^2 \gamma_n^2 - 2\gamma_n [f(\theta_{n-1}) - f(\theta^*)] + 2\gamma_n Z_n$$

we get

$$f(\theta_{n-1}) - f(\theta^*) \le \frac{1}{2\gamma_n} \left\{ \|\theta_{n-1} - \theta^*\|_2^2 - \|\theta_n - \theta^*\|_2^2 \right\} + \frac{B^2 \gamma_n}{2} + Z_n$$

Summing up this identity

$$\sum_{u=1}^{n} [f(\theta_{u-1}) - f(\theta^{\star})] \le \sum_{u=1}^{n} \frac{B^{2} \gamma_{u}}{2} + \sum_{u=1}^{n} \frac{1}{2 \gamma_{u}} \{ \|\theta_{u-1} - \theta^{\star}\|_{2}^{2} - \|\theta_{u} - \theta^{\star}\|_{2}^{2} \} + \sum_{u=1}^{n} Z_{u}$$

1

Finite-sum optimization Online learning

Smooth strongly convex case
Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

Stochastic subgradient method - proof - II

$$Z_n = -\langle \theta_{n-1} - \theta^*, \partial f_n(\theta_{n-1}) - \partial f(\theta_{n-1}) \rangle$$

Setting $\gamma_u = 2D/(B\sqrt{n})$ [depending on the horizon n] in

$$\sum_{u=1}^{n} [f(\theta_{u-1}) - f(\theta^{\star})] \leq \sum_{u=1}^{n} \frac{B^{2} \gamma_{u}}{2} + \sum_{u=1}^{n} \frac{1}{2 \gamma_{u}} \{ \|\theta_{u-1} - \theta^{\star}\|_{2}^{2} - \|\theta_{u} - \theta^{\star}\|_{2}^{2} \} + \sum_{u=1}^{n} Z_{u} \|\theta_{u} - \theta^{\star}\|_{2}^{2} + \sum_{u=1}^{n} Z_{u} \|\theta_{u} - \theta^{\star}\|_{2}^{2}$$

we get

$$\frac{1}{n} \sum_{u=1}^{n} \{ f(\theta_{u-1}) - f(\theta^{\star}) \} \le \frac{2DB}{\sqrt{n}} + \frac{1}{n} \sum_{u=1}^{n} Z_u$$

Smooth strongly convex case

Finite-sum optimization Online learning

Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

Stochastic subgradient method - proof - II

$$Z_n = -\langle \theta_{n-1} - \theta^*, \partial f_n(\theta_{n-1}) - \partial f(\theta_{n-1}) \rangle$$

Setting $\gamma_n = 2D/(B\sqrt{n})$ [depending on the horizon n] in

$$\sum_{u=1}^{n} [f(\theta_{u-1}) - f(\theta^{\star})] \le \sum_{u=1}^{n} \frac{B^{2} \gamma_{u}}{2} + \sum_{u=1}^{n} \frac{1}{2 \gamma_{u}} \{ \|\theta_{u-1} - \theta^{\star}\|_{2}^{2} - \|\theta_{u} - \theta^{\star}\|_{2}^{2} \} + \sum_{u=1}^{n} Z_{u}$$

we get

$$\frac{1}{n} \sum_{u=1}^{n} \{ f(\theta_{u-1}) - f(\theta^{\star}) \} \le \frac{2DB}{\sqrt{n}} + \frac{1}{n} \sum_{u=1}^{n} Z_u$$

Require to study $n^{-1} \sum_{k=1}^{n} Z_k$ where $(Z_k)_{k\geq 1}$ is a bounded martingale increment sequence: $|Z_k| < 4DB$.

1

Finite-sum optimization
Online learning
Smooth strongly convex case

Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

Stochastic subgradient method - proof - II

$$Z_n = -\langle \theta_{n-1} - \theta^*, \partial f_n(\theta_{n-1}) - \partial f(\theta_{n-1}) \rangle$$

Setting $\gamma_u = 2D/(B\sqrt{n})$ [depending on the horizon n] in

$$\sum_{u=1}^{n} [f(\theta_{u-1}) - f(\theta^{\star})] \le \sum_{u=1}^{n} \frac{B^{2} \gamma_{u}}{2} + \sum_{u=1}^{n} \frac{1}{2 \gamma_{u}} \{ \|\theta_{u-1} - \theta^{\star}\|_{2}^{2} - \|\theta_{u} - \theta^{\star}\|_{2}^{2} \} + \sum_{u=1}^{n} Z_{u}$$

we get

$$\frac{1}{n} \sum_{u=1}^{n} \{ f(\theta_{u-1}) - f(\theta^*) \} \le \frac{2DB}{\sqrt{n}} + \frac{1}{n} \sum_{u=1}^{n} Z_u$$

Azuma-Hoeffding inequality for bounded martingale increments:

$$\mathbb{P}\left(\frac{1}{n}\sum_{u=1}^{n} Z_u \ge \frac{4DBt}{\sqrt{n}}\right) \le \exp(-t^2/2)$$

Finite-sum optimization
Online learning
Smooth strongly convex case
Stochastic subgradient desce

Stochastic subgradient descent/method Stochastic Approximation for nonconvex optimization

Stochastic subgradient method - proof - II

$$Z_n = -\langle \theta_{n-1} - \theta^*, \partial f_n(\theta_{n-1}) - \partial f(\theta_{n-1}) \rangle$$

Setting $\gamma_u = 2D/(B\sqrt{n})$ [depending on the horizon n] in

$$\sum_{u=1}^{n} [f(\theta_{u-1}) - f(\theta^{\star})] \le \sum_{u=1}^{n} \frac{B^{2} \gamma_{u}}{2} + \sum_{u=1}^{n} \frac{1}{2 \gamma_{u}} \{ \|\theta_{u-1} - \theta^{\star}\|_{2}^{2} - \|\theta_{u} - \theta^{\star}\|_{2}^{2} \} + \sum_{u=1}^{n} Z_{u}$$

we get

$$\frac{1}{n} \sum_{u=1}^{n} \{ f(\theta_{u-1}) - f(\theta^{\star}) \} \le \frac{2DB}{\sqrt{n}} + \frac{1}{n} \sum_{u=1}^{n} Z_u$$

Moment bounds can be deduced from Burkholder-Rosenthal-Pinelis inequality (Pinelis, 1994)

- 1 Stochastic approximation
 - Finite-sum optimization
 - Online learning
 - Smooth strongly convex case
 - Stochastic subgradient descent/method
 - Stochastic Approximation for nonconvex optimization
- 2 Proximal methods
 - Proximal operator
 - Proximal gradient algorithm
 - Stochastic proximal gradient
- 3 Applications
 - Network structure estimation
 - High-dimensional logistic regression with random effect

Stochastic approximation beyond convex optimization

- Stochastic approximation goes far beyond convex optimization.
- Problem: find the roots of the mean field function h, i.e. solve $h(\theta) = 0$.
- Stochastic gradient: $h = \nabla f$.
- The function h is not known in closed form, but

$$h(\theta) = \int H(\theta, x) \nu(\mathrm{d}x)$$

where $H: \Theta \times X \to \Theta$ is a known function and ν is a probability distribution over X.

Robbins Monro set up

- Assume that there is an i.i.d. sequence $\{X_n, n \in \mathbb{N}\}$ distributed according to ν
- The stochastic approximation procedure:

$$\theta_n = \theta_{n-1} + \gamma_n H(\theta_{n-1}, X_n) \text{ with } \mathbb{E}\big[h_n(\theta_{n-1})|\mathcal{F}_{n-1}\big] = h(\theta_{n-1})$$

where \mathcal{F}_{n-1} is the σ -algebra of summarizing "past" observations.

Can alternatively be written

$$\theta_n = \theta_{n-1} + \gamma_n h(\theta_{n-1}) + \gamma_n M_n$$

where
$$M_n = H(\theta_{n-1}, X_n) - h(\theta_n)$$
.

■ Under the stated assumptions, $\mathbb{E}[M_n | \mathcal{F}_{n-1}] = 0$, i.e. the sequence $\{M_n, n \in \mathbb{N}\}$ is a martingale increment sequence.

1

Finite-sum optimization
Online learning
Smooth strongly convex case

Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

Limiting ODE

- The limiting ODE which the SA procedure might be expected to track is $\dot{\theta} = h(\theta)$
- In absence of noise $(M_n \equiv 0)$, the recursion

$$\theta_n = \theta_{n-1} + \gamma_n h(\theta_n)$$

is the Euler discretization of the ODE $\dot{\theta}=h(\theta)$ with stepsize $\{\gamma_n,\ n\in\mathbb{N}\}.$

 Many asymptotic convergence results (see Kushner and Yin (2003), Borkar (2008)) but few quantitative results. (

Finite-sum optimization Online learning

Smooth strongly convex case
Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

Randomized Stochastic Gradient (RGSD) Method

Stochastic oracle: for $\theta \in \mathbb{R}^d$,

- Unbiasedness $\mathbb{E}[G(\theta,\xi)] = \nabla f(\theta)$
- Bounded variance $\mathbb{E}[\|G(\theta,\xi) \nabla f(\theta)\|^2] \leq \sigma^2$

Stochastic gradient:

- Initial point θ_0 , iteration limit N, stepsizes $\{\gamma_k\}_{k=0}^{N-1}$ and probability over Π on $\{0,\ldots,N\}$
- step 0. Draw R from Π
- step 1. for $k \in \{1, ..., R\}$, call the stochastic oracle $G(\theta_{k-1}, \xi_k)$ and set

$$\theta_k = \theta_{k-1} - \gamma_k G(\theta_{k-1}, \xi_k)$$

Finite-sum optimization

Online learning Smooth strongly convex case

Stochastic subgradient descent/method Stochastic Approximation for nonconvex optimization

RSGD convergence

Theorem

Suppose that the stepsizes $\{\gamma_k\}$ and the probability Π satisfies, $\gamma_k \leq 1/2L$ and,

$$\Pi(k) := \frac{2\gamma_{k+1} - L\gamma_{k+1}^2}{\sum_{k=1}^N (2\gamma_k - L\gamma_k^2)}, k = 0, \dots, N - 1$$

For any N > 1, we have

$$\frac{1}{L} \mathbb{E} \left[\| \nabla f (\theta_R) \|^2 \right] \le \frac{D_f^2 + \sigma^2 \sum_{k=1}^N \gamma_k^2}{\sum_{k=0}^{N-1} (2\gamma_k - L\gamma_k^2)}$$

where, denoting f^* denotes the optimal value,

$$D_f := [2(f(\theta_1) - f^*)/L]^{1/2}$$

1

Finite-sum optimization Online learning

Smooth strongly convex case
Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

RSGD convergence

Theorem

Suppose that the stepsizes $\{\gamma_k\}$ and the probability Π satisfies, $\gamma_k \leq 1/2L$ and,

$$\Pi(k) := \frac{2\gamma_{k+1} - L\gamma_{k+1}^2}{\sum_{k=1}^{N} (2\gamma_k - L\gamma_k^2)}, k = 0, \dots, N - 1$$

If in addition f is convex with an optimal solution θ^* , then for any $N \ge 1$,

$$\mathbb{E}\left[f(\theta_{R}) - f^{*}\right] \leq \frac{D_{Y}^{2} + \sigma^{2} \sum_{k=1}^{N} \gamma_{k}^{2}}{\sum_{k=1}^{N} (2\gamma_{k} - L\gamma_{k}^{2})^{2}}$$

where

$$D_X := \|\theta_1 - \theta^*\|$$

RSGD convergence: Proof 1

Denote
$$\delta_k \equiv G\left(\theta_{k-1}, \xi_k\right) - \nabla f\left(\theta_{k-1}\right), k \geq 1$$
. Then

$$f(\theta_{k}) \leq f(\theta_{k-1}) + \langle \nabla f(\theta_{k-1}), \theta_{k} - \theta_{k-1} \rangle + \frac{L}{2} \gamma_{k}^{2} \|G(\theta_{k-1}, \xi_{k})\|^{2}$$
$$= f(\theta_{k-1}) - \gamma_{k} \langle \nabla f(\theta_{k}), G(\theta_{k-1}, \xi_{k}) \rangle + \frac{L}{2} \gamma_{k}^{2} \|G(\theta_{k-1}, \xi_{k})\|^{2}$$

RSGD convergence: Proof 1

Denote
$$\delta_k \equiv G\left(\theta_{k-1}, \xi_k\right) - \nabla f\left(\theta_{k-1}\right), k \geq 1$$
. Then

$$f(\theta_{k}) \leq f(\theta_{k-1}) + \langle \nabla f(\theta_{k-1}), \theta_{k} - \theta_{k-1} \rangle + \frac{L}{2} \gamma_{k}^{2} \|G(\theta_{k-1}, \xi_{k})\|^{2}$$

$$= f(\theta_{k-1}) - \gamma_{k} \|\nabla f(\theta_{k-1})\|^{2} - \gamma_{k} \langle \nabla f(\theta_{k-1}), \delta_{k} \rangle$$

$$+ \frac{L}{2} \gamma_{k}^{2} \left[\|\nabla f(\theta_{k-1})\|^{2} + 2 \langle \nabla f(\theta_{k-1}), \delta_{k} \rangle + \|\delta_{k}\|^{2} \right]$$

RSGD convergence: Proof 1

Denote $\delta_k \equiv G\left(\theta_{k-1},\xi_k\right) - \nabla f\left(\theta_{k-1}\right), k \geq 1$. Then

$$f(\theta_k) \leq f(\theta_{k-1}) + \langle \nabla f(\theta_{k-1}), \theta_k - \theta_{k-1} \rangle + \frac{L}{2} \gamma_k^2 \|G(\theta_{k-1}, \xi_k)\|^2$$

$$= f(\theta_{k-1}) - \left(\gamma_k - \frac{L}{2} \gamma_k^2\right) \|\nabla f(\theta_{k-1})\|^2$$

$$- \left(\gamma_k - L \gamma_k^2\right) \langle \nabla f(\theta_{k-1}), \delta_k \rangle + \frac{L}{2} \gamma_k^2 \|\delta_k\|^2$$

RSGD convergence: Proof 2

Summing up the above inequality and rearranging terms

$$\sum_{k=1}^{N} \left(\gamma_k - \frac{L}{2} \gamma_k^2 \right) \| \nabla f \left(\theta_{k-1} \right) \|^2$$

$$\leq f \left(\theta_0 \right) - f \left(\theta_N \right) - \sum_{k=1}^{N} \left(\gamma_k - L \gamma_k^2 \right) \left\langle \nabla f \left(\theta_{k-1} \right), \delta_k \right\rangle + \frac{L}{2} \sum_{k=1}^{N} \gamma_k^2 \| \delta_k \|^2$$

RSGD convergence: Proof 2

Summing up the above inequality and rearranging terms

$$\begin{split} & \sum_{k=1}^{N} \left(\gamma_{k} - \frac{L}{2} \gamma_{k}^{2} \right) \| \nabla f \left(\theta_{k-1} \right) \|^{2} \\ & \leq f \left(\theta_{0} \right) - f^{*} - \sum_{k=1}^{N} \left(\gamma_{k} - L \gamma_{k}^{2} \right) \left\langle \nabla f \left(\theta_{k-1} \right), \delta_{k} \right\rangle + \frac{L}{2} \sum_{k=1}^{N} \gamma_{k}^{2} \| \delta_{k} \|^{2} \end{split}$$

RSGD convergence: Proof 2

Summing up the above inequality and rearranging terms

$$\begin{split} &\sum_{k=1}^{N} \left(\gamma_{k} - \frac{L}{2} \gamma_{k}^{2} \right) \left\| \nabla f \left(\theta_{k-1} \right) \right\|^{2} \\ &\leq f \left(\theta_{0} \right) - f^{*} - \sum_{k=1}^{N} \left(\gamma_{k} - L \gamma_{k}^{2} \right) \left\langle \nabla f \left(\theta_{k-1} \right), \delta_{k} \right\rangle + \frac{L}{2} \sum_{k=1}^{N} \gamma_{k}^{2} \left\| \delta_{k} \right\|^{2} \end{split}$$

Taking expectation and using $\mathbb{E}\left[\left\|\delta_k\right\|^2\right] \leq \sigma^2$ we get

$$\sum_{k=1}^{N} \left(\gamma_k - \frac{L}{2} \gamma_k^2 \right) \mathbb{E} \| \nabla f(\theta_{k-1}) \|^2 \le f(\theta_0) - f^* + \frac{L\sigma^2}{2} \sum_{k=1}^{N} \gamma_k^2$$

Finite-sum optimization
Online learning
Smooth strongly convex case
Stochastic subgradient descent/method

Stochastic Approximation for nonconvex optimization

RSGD convergence: Proof 2

Summing up the above inequality and rearranging terms

$$\sum_{k=1}^{N} \left(\gamma_{k} - \frac{L}{2} \gamma_{k}^{2} \right) \| \nabla f (\theta_{k-1}) \|^{2}$$

$$\leq f (\theta_{0}) - f^{*} - \sum_{k=1}^{N} \left(\gamma_{k} - L \gamma_{k}^{2} \right) \left\langle \nabla f (\theta_{k-1}), \delta_{k} \right\rangle + \frac{L}{2} \sum_{k=1}^{N} \gamma_{k}^{2} \| \delta_{k} \|^{2}$$

Dividing both sides by $L\sum_{k=1}^{N}\left(\gamma_{k}-L\gamma_{k}^{2}/2\right)$ we conclude

$$\frac{1}{L}\mathbb{E}\left[\left\|\nabla f\left(\theta_{R}\right)\right\|^{2}\right] \leq \frac{1}{\sum_{k=1}^{N}\left(2\gamma_{k} - L\gamma_{k}^{2}\right)}\left[\frac{2\left(f\left(\theta_{0}\right) - f^{*}\right)}{L} + \sigma^{2}\sum_{k=1}^{N}\gamma_{k}^{2}\right]$$

- 1 Stochastic approximation
- 2 Proximal methods
- 3 Applications

- 1 Stochastic approximation
 - Finite-sum optimization
 - Online learning
 - Smooth strongly convex case
 - Stochastic subgradient descent/method
 - Stochastic Approximation for nonconvex optimization
- 2 Proximal methods
 - Proximal operator
 - Proximal gradient algorithm
 - Stochastic proximal gradient
- 3 Applications
 - Network structure estimation
 - High-dimensional logistic regression with random effect

Definition

Definition (Proximal mapping)

g: closed convex function; γ : stepsize

$$\operatorname{prox}_{\gamma,g}(\theta) = \operatorname*{argmin}_{\eta \in \Theta} \left(g(\eta) + (2\gamma)^{-1} \| \eta - \theta \|_2^2 \right)$$

- The uniqueness of the minimizer stems from the strong convexity of the function $\eta \mapsto g(\eta) + 1/(2\gamma) \|\eta \theta\|_2^2$
- If $g = \mathbb{I}_{\mathcal{K}}$, where \mathcal{K} is a closed convex set, then $\operatorname{prox}_{\gamma,g}$ is the Euclidean projection on \mathcal{K}

$$\operatorname{prox}_{\gamma,g}(\theta) = \operatorname*{argmin}_{\eta \in \mathcal{K}} \|\eta - \theta\|_2^2 = P_{\mathcal{K}}(\theta)$$

The proximal operator may be seen as a generalisation of the projection on closed convex sets.

Proximal operator

Lemma

If
$$\theta = (\theta_1, \theta_2, \dots, \theta_p)$$
 and $g(\theta) = \sum_{i=1}^p g_i(\theta_i)$, then
$$\operatorname{prox}_{\gamma,g}(\theta) = (\operatorname{prox}_{\gamma,g_1}(\theta_1), \operatorname{prox}_{\gamma,g_2}(\theta_2), \dots, \operatorname{prox}_{\gamma,g_p}(\theta_p))$$

Proximal operator

Lemma

If
$$\theta=(\theta_1,\theta_2,\dots,\theta_p)$$
 and $g(\theta)=\sum_{i=1}^pg_i(\theta_i)$, then
$$\mathrm{prox}_{\gamma,g}(\theta)=(\mathrm{prox}_{\gamma,g_1}(\theta_1),\mathrm{prox}_{\gamma,g_2}(\theta_2),\dots,\mathrm{prox}_{\gamma,g_p}(\theta_p))$$

$$\underset{(\eta_{1},...,\eta_{p})}{\operatorname{argmin}} \left\{ \sum_{i=1}^{p} g_{i}(\eta_{i}) + 2\gamma^{-1} \sum_{i=1}^{p} \|\eta_{i} - \theta_{i}\|^{2} \right\}$$

$$= \sum_{i=1}^{p} \underset{\eta_{i}}{\operatorname{argmin}} \left\{ g_{i}(\eta_{i}) + (2\gamma)^{-1} \|\eta_{i} - \theta_{i}\|^{2} \right\}$$

A characterization of the proximal operator

Theorem

Let g be a convex function on Θ , $(\theta, p) \in \Theta^2$,

$$p = \operatorname{prox}_{\gamma,g}(\theta) \Longleftrightarrow \text{ for all } \eta \in \Theta, \quad g(p) + \gamma^{-1} \langle \eta - p, \theta - p \rangle \leq g(\eta)$$

i.e. p is the unique element of Θ satisfying $\gamma^{-1}(\theta - p) \in \partial g(p)$.

A characterization of the proximal operator

Theorem

Let g be a convex function on Θ , $(\theta, p) \in \Theta^2$,

$$p = \operatorname{prox}_{\gamma, g}(\theta) \Longleftrightarrow \text{ for all } \eta \in \Theta, \quad g(p) + \gamma^{-1} \langle \eta - p, \theta - p \rangle \leq g(\eta)$$

i.e. p is the unique element of Θ satisfying $\gamma^{-1}(\theta - p) \in \partial g(p)$.

Follows also from the characterization of the subdifferential

$$p$$
 is the minimizer of $\eta\mapsto g(\eta)+(2\gamma)^{-1}\|\eta-\theta\|_2^2$
$$\iff$$

$$0\in\partial g(p)+\gamma^{-1}(p-\theta).$$

Proximal operator: LASSO and Elastic net

■ If $g(\theta) = \sum_{i=1}^p \lambda_i |\theta_i|$ then $\text{prox}_{\gamma,g}$ is shrinkage (soft threshold) operation

$$\left[S_{\lambda,\gamma}(\theta)\right]_{i} = \begin{cases} \theta_{i} - \gamma \lambda_{i} & \theta_{i} \geq \gamma \lambda_{i} \\ 0 & |\theta_{i}| \leq \gamma \lambda_{i} \\ \theta_{i} + \gamma \lambda_{i} & \theta_{i} \leq -\gamma \lambda_{i} \end{cases}$$

• If $g(\theta) = \lambda \left((1 - \alpha)/2 \|\theta\|_2^2 + \alpha \|\theta\|_1 \right)$

$$\left(\operatorname{Prox}_{\gamma,g}(\tau)\right)_i = \frac{1}{1 + \gamma\lambda(1 - \alpha)} \begin{cases} \tau_i - \gamma\lambda\alpha & \text{if } \tau_i \geq \gamma\lambda\alpha \\ \tau_i + \gamma\lambda\alpha & \text{if } \tau_i \leq -\gamma\lambda\alpha \\ 0 & \text{otherwise} \end{cases}$$

Fixed points of the proximal operator

Theorem

Let g be a proper convex function on Θ . The set of fixed points

$$\{\theta \in \Theta, \mathit{prox}_{\gamma,g}(\theta) = \theta\}$$

coincide with the set of global minimum of g.

Fixed points of the proximal operator

Theorem

Let g be a proper convex function on Θ . The set of fixed points

$$\{\theta \in \Theta, \mathit{prox}_{\gamma,g}(\theta) = \theta\}$$

coincide with the set of global minimum of g.

Characterization of the proximal point

$$\gamma^{-1}(\theta - \mathsf{prox}_{\gamma,g}(\theta)) \in \partial g(\mathsf{prox}_{\gamma,g}(\theta)).$$

■ Sub-gradient: for all $\eta \in \Theta$,

$$\gamma^{-1} \langle \eta - \mathsf{prox}_{\gamma,g}(\theta), \theta - \mathsf{prox}_{\gamma,g}(\theta) \rangle + g(\mathsf{prox}_{\gamma,g}(\theta)) \leq g(\eta)$$

Conclusion

$$\theta = \mathrm{prox}_{\gamma,g}(\theta) \Longleftrightarrow \text{for all } \eta \in \Theta, g(\mathrm{prox}_{\gamma,g}(\theta)) \leq g(\eta) \;.$$

Firm non-expansiveness

Theorem

If g is a proper convex function, then $prox_{\gamma,g}$ and $(Id - prox_{\gamma,g})$ are firmly non-expansive (or co-coercive with constant 1), i.e. for all $\theta, \eta \in \Theta$,

$$||p - q||^2 + ||(\theta - p) - (\eta - q)||^2 \le ||\theta - \eta||^2$$
,
 $\iff \langle p - q, \theta - \eta \rangle \ge ||p - q||^2$.

where
$$p = \operatorname{prox}_{\gamma,g}(\theta)$$
 and $q = \operatorname{prox}_{\gamma,g}(\eta)$.

Firm non-expansiveness

Theorem

If g is a proper convex function, then $\operatorname{prox}_{\gamma,g}$ and $(\operatorname{Id} - \operatorname{prox}_{\gamma,g})$ are firmly non-expansive (or co-coercive with constant 1), i.e. for all $\theta, \eta \in \Theta$,

$$||p - q||^2 + ||(\theta - p) - (\eta - q)||^2 \le ||\theta - \eta||^2$$
,
 $\iff \langle p - q, \theta - \eta \rangle \ge ||p - q||^2$.

where $p = \operatorname{prox}_{\gamma,g}(\theta)$ and $q = \operatorname{prox}_{\gamma,g}(\eta)$.

$$\gamma^{-1}\langle q-p,\theta-p\rangle+g(p)\leq g(q) \quad \gamma^{-1}\langle p-q,\eta-q\rangle+g(q)\leq g(p)$$

Adding these two equations yield

$$\langle p-q, (\theta-p)-(\eta-q)\rangle \geq 0$$
.

Assumptions

(P)
$$\min_{\theta \in \mathbb{R}^d} F(\theta)$$
 $F(\theta) = f(\theta) + g(\theta)$,

Assumptions

- $lack g: \mathbb{R}^d o (-\infty, +\infty]$ closed convex
- $f: \Theta \to \mathbb{R}$ is convex continuously differentiable and ∇f is gradient Lipshitz: for all $\theta, \theta' \in \Theta$,

$$\|\nabla f(\theta) - \nabla f(\theta')\| \le L\|\theta - \theta'\|,$$

- 1 Stochastic approximation
 - Finite-sum optimization
 - Online learning
 - Smooth strongly convex case
 - Stochastic subgradient descent/method
 - Stochastic Approximation for nonconvex optimization
- 2 Proximal methods
 - Proximal operator
 - Proximal gradient algorithm
 - Stochastic proximal gradient
- 3 Applications
 - Network structure estimation
 - High-dimensional logistic regression with random effect

Proximal gradient algorithm

$$\theta_{n+1} = \operatorname{Prox}_{\gamma_{n+1},g} (\theta_n - \gamma_{n+1} \nabla f(\theta_n))$$

where

$$\operatorname{Prox}_{\gamma,g}(\tau) = \min_{\theta \in \Theta} \left(g(\theta) + \frac{1}{2\gamma} \|\theta - \tau\|^2 \right)$$

Majorization-Minimization interpretation

■ Since f is gradient Lipshitz, for all $\gamma \in (0, 1/L]$

$$F(\eta) = f(\eta) + g(\eta) \le f(\theta) + \langle \nabla f(\theta), \eta - \theta \rangle + \frac{1}{2\gamma} \|\theta - \eta\|^2 + g(\eta)$$

Consider the following surrogate function

$$Q_{\gamma}(\eta|\theta) = f(\theta) + \langle \nabla f(\theta), \eta - \theta \rangle + \frac{1}{2\gamma} \|\theta - \eta\|^2 + g(\eta)$$

■ For all $\theta \in \Theta$, $\eta \mapsto Q_{\gamma}(\eta|\theta)$ is strongly convex and has a unique minimum and

$$F(\eta) \le Q_{\gamma}(\eta|\theta)$$
 $F(\theta) = Q_{\gamma}(\theta|\theta)$

$$F(\eta) \le Q_{\gamma}(\eta|\theta_n)$$
 $F(\theta_n) = Q_{\gamma}(\theta_n|\theta_n)$

Majorization-Minimization interpretation

$$Q_{\gamma}(\eta|\theta) \stackrel{\text{def}}{=} f(\theta) + \langle \nabla f(\theta), \eta - \theta \rangle + \frac{1}{2\gamma} \|\eta - \theta\|^2 + g(\eta)$$
$$= f(\theta) + \frac{1}{2\gamma} \|\eta - (\theta - \gamma \nabla f(\theta))\|^2 - \frac{\gamma}{2} \|\nabla f(\theta)\|^2 + g(\eta) ,$$

The iterates of the proximal gradient algorithms may be rewritten as $\theta_{n+1}=T_{\gamma_{n+1}}(\theta_n)$ with the point-to-point map T_γ defined by

$$\begin{split} T_{\gamma}(\theta) &\stackrel{\text{def}}{=} \operatorname{Prox}_{\gamma,d} \left(\theta - \gamma \nabla f(\theta) \right) \\ &= \operatorname{argmin}_{\eta \in \operatorname{Dom}(g)} Q_{\gamma}(\eta | \theta) \; . \end{split}$$

Proximal gradient

■ If $g(\theta) \equiv 0$, \hookrightarrow gradient proximal = classical stochastic gradient

$$\theta_n = \theta_{n-1} - \gamma_n \nabla f(\theta_{n-1})$$

Proximal gradient

■ If $g(\theta) \equiv 0$, \hookrightarrow gradient proximal = classical stochastic gradient

$$\theta_n = \theta_{n-1} - \gamma_n \nabla f(\theta_{n-1})$$

■ If $g(\theta) \equiv 0$ if $\theta \in \mathcal{C}$ and $g(\theta) = +\infty$ otherwise where \mathcal{C} is a closed convex set,

$$\operatorname{Prox}_{\gamma,g}(\tau) = \min_{\theta \in \mathcal{C}} \|\tau - \theta\|^2$$

 \hookrightarrow gradient proximal = projected gradient

$$\theta_n = \Pi_{\mathcal{C}} \left(\theta_{n-1} - \gamma_n \nabla f(\theta_{n-1}) \right)$$

Proximal gradient for the elastic net penalty

If
$$g(\theta) = \lambda \left(\frac{1-\alpha}{2} \|\theta\|_2^2 + \alpha \|\theta\|_1 \right)$$

$$\left(\operatorname{Prox}_{\gamma,g}(\tau)\right)_i = \frac{1}{1 + \gamma\lambda(1 - \alpha)} \begin{cases} \tau_i - \gamma\lambda\alpha & \text{if } \tau_i \geq \gamma\lambda\alpha \\ \tau_i + \gamma\lambda\alpha & \text{if } \tau_i \leq -\gamma\lambda\alpha \\ 0 & \text{otherwise} \end{cases}$$

 \hookrightarrow Proximal gradient= soft-thresholded gradient

$$\theta_{n+1} = S_{\alpha,\lambda,\gamma_{n+1}} (\theta_n - \gamma_{n+1} \nabla f(\theta_n))$$

Stationary points of the proximal gradient

$$\theta_{n+1} = \operatorname{Prox}_{\gamma,g} (\theta_n - \gamma \nabla f(\theta_n)) = T_{\gamma}(\theta_n) ,$$

where T_{γ} is the proximal map,

$$T_{\gamma}(\theta) \stackrel{\text{def}}{=} \operatorname{Prox}_{\gamma,g} (\theta - \gamma \nabla f(\theta)) = \operatorname{argmin}_{\eta \in \operatorname{Dom}(g)} Q_{\gamma}(\eta | \theta) .$$

Theorem

The fixed points of the proximal map are the global minimizers of $F(\theta) = f(\theta) + g(\theta)$:

$$\mathbf{L} = \{\theta: \theta = \operatorname{Prox}_{\gamma,g}(\theta - \gamma \nabla f(\theta))\} = \{\theta \in \operatorname{Dom}(g): 0 \in \nabla f(\theta) + \partial g(\theta)\}.$$

Fixed points of the proximal map

Since

$$F(\theta) = f(\theta) + g(\theta) ,$$

we get

$$\begin{array}{ll} 0 \in \partial F(\theta) & \Longleftrightarrow & 0 \in \partial \gamma F(\theta) \\ & \Longleftrightarrow & 0 \in \gamma \nabla f(\theta) + \partial \gamma g(\theta) \\ & \Longleftrightarrow & \theta - \gamma \nabla f(\theta) \in (\theta + \gamma \partial g(\theta)) \end{array}$$

Fixed points of the proximal map

Since

$$F(\theta) = f(\theta) + g(\theta) ,$$

we get

$$\begin{array}{ll} 0 \in \partial F(\theta) & \Longleftrightarrow & 0 \in \partial \gamma F(\theta) \\ & \Longleftrightarrow & 0 \in \gamma \nabla f(\theta) + \partial \gamma g(\theta) \\ & \Longleftrightarrow & \theta - \gamma \nabla f(\theta) \in (\theta + \gamma \partial g(\theta)) \end{array}$$

Recall that, for any η

$$p = \mathsf{prox}_{\gamma a}(\eta) \Longleftrightarrow (\eta - p) \in \gamma \partial g(p) \Longleftrightarrow \eta \in p + \gamma \partial g(p).$$

Fixed points of the proximal map

Since

$$F(\theta) = f(\theta) + g(\theta) ,$$

we get

$$0 \in \partial F(\theta) \iff 0 \in \partial \gamma F(\theta)$$

$$\iff 0 \in \gamma \nabla f(\theta) + \partial \gamma g(\theta)$$

$$\iff \theta - \gamma \nabla f(\theta) \in (\theta + \gamma \partial g(\theta))$$

Recall that, for any η

$$p = \mathsf{prox}_{\gamma g}(\eta) \Longleftrightarrow (\eta - p) \in \gamma \partial g(p) \Longleftrightarrow \eta \in p + \gamma \partial g(p).$$

Hence, taking $p \leftarrow \theta$ and $\eta \leftarrow \theta - \gamma \nabla f(\theta)$

$$0 \in \partial F(\theta) \Longleftrightarrow \theta = T_{\gamma}(\theta)$$

Lyapunov function

$$Q_{\gamma}(\eta|\theta) = f(\theta) + \langle \nabla f(\theta), \eta - \theta \rangle + \frac{1}{2\gamma} \|\theta - \eta\|^2 + g(\eta)$$

■ For all $\theta \in \Theta$, $F \circ T_{\gamma}(\theta) \leq F(\theta)$:

$$F \circ T_{\gamma}(\theta) \le Q_{\gamma}(T_{\gamma}(\theta)|\theta) \le Q_{\gamma}(\theta|\theta) = F(\theta)$$

Moreover, the inequality is strict unless θ is a fixed point of the mapping T_{γ} .

• F is a Lyapunov function for the proximal map T_{γ} .

Convergence result

(P)
$$(\arg)\min_{\theta\in\Theta} \{f(\theta) + g(\theta)\},\$$

- lacksquare the objective function always converge $\{F(\theta_n), n \geq 0\}$
- f is convex: then $\{\theta_n, n \in \mathbb{N}\}$ converges to θ_{\star} , where θ_{\star} is a minimizer of F.
- $F(\theta_n) F(\theta_\star) = O(1/n).$
- lacktriangle Results similar to smooth optimization (O(1/n) where n is the number of iterations)
- Acceleration methods: Nesterov, 2007; Beck and Teboulle, 2009. $(O(1/n^2))$ [algorithm FISTA]

- 1 Stochastic approximation
 - Finite-sum optimization
 - Online learning
 - Smooth strongly convex case
 - Stochastic subgradient descent/method
 - Stochastic Approximation for nonconvex optimization
- 2 Proximal methods
 - Proximal operator
 - Proximal gradient algorithm
 - Stochastic proximal gradient
- 3 Applications
 - Network structure estimation
 - High-dimensional logistic regression with random effect

Stochastic proximal gradient

Objective

Exact algorithm :

$$\theta_{n+1} = \operatorname{Prox}_{\gamma_{n+1}, g} (\theta_n - \gamma_{n+1} \nabla f(\theta_n))$$

Pertubed algorithm :

$$\theta_{n+1} = \operatorname{Prox}_{\gamma_{n+1}, q} \left(\theta_n - \gamma_{n+1} H_{n+1} \right)$$

where H_{n+1} is a noisy approximation of the true gradient $\nabla f(\theta_n)$.

Problem find sufficient conditions on the stochastic error

$$\eta_{n+1} = H_{n+1} - \nabla f(\theta_n)$$

to preserve convergence (closely related to SA).

Convergence of the parameter

Theorem.

Assume f is L-smooth and the set $\mathbf{L} = \operatorname{argmin}_{\theta \in \Theta} F(\theta)$ is non-empty. Assume in addition that $\gamma_n \in (0, 1/L]$ for any $n \geq 1$ and $\sum_n \gamma_n = +\infty$. If the following series converge

$$\sum_{n\geq 0} \gamma_{n+1} \langle T_{\gamma_{n+1}}(\theta_n), \eta_{n+1} \rangle , \quad \sum_{n\geq 0} \gamma_{n+1} \eta_{n+1} , \quad \sum_{n\geq 0} \gamma_{n+1}^2 \|\eta_{n+1}\|^2 ,$$

then there exists $\theta_{\infty} \in \mathbf{L}$ such that $\lim_{n} \theta_{n} = \theta_{\infty}$.

Convergence of the function

Theorem

Assume f is L-smooth and the set $\mathbf{L} = \operatorname{argmin}_{\theta \in \Theta} F(\theta)$ is non-empty. Assume that $\gamma_n \in (0, 1/L]$ and let $\{a_0, \cdots, a_n\}$ be nonnegative weights. Then, for any $\theta_{\star} \in \mathbf{L}$ and $n \geq 1$,

$$\sum_{k=1}^{n} a_k \left\{ F(\theta_k) - \min F \right\} \le U_n(\theta_\star)$$

where

$$U_n(\theta_{\star}) \stackrel{\text{def}}{=} \frac{1}{2} \sum_{k=1}^n \left(\frac{a_k}{\gamma_k} - \frac{a_{k-1}}{\gamma_{k-1}} \right) \|\theta_{k-1} - \theta_{\star}\|^2 + \frac{a_0}{2\gamma_0} \|\theta_0 - \theta_{\star}\|^2 - \sum_{k=1}^n a_k \langle T_{\gamma_k}(\theta_{k-1}) - \theta_{\star}, \eta_k \rangle + \sum_{k=1}^n a_k \gamma_k \|\eta_k\|^2.$$

Sanity check

Assume that the gradient is exact, i.e. $\eta_n=0$. Set $A_n=\sum_{k=1}^n a_k$ Then

$$F\left(A_n^{-1} \sum_{j=1}^n \theta_j\right) - \min F \le A_n^{-1} \sum_{j=1}^n a_j F(\theta_j) - \min F$$

$$\le \frac{1}{2} \sum_{k=1}^n \left(\frac{a_k}{\gamma_k} - \frac{a_{k-1}}{\gamma_{k-1}}\right) \|\theta_{k-1} - \theta_\star\|^2 + \frac{a_0}{2\gamma_0} \|\theta_0 - \theta_\star\|^2$$

■ Setting $a_k \equiv 1$ and $\gamma_k \equiv 1/L$

$$F\left(n^{-1}\sum_{j=1}^{n}\theta_{j}\right) - \min F \leq n^{-1}\sum_{j=1}^{n}F(\theta_{j}) - \min F$$
$$\leq \frac{L}{2}\|\theta_{0} - \theta_{\star}\|^{2}$$

Up to constant, this is the same bound than the gradient algorithm for smooth convex function.

Perturbed gradient

■ Take $a_k = \gamma_k$, for $k \in \{1, \dots, n\}$. Then, for any $\theta_\star \in \mathbf{L}$ and $n \ge 1$,

$$F\left(\Gamma_{n}^{-1} \sum_{k=1}^{n} \gamma_{k} \theta_{k}\right) - \min F \leq \frac{1}{2\Gamma_{n}} \|\theta_{0} - \theta_{\star}\|^{2}$$
$$-\Gamma_{n}^{-1} \sum_{k=1}^{n} \gamma_{k} \langle T_{\gamma_{k}}(\theta_{k-1}) - \theta_{\star}, \eta_{k} \rangle + \Gamma_{n}^{-1} \sum_{k=1}^{n} \gamma_{k}^{2} \|\eta_{k}\|^{2}.$$

■ Problem: Control the sequences $\sum_{k=1}^n \gamma_k \langle T_{\gamma_k}(\theta_{k-1}) - \theta_\star, \eta_k \rangle$ and $\sum_{k=1}^n \gamma_k^2 \|\eta_k\|^2$ in expectation or using high-probability bounds.

Robbins-Monro setting

$$\nabla f(\theta) = \int_{\mathsf{X}} H_{\theta}(x) \pi(\mathrm{d}x)$$

Set

$$H_{n+1} = m_{n+1}^{-1} \sum_{j=1}^{m_{n+1}} H_{\theta_n}(X_{n+1}^{(j)})$$

where m_{n+1} is the size of the batch and $\{X_{n+1}^{(j)}, 1 \leq j \leq m_{n+1}\}$ is a sample from π independent of $\sigma(\theta_{\ell}, \ell \leq n)$.

In such case,

$$\mathbb{E}\left[\left.H_{n+1}\,\right|\mathcal{F}_{n}\right] = m_{n+1}^{-1} \sum_{j=1}^{m_{n+1}} \mathbb{E}\left[\left.H_{\theta_{n}}(X_{n+1}^{(j)})\,\right|\mathcal{F}_{n}\right] = \nabla f(\theta_{n}) \text{ and } \eta_{n+1} = H_{n+1} - \nabla f(\theta_{n}) \text{ is a martingale increment.}$$

Bounded case / Constant stepsizes - Risk Bounds

- Assume that $\|H_{\theta}(x)\| \leq B$, then $\|\eta_{n+1}\| \leq 2B$ and the stepsizes are constant $\gamma_k \equiv 1/B\sqrt{n}$ for $k \in \{1, \dots, n\}$.
- On one hand

$$\Gamma_n^{-1} \sum_{k=1}^n \gamma_k^2 ||\eta_{k+1}||^2 \le \frac{4B}{\sqrt{n}}$$

■ Risk bound: since $\mathbb{E}\left[\left\langle T_{\gamma_k}(\theta_{k-1}) - \theta_{\star}, \eta_k \right\rangle \middle| \mathcal{F}_{k-1}\right] = 0$ (since $\mathbb{E}\left[\left. \eta_k \middle| \mathcal{F}_{k-1} = 0 \right] = 0 \right)$, the risk bound is

$$\mathbb{E}\left[F\left(n^{-1}\sum_{k=1}^{n}\theta_{k}\right)\right] - \min F \leq \frac{B}{2\sqrt{n}}\|\theta_{0} - \theta_{\star}\|^{2} + \frac{4B}{\sqrt{n}}.$$

Same risk bound than the Stochastic subgradient method (minimax rate)

Bounded case / Constant stepsizes - Concentration

■ Azuma-Hoeffding inequality for bounded martingale increments $\{Z_k, k \in \mathbb{N}^*\}$:

$$\mathbb{P}\left(\frac{1}{n}\sum_{k=1}^{n} Z_k \ge \frac{Ct}{\sqrt{n}}\right) \le \exp(-t^2/2)$$

Apply it to

$$Z_k = \langle T_{\gamma_k}(\theta_{k-1}) - \theta_{\star}, \eta_k \rangle$$
.

- 1 Stochastic approximation
- 2 Proximal methods
- **3** Applications

- 1 Stochastic approximation
 - Finite-sum optimization
 - Online learning
 - Smooth strongly convex case
 - Stochastic subgradient descent/method
 - Stochastic Approximation for nonconvex optimization
- 2 Proximal methods
 - Proximal operator
 - Proximal gradient algorithm
 - Stochastic proximal gradient
- 3 Applications
 - Network structure estimation
 - High-dimensional logistic regression with random effect

Network structure estimation

- Problem fitting a discrete graphical models in a setting where the number of nodes in the graph is large compared to the sample size.
- Formalization Let A be a nonempty finite set, and $p \ge 1$ an integer. Consider a graphical model on $X = A^p$ with p.m.f.

$$f_{\theta}(x_1,\ldots,x_p) = \frac{1}{Z_{\theta}} \exp\left\{ \sum_{k=1}^p \theta_{kk} B_0(x_k) + \sum_{1 \le j < k \le p} \theta_{kj} B(x_k,x_j) \right\},\,$$

for a non-zero function $B_0: A \to \mathbb{R}$ and a symmetric non-zero function $B: A \times A \to \mathbb{R}$.

■ The term Z_{θ} is the normalizing constant of the distribution (the partition function), which cannot (in general) be computed explicitly.

Network structure estimation

- Problem fitting a discrete graphical models in a setting where the number of nodes in the graph is large compared to the sample size.
- Formalization Let A be a nonempty finite set, and $p \ge 1$ an integer. Consider a graphical model on $X = A^p$ with p.m.f.

$$f_{\theta}(x_1,\ldots,x_p) = \frac{1}{Z_{\theta}} \exp\left\{ \sum_{k=1}^p \theta_{kk} B_0(x_k) + \sum_{1 \le j < k \le p} \theta_{kj} B(x_k,x_j) \right\},\,$$

for a non-zero function $B_0: A \to \mathbb{R}$ and a symmetric non-zero function $B: A \times A \to \mathbb{R}$.

The real-valued symmetric matrix θ defines the graph structure and is the parameter of interest. Same interpretation as the precision matrix in a multivariate Gaussian distribution.

Network structure estimation

- Problem: Estimate θ from N realizations $\{x^{(i)}, 1 \leq i \leq N\}$ where $x^{(i)} = (x_1^{(i)}, \dots, x_p^{(i)}) \in \mathsf{A}^p$ under sparsity constraint.
- Applications biology, social sciences,
- Main difficulty: the log-partition function $\log Z_{\theta}$ is intractable in general.
 - Most of the existing results use a pseudo-likelihood function.
 - One exception is [hoefling09], using an active set strategy (to preserve sparsity), and the junction tree algorithm for computing the partial derivatives of the log-partition function. However, this algorithm does not scale

Model

■ Penalized likelihood $F(\theta) = -\ell(\theta) + g(\theta)$ where

$$\ell(\theta) = \frac{1}{N} \sum_{i=1}^N \langle \theta, \bar{B}(x^{(i)}) \rangle - \log Z_\theta \text{ and } g(\theta) = \lambda \sum_{1 \leq k \leq j \leq p} |\theta_{jk}| \; ;$$

the matrix-valued function $\bar{B}: X \to \mathbb{R}^{p \times p}$ is defined by

$$\bar{B}_{kk}(x) = B_0(x_k)$$
 $\bar{B}_{kj}(x) = B(x_k, x_j), k \neq j$.

Intractable canonical exponential model.

Model

■ Penalized likelihood $F(\theta) = -\ell(\theta) + g(\theta)$ where

$$\ell(\theta) = \frac{1}{N} \sum_{i=1}^N \langle \theta, \bar{B}(x^{(i)}) \rangle - \log Z_\theta \text{ and } g(\theta) = \lambda \sum_{1 \leq k \leq j \leq p} |\theta_{jk}| \; ;$$

the matrix-valued function $\bar{B}:\mathsf{X}\to\mathbb{R}^{p\times p}$ is defined by

$$\bar{B}_{kk}(x) = B_0(x_k)$$
 $\bar{B}_{kj}(x) = B(x_k, x_j), k \neq j$.

lacksquare $\theta \mapsto -\ell(\theta)$ is convex and

$$\nabla \ell(\theta) = \frac{1}{N} \sum_{i=1}^{N} \bar{B}(x^{(i)}) - \int_{\mathsf{X}} \bar{B}(z) f_{\theta}(z) \mu(\mathrm{d}z) ,$$

Implementation

- Direct simulation from the distribution f_{θ} is not feasible.
- If X is not too large, then a Gibbs sampler that samples from the full conditional distributions of f_{θ} can be easily implemented.
- Gibbs sampler is a generic algorithm that in some cases is known to mix poorly. Whenever possible we recommend the use of specialized problem-specific MCMC algorithms with better mixing properties...

Set up

- X = {1,..., M}, $B_0(x) = 0$, and $B(x,y) = \mathbf{1}_{\{x=y\}}$, which corresponds to the Potts model.
- We use M = 20, $B_0(x) = x$, N = 250 and for $p \in \{50, 100, 200\}$.
- We generate the 'true' matrix θ_{true} such that it has on average p non-zero elements off-diagonal which are simulated from a uniform distribution on $(-4,-1) \cup (1,4)$.
- All the diagonal elements are set to 0.

Algorithms

- Two versions of the stochastic proximal gradient are considered
 - **1** Solver 1: A version with a fixed Monte Carlo batch size $m_n = 500$, and decreasing step size $\gamma_n = \frac{25}{p} \frac{1}{n^{0.7}}$.
 - 2 Solver 2: A version with increasing Monte Carlo batch size $m_n = 500 + n^{1.2}$, and fixed step size $\gamma_n = \frac{25}{p} \frac{1}{\sqrt{50}}$.
- The set-up is such that both solvers draw approximately the same number of Monte Carlo samples.

Algorithms

- Two versions of the stochastic proximal gradient are considered
 - **1** Solver 1: A version with a fixed Monte Carlo batch size $m_n = 500$, and decreasing step size $\gamma_n = \frac{25}{p} \frac{1}{n^{0.7}}$.
 - 2 Solver 2: A version with increasing Monte Carlo batch size $m_n = 500 + n^{1.2}$, and fixed step size $\gamma_n = \frac{25}{p} \frac{1}{\sqrt{50}}$.
- We evaluate the convergence of each solver by computing the relative error $\|\theta_n \theta_\infty\|/\|\theta_\infty\|$, along the iterations, where θ_∞ denotes the value returned by the solver on its last iteration.

Algorithms

- Two versions of the stochastic proximal gradient are considered
 - **1** Solver 1: A version with a fixed Monte Carlo batch size $m_n = 500$, and decreasing step size $\gamma_n = \frac{25}{p} \frac{1}{n^{0.7}}$.
 - 2 Solver 2: A version with increasing Monte Carlo batch size $m_n=500+n^{1.2}$, and fixed step size $\gamma_n=\frac{25}{p}\frac{1}{\sqrt{50}}$.
- We compare the optimizer output to θ_{∞} , not θ_{true} . Ideally, we would like to compare the iterates to the solution of the optimization problem. However in the present setting a solution is not available in closed form (and there could be more than one solution).

Figure: Relative errors plotted as function of computing time for Solver 1 and Solver 2.

When measured as function of resource used, Solver 1 and Solver 2 have roughly the same convergence rate.

Sensitivity and Precision

- We also compute the statistic $\mathsf{F}_n \stackrel{\mathrm{def}}{=} \frac{2\mathsf{Sen}_n\mathsf{Prec}_n}{\mathsf{Sen}_n+\mathsf{Prec}_n}$ which measures the recovery of the sparsity structure of θ_∞ along the iteration.
- In this definition Sen_n is the sensitivity, and Prec_n is the precision defined as

$$\begin{split} & \mathsf{Sen}_n = \frac{\sum_{j < i} \mathbf{1}_{\{|\theta_{n,ij}| > 0\}} \mathbf{1}_{\{|\theta_{\infty,ij}| > 0\}}}{\sum_{j < i} \mathbf{1}_{\{|\theta_{\infty,ij}| > 0\}}} \\ & \mathsf{Prec}_n = \frac{\sum_{j < i} \mathbf{1}_{\{|\theta_{n,ij}| > 0\}} \mathbf{1}_{\{|\theta_{\infty,ij}| > 0\}}}{\sum_{j < i} \mathbf{1}_{\{|\theta_{\infty,ij}| > 0\}}}. \end{split}$$

Sensitivity and Precision

Figure: Statistic F_n plotted as function of computing time for Solver 1 and Solver 2.

- 1 Stochastic approximation
 - Finite-sum optimization
 - Online learning
 - Smooth strongly convex case
 - Stochastic subgradient descent/method
 - Stochastic Approximation for nonconvex optimization
- 2 Proximal methods
 - Proximal operator
 - Proximal gradient algorithm
 - Stochastic proximal gradient
- 3 Applications
 - Network structure estimation
 - High-dimensional logistic regression with random effect

High-dimensional logistic regression with random effects

- lacksquare Observations : N observations $\mathbf{Y} \in \{0,1\}^N$
- **Random effect** : Conditionally to U, for all $i = 1, \dots, N$,

$$Y_i \stackrel{\text{ind.}}{\sim} \mathcal{B}\left(\frac{\exp(\eta_i)}{1 + \exp(\eta_i)}\right)$$

where

$$\begin{bmatrix} \eta_1 \\ \vdots \\ \eta_N \end{bmatrix} = \mathbf{X}\beta_* + \sigma_* \mathbf{Z} \mathbf{U}$$

- The regressors $\mathbf{X} \in \mathbb{R}^{N \times p}$ and the factor loadings $\mathbf{Z} \in \mathbb{R}^{N \times q}$, known
- Objective: estimate $\beta_* \in \mathbb{R}^p, \sigma_* > 0$.

Penalized likelihood

lacktriangledown log-likelihood : Taking $\mathbf{U} \sim \mathcal{N}_q(0,I)$, setting

$$\theta = (\beta, \sigma)$$
 $F(\eta) = \frac{\exp(\eta)}{1 + \exp(\eta)}$

the log-likelihood of the observations Y (with respect to θ) is

$$\ell(\theta) = \log \int \prod_{i=1}^{N} \left\{ F\left(\mathbf{X}_{i} \cdot \beta + \sigma(\mathbf{Z}\mathbf{U})_{i}\right) \right\}^{Y_{i}} \left\{ 1 - F\left(\mathbf{X}_{i} \cdot \beta + \sigma(\mathbf{Z}\mathbf{U})_{i}\right) \right\}^{1 - Y_{i}} \phi(\mathbf{u}) d\mathbf{u}$$

Elastic net penalty

$$\begin{split} g_{\lambda,\theta}(\theta) &= \lambda \left(\frac{1-\alpha}{2} \|\beta\|_2^2 + \alpha \|\beta\|_1 \right) \\ \tilde{g}_{\mathcal{C}}(\theta) &= \left\{ \begin{array}{ll} 0 & \text{si } \theta \in \mathcal{C} \\ +\infty & \text{otherwise} \end{array} \right. \end{split}$$

Penalized likelihood

$$\min_{\theta \in \Theta} (f(\theta) + g(\theta))$$
, $f(\theta) = -\ell(\theta)$,

with

$$\ell(\theta) = \log \int \exp\left(\ell_c(\theta|\mathbf{u})\right) \ \phi(\mathbf{u}) d\mathbf{u}$$

$$\ell_c(\theta|\mathbf{u}) = \sum_{i=1}^{N} \left\{ Y_i \left(\mathbf{X}_i \cdot \beta + \sigma(\mathbf{Z}\mathbf{U})_i \right) - \ln\left(1 + \exp\left(\mathbf{X}_i \cdot \beta + \sigma(\mathbf{Z}\mathbf{U})_i \right) \right) \right\}$$

Gradient:

$$\nabla \ell(\theta) = \int \nabla \ell_c(\theta|\mathbf{u}) \pi_{\theta}(\mathbf{u}) d\mathbf{u}$$

where $\pi_{\theta}(\mathbf{u})$ is the posterior distribution of the random effect given the observations

$$\pi_{\theta}(\mathbf{u}) = \exp\left(\ell_c(\theta|\mathbf{u}) - \ell(\theta)\right) \phi(\mathbf{u})$$

Penalized likelihood

$$\min_{\theta \in \Theta} (f(\theta) + g(\theta))$$
, $f(\theta) = -\ell(\theta)$

where

$$\begin{split} g_{\lambda,\theta}(\theta) &= \lambda \left(\frac{1-\alpha}{2} \|\beta\|_2^2 + \alpha \|\beta\|_1 \right) + \mathbb{I}_{\mathcal{C}}(\theta) \\ \mathbb{I}_{\mathcal{C}}(\theta) &= \begin{cases} 0 & \text{if } \theta \in \mathcal{C} \\ +\infty & \text{otherwise} \end{cases} \quad \mathcal{C} \text{ compact convex set} \end{split}$$

MCMC algorithm

- The distribution π_{θ} is sampled using the MCMC sampler proposed in (Polson et al, 2012) based on data-augmentation.
- We write $-\nabla \ell(\theta) = \int_{\mathbb{R}^q \times \mathbb{R}^N} H_{\theta}(\mathbf{u}) \tilde{\pi}_{\theta}(\mathbf{u}, \mathbf{w}) \, \mathrm{d}\mathbf{u} \mathrm{d}\mathbf{w}$ where $\tilde{\pi}_{\theta}(\mathbf{u}, \mathbf{w})$ is defined for $\mathbf{u} \in \mathbb{R}^q$ and $\mathbf{w} = (w_1, \cdots, w_N) \in \mathbb{R}^N$ by

$$\tilde{\pi}_{\theta}(\mathbf{u}, \mathbf{w}) = \left(\prod_{i=1}^{N} \bar{\pi}_{PG} \left(w_i; x_i' \beta + \sigma z_i' \mathbf{u} \right) \right) \pi_{\theta}(\mathbf{u}) ;$$

• in this expression, $\bar{\pi}_{PG}(\cdot;c)$ is the density of the Polya-Gamma distribution on the positive real line with parameter c given by

$$\bar{\pi}_{\mathsf{PG}}(w;c) = \cosh(c/2) \, \exp\left(-wc^2/2\right) \, \rho(w) \, \mathbb{1}_{\mathbb{R}^+}(w) \,,$$

where
$$\rho(w) \propto \sum_{k>0} (-1)^k (2k+1) \exp(-(2k+1)^2/(8w)) w^{-3/2}$$

MCMC algorithm

- The distribution π_{θ} is sampled using the MCMC sampler proposed in (Polson et al, 2012) based on data-augmentation.
- We write $-\nabla \ell(\theta) = \int_{\mathbb{R}^q \times \mathbb{R}^N} H_{\theta}(\mathbf{u}) \tilde{\pi}_{\theta}(\mathbf{u}, \mathbf{w}) \, d\mathbf{u} d\mathbf{w}$ where $\tilde{\pi}_{\theta}(\mathbf{u}, \mathbf{w})$ is defined for $\mathbf{u} \in \mathbb{R}^q$ and $\mathbf{w} = (w_1, \dots, w_N) \in \mathbb{R}^N$ by

$$\tilde{\pi}_{\theta}(\mathbf{u}, \mathbf{w}) = \left(\prod_{i=1}^{N} \bar{\pi}_{PG} \left(w_i; x_i' \beta + \sigma z_i' \mathbf{u} \right) \right) \pi_{\theta}(\mathbf{u}) ;$$

Thus, we have

$$\tilde{\pi}_{\theta}(\mathbf{u}, \mathbf{w}) = C_{\theta}\phi(\mathbf{u}) \prod_{i=1}^{N} \exp\left(\sigma(Y_i - 1/2)z_i'\mathbf{u} - w_i(x_i'\beta + \sigma z_i'\mathbf{u})^2/2\right) \rho(w_i) \mathbb{1}$$

where
$$\ln C_{\theta} = -N \ln 2 - \ell(\theta) + \sum_{i=1}^{N} (Y_i - 1/2) x_i' \beta$$
.

MCMC algorithm

- The distribution π_{θ} is sampled using the MCMC sampler proposed in (Polson et al, 2012) based on data-augmentation.
- We write $-\nabla \ell(\theta) = \int_{\mathbb{R}^q \times \mathbb{R}^N} H_{\theta}(\mathbf{u}) \tilde{\pi}_{\theta}(\mathbf{u}, \mathbf{w}) \, d\mathbf{u} d\mathbf{w}$ where $\tilde{\pi}_{\theta}(\mathbf{u}, \mathbf{w})$ is defined for $\mathbf{u} \in \mathbb{R}^q$ and $\mathbf{w} = (w_1, \dots, w_N) \in \mathbb{R}^N$ by

$$\tilde{\pi}_{\theta}(\mathbf{u}, \mathbf{w}) = \left(\prod_{i=1}^{N} \bar{\pi}_{PG} \left(w_i; x_i' \beta + \sigma z_i' \mathbf{u} \right) \right) \pi_{\theta}(\mathbf{u}) ;$$

■ This target distribution can be sampled using a Gibbs algorithm

Numerics

- We test the algorithms with N=500, p=1,000 and q=5.
- We generate the $N \times p$ covariates matrix X columnwise, by sampling a stationary \mathbb{R}^N -valued autoregressive model with parameter $\rho=0.8$ and Gaussian noise $\sqrt{1-\rho^2}\,\mathcal{N}_N(0,I)$.
- We generate the vector of regressors β_{true} from the uniform distribution on [1,5] and randomly set 98% of the coefficients to zero.
- The variance of the random effect is set to $\sigma^2 = 0.1$.

Numerics

We first illustrate the ability of Monte Carlo Proximal Gradient algorithms to find a minimizer of F. We compare the Monte Carlo proximal gradient algorithm

- I with fixed batch size: $\gamma_n=0.01/\sqrt{n}$ and $m_n=275$ (Algo 1); $\gamma_n=0.5/n$ and $m_n=275$ (Algo 2).
- 2 with increasing batch size: $\gamma_n=\gamma=0.005,\ m_n=200+n$ (Algo 3); $\gamma_n=\gamma=0.001,\ m_n=200+n$ (Algo 4); and $\gamma_n=0.05/\sqrt{n}$ and $m_n=270+\lceil\sqrt{n}\rceil$ (Algo 5).

Results

Figure: [left] The support of the sparse vector β_{∞} obtained by Algo 1 to Algo 5; for comparison, the support of β_{true} is on the bottom row. [right] Relative error along one path of each algorithm as a function of the total number of Monte Carlo samples.

Results

Figure: The sensitivity Sen_n [left] and the precision $Prec_n$ [right] along a path, versus the total number of Monte Carlo samples up to time n

Bibliography I