Supervised Machine Learning Smooth convex optimization Non-smooth convex optimization Stochastic approximation Proximal methods Applications

Stochastic Approximation

Francis Bach, Aymeric Dieuleveut, Alain Durmus, Eric Moulines

Ecole Polytechnique, Centre de Mathematiques Appliquees

July 20, 2021

Supervised Machine Learning Smooth convex optimization Non-smooth convex optimization Stochastic approximation Proximal methods Applications

Context

Machine learning for "big data"

- Large-scale machine learning: large d, large n
 - d: dimension of each observation (input)
 - \blacksquare n: number of observations
- Examples: computer vision, bioinformatics, advertising
- Ideal running-time complexity: O(dn)

Context

Machine learning for "big data"

- Large-scale machine learning: large d, large n
 - d: dimension of each observation (input)
 - \blacksquare n: number of observations
- Examples: computer vision, bioinformatics, advertising
- Ideal running-time complexity: O(dn)
- Going back to simple methods
 - Stochastic gradient methods (Robbins, Monro, 1951)

Context

Machine learning for "big data"

- Large-scale machine learning: large d, large n
 - d: dimension of each observation (input)
 - \blacksquare n: number of observations
- Examples: computer vision, bioinformatics, advertising
- Ideal running-time complexity: O(dn)
- Going back to simple methods
 - Stochastic gradient methods (Robbins, Monro, 1951)
 - Mixing statistics and optimization

Applications

Set-up Convex functions: basic ideas Empirical risk minimization: convergence rates

- 1 Supervised Machine Learning
- 2 Smooth convex optimization
- 3 Non-smooth convex optimization
- 4 Stochastic approximation
- 5 Proximal methods
- 6 Applications

Proximal methods Applications Set-up

Convex functions: basic ideas

Empirical risk minimization: convergence rates

1 Supervised Machine Learning

- Set-up
- Convex functions: basic ideas
- Empirical risk minimization: convergence rates
- 2 Smooth convex optimization
 - Gradient descent
 - Accelerated gradient methods
- 3 Non-smooth convex optimization
- 4 Stochastic approximation
 - An introduction to stochastic approximation
 - Smooth strongly convex case
 - Stochastic subgradient descent/method
- 5 Proximal methods
 - Proximal operator
 - Proximal gradient algorithm
 - Stochastic proximal gradient
- 6 Applications
 - Network structure estimation
 - High-dimensional logistic regression with random effect

 → ✓

 → →

Proximal methods

Applications

Set-up

Supervised machine learning

- Data: n observations $(X_i, Y_i) \in \mathcal{X} \times \mathcal{Y}$, i = 1, ..., n, i.i.d.
- Prediction as a linear function $\langle \theta, \Phi(x) \rangle$ of features $\Phi(x) \in \mathbb{R}^d$
- lacktriangle (regularized) empirical risk minimization: find $\hat{ heta}$ solution of

$$\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n \ell(Y_i, \langle \theta, \Phi(X_i) \rangle) \quad + \quad \mu \Omega(\theta)$$

convex data fitting term + regularizer

Non-smooth convex optimization Stochastic approximation Proximal methods Applications Set-up

Convex functions: basic ideas Empirical risk minimization: convergence rates

Usual losses

- Regression: $y \in \mathbb{R}$, prediction $\phi_{\theta}(x) = \langle \theta, \Phi(x) \rangle$
 - quadratic loss $\ell(y,\langle\theta,\Phi(x)\rangle)=\frac{1}{2}(y-\langle\theta,\Phi(x)\rangle)^2$

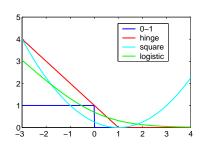
Non-smooth convex optimization
Stochastic approximation
Proximal methods
Applications

Usual losses

- Regression: $y \in \mathbb{R}$, prediction $\phi_{\theta}(x) = \langle \theta, \Phi(x) \rangle$
 - quadratic loss $\ell(y, \langle \theta, \Phi(x) \rangle) = \frac{1}{2} (y \langle \theta, \Phi(x) \rangle)^2$
- Classification: $y \in \{-1, 1\}$, prediction $\phi_{\theta}(x) = \text{sign}(\langle \theta, \Phi(x) \rangle)$
 - $0-1 \text{ loss: } \ell(y,\langle\theta,\Phi(x)\rangle)=\mathbf{1}_{\{y\cdot\langle\theta,\Phi(x)\rangle<0\}}.$
 - convex losses

Proximal methods
Applications

Convex loss



Support vector machine (hinge loss)

$$\ell(Y, \langle \theta, \Phi(x) \rangle) = \max\{1 - Y \langle \theta, \Phi(x) \rangle, 0\}$$

Logistic regression:

$$\ell(Y, \langle \theta, \Phi(x) \rangle) = \log(1 + \exp(-Y \langle \theta, \Phi(x) \rangle))$$

■ Least-squares regression

$$\ell(Y, \langle \theta, \Phi(x) \rangle) = \frac{1}{2} (Y - \langle \theta, \Phi(x) \rangle)^2$$

Non-smooth convex optimization Stochastic approximation Proximal methods Applications Set-up

Convex functions: basic ideas Empirical risk minimization: convergence rates

Usual regularizers

- Main goal: avoid overfitting
- (squared) Euclidean norm: $\|\theta\|_2^2 = \sum_{j=1}^d |\theta_j|^2$
- Sparsity-inducing norms
 - LASSO : ℓ_1 -norm $\|\theta\|_1 = \sum_{j=1}^d |\theta_j|$
 - Perform model selection as well as regularization
 - Non-smooth optimization and structured sparsity
 - See, e.g., Bach, Jenatton, Mairal and Obozinski (2012a,b)

"old style" Supervised learning

- Data: n observations $(X_i, Y_i) \in \mathcal{X} \times \mathcal{Y}$, i = 1, ..., n, i.i.d.
- Prediction as a linear function $\langle \theta, \Phi(x) \rangle$ of features $\Phi(x) \in \mathbb{R}^d$
- lacktriangle (regularized) empirical risk minimization: find $\hat{ heta}$ solution of

$$\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n \ell \big(Y_i, \langle \theta, \Phi(X_i) \rangle \big) \text{ such that } \Omega(\theta) \leq D$$

convex data fitting term + constraint

Proximal methods

"old style" Supervised learning

- Data: n observations $(X_i, Y_i) \in \mathcal{X} \times \mathcal{Y}, i = 1, ..., n$, i.i.d.
- Prediction as a linear function $\langle \theta, \Phi(x) \rangle$ of features $\Phi(x) \in \mathbb{R}^d$
- (regularized) empirical risk minimization: find $\hat{\theta}$ solution of

$$\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n \ell \big(Y_i, \langle \theta, \Phi(X_i) \rangle \big) \text{ such that } \Omega(\theta) \leq D$$

convex data fitting term + constraint

$$\blacksquare$$
 Empirical risk: $\hat{f}(\theta) = n^{-1} \sum_{i=1}^n \ell(Y_i, \langle \theta, \Phi(X_i) \rangle)$

Proximal methods

"old style" Supervised learning

- Data: n observations $(X_i, Y_i) \in \mathcal{X} \times \mathcal{Y}, i = 1, ..., n$, i.i.d.
- Prediction as a linear function $\langle \theta, \Phi(x) \rangle$ of features $\Phi(x) \in \mathbb{R}^d$
- (regularized) empirical risk minimization: find $\hat{\theta}$ solution of

$$\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n \ell \big(Y_i, \langle \theta, \Phi(X_i) \rangle \big) \text{ such that } \Omega(\theta) \leq D$$

convex data fitting term + constraint

- Empirical risk: $\hat{f}(\theta) = n^{-1} \sum_{i=1}^{n} \ell(Y_i, \langle \theta, \Phi(X_i) \rangle)$
- **Expected risk:** $f(\theta) = \mathbb{E}[\ell(Y, \langle \theta, \Phi(X) \rangle)]$.

General assumptions

- Data: n observations $(X_i, Y_i) \in \mathcal{X} \times \mathcal{Y}$, i = 1, ..., n, i.i.d.
- Bounded features $\Phi(x) \in \mathbb{R}^d$: $\|\Phi(x)\|_2 \le R$
- Empirical risk $\hat{f}(\theta) = n^{-1} \sum_{i=1}^{n} \ell(Y_i, \langle \theta, \Phi(X_i) \rangle)$
- $\blacksquare \text{ Expected risk } f(\theta) = \mathbb{E}[\ell(Y, \langle \theta, \Phi(X) \rangle)]$
- Loss for a single observation: $f_i(\theta) = \ell(Y_i, \langle \theta, \Phi(X_i) \rangle)$. For all i, $f(\theta) = \mathbb{E}[f_i(\theta)]$
- Properties of f_i, f, \hat{f}
 - lacksquare Convex on \mathbb{R}^d
 - Additional regularity assumptions: Lipschitz-continuity, smoothness and strong convexity

Proximal methods Applications Set-up

Convex functions: basic ideas

Empirical risk minimization: convergence rates

1 Supervised Machine Learning

Set-up

Convex functions: basic ideas

Empirical risk minimization: convergence rates

Gradient descent

Accelerated gradient methods

An introduction to stochastic approximation

Smooth strongly convex case

Stochastic subgradient descent/method

Proximal operator

Proximal gradient algorithm

Stochastic proximal gradient

6 Applications

Network structure estimation

■ High-dimensional logistic regression with random effect = > < = > Francis Bach, Aymeric Dieuleveut, Alain Durmus. Eric Moulines

Lipschitz continuity

■ Bounded gradients of g (\Leftrightarrow Lipschitz-continuity): the function g if convex, differentiable and has gradients uniformly bounded by B on the ball of center 0 and radius D: for all $\theta \in \mathbb{R}^d$,

$$\|\theta\|_2 \le D \Rightarrow \|\nabla g(\theta)\|_2 \le B$$

$$\Leftrightarrow$$

$$|g(\theta) - g(\theta')| \le B\|\theta - \theta'\|_2$$

- Machine learning
 - $g(\theta) = n^{-1} \sum_{i=1}^{n} \ell(Y_i, \langle \theta, \Phi(X_i) \rangle)$
 - G-Lipschitz loss and R-bounded data: B = GR

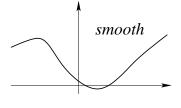
Applications

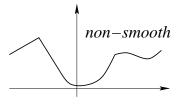
Smoothness

■ A function $g: \mathbb{R}^d \to \mathbb{R}$ is L-smooth if and only if it is differentiable and its gradient is L-Lipschitz: for all $\theta, \theta' \in \mathbb{R}^d$;

$$\|\nabla g(\theta_1) - \nabla g(\theta')\|_2 \le L\|\theta - \theta'\|_2$$

■ If g is twice differentiable, for all $\theta \in \mathbb{R}^d$, $\nabla^{\otimes 2}g(\theta) \preccurlyeq L \cdot \mathrm{Id}$





Proximal methods

Smoothness

■ A function $g: \mathbb{R}^d \to \mathbb{R}$ is L-smooth if and only if it is differentiable and its gradient is L-Lipschitz: for all $\theta, \theta' \in \mathbb{R}^d$;

$$\|\nabla g(\theta_1) - \nabla g(\theta')\|_2 \le L\|\theta - \theta'\|_2$$

■ If g is twice differentiable, for all $\theta \in \mathbb{R}^d$, $\nabla^{\otimes 2} g(\theta) \preccurlyeq L \cdot \operatorname{Id}$ Machine learning

$$g(\theta) = n^{-1} \sum_{i=1}^{n} \ell(Y_i, \langle \theta, \Phi(X_i) \rangle)$$

■ Hessian ≈ covariance matrix

$$n^{-1} \sum_{i=1}^{n} \Phi(X_i) \Phi^{\top}(X_i) \ddot{\ell}(Y_i, \langle \theta, \Phi(X_i) \rangle)$$

■ $L_{\rm loss}$ -smooth loss and R-bounded data: $L = L_{\rm loss} R^2$

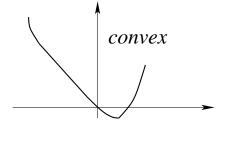
Applications

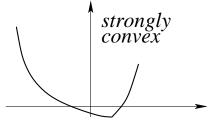
Strong convexity

■ A function $g: \mathbb{R}^d \to \mathbb{R}$ is μ -strongly convex if and only if, for all $\theta, \theta' \in \mathbb{R}^d$,

$$g(\theta) \geqslant g(\theta') + \langle \nabla g(\theta'), \theta - \theta' \rangle + \frac{\mu}{2} \|\theta - \theta'\|_2^2$$

■ If g is twice differentiable: for all $\theta \in \mathbb{R}^d$, $\nabla^2 g(\theta) \succcurlyeq \mu \cdot \mathrm{Id}$





Strong convexity

■ A function $q: \mathbb{R}^d \to \mathbb{R}$ is μ -strongly convex if and only if, for all $\theta, \theta' \in \mathbb{R}^d$

$$g(\theta) \geqslant g(\theta') + \langle \nabla g(\theta'), \theta - \theta' \rangle + \frac{\mu}{2} \|\theta - \theta'\|_2^2$$

■ If g is twice differentiable: for all $\theta \in \mathbb{R}^d$, $\nabla^2 q(\theta) \succcurlyeq \mu \cdot \mathrm{Id}$

Machine learning

$$g(\theta) = n^{-1} \sum_{i=1}^{n} \ell(Y_i, \langle \theta, \Phi(X_i) \rangle)$$

■ Hessian ≈ covariance matrix

$$n^{-1} \sum_{i=1}^{n} \Phi(X_i) \Phi(X_i)^{\top} \ddot{\ell}(Y_i, \langle \theta, \Phi(X_i) \rangle)$$

Data with invertible covariance matrix

Empirical risk minimization: convergence rates

Strong convexity

■ A function $q: \mathbb{R}^d \to \mathbb{R}$ is μ -strongly convex if and only if, for all $\theta, \theta' \in \mathbb{R}^d$

$$g(\theta) \geqslant g(\theta') + \langle \nabla g(\theta'), \theta - \theta' \rangle + \frac{\mu}{2} \|\theta - \theta'\|_2^2$$

■ If q is twice differentiable: for all $\theta \in \mathbb{R}^d$, $\nabla^2 q(\theta) \geq \mu \cdot \text{Id}$

Machine learning

$$g(\theta) = n^{-1} \sum_{i=1}^{n} \ell(Y_i, \langle \theta, \Phi(X_i) \rangle)$$

■ Hessian ≈ covariance matrix

$$n^{-1} \sum_{i=1}^{n} \Phi(X_i) \Phi(X_i)^{\top} \ddot{\ell}(Y_i, \langle \theta, \Phi(X_i) \rangle)$$

Data with invertible covariance matrix

Adding regularization by $\frac{\mu}{2}\|\theta\|^2$ [! creates a bias (controlled by μ)]

Smoothness/convexity assumptions: summary

■ Bounded gradients of g (Lipschitz-continuity): the function g if convex, differentiable and has gradients uniformly bounded by B on the ball of center 0 and radius D:

for all
$$\theta \in \mathbb{R}^d$$
, $\|\theta\|_2 \le D \Rightarrow \|\nabla g(\theta)\|_2 \le B$

■ Smoothness of g: the function g is convex, differentiable with L-Lipschitz-continuous gradient ∇g :

for all
$$\theta, \theta' \in \mathbb{R}^d$$
, $\|\nabla g(\theta) - \nabla g(\theta')\|_2 \le L\|\theta - \theta'\|_2$

Strong convexity of g: The function g is strongly convex with respect to the norm $\|\cdot\|_2$, with convexity constant $\mu > 0$: for all $\theta, \theta' \in \mathbb{R}^d$,

$$g(\theta) \ge g(\theta') + \langle \nabla g(\theta'), \theta - \theta' \rangle + \frac{\mu}{2} \|\theta - \theta'\|_2^2$$

Proximal methods

Empirical risk minimization: rationale

- The expected risk $f(\theta) = \mathbb{E}[\ell(Y, \langle \theta, X, \rangle)]$ is not tractable.
- \blacksquare Only the empirical risk $\hat{f}(\theta) = n^{-1} \sum_{i=1}^n [\ell(Y_i, \langle \theta, X_i, \rangle)]$ is.
- Minimizing \hat{f} instead of f?
- A simple observation:

$$f(\hat{\theta}) - \min_{\theta \in \Theta} f(\theta) \leq \sup_{\theta \in \Theta} \{\hat{f}(\theta) - f(\theta)\} + \sup_{\theta \in \Theta} \{f(\theta) - \hat{f}(\theta)\}$$

■ Can we have a bound on $\sup_{\theta \in \Theta} |\hat{f}(\theta) - f(\theta)|$?

Proximal methods

Motivation from least-squares

■ For least-squares, we have $\ell(y, \langle \theta, \Phi(x) \rangle) = \frac{1}{2}(y - \langle \theta, \Phi(x) \rangle)^2$, and

$$f(\theta) - \hat{f}(\theta) = \frac{1}{2} \theta^{\top} \left(\frac{1}{n} \sum_{i=1}^{n} \Phi(X_i) \Phi(X_i)^{\top} - \mathbb{E}\Phi(X) \Phi(X)^{\top} \right) \theta$$

$$- \theta^{\top} \left(\frac{1}{n} \sum_{i=1}^{n} Y_i \Phi(X_i) - \mathbb{E}Y \Phi(X) \right) + \frac{1}{2} \left(\frac{1}{n} \sum_{i=1}^{n} Y_i^2 - \mathbb{E}Y^2 \right)$$

$$\sup_{\|\theta\|_2 \le D} |f(\theta) - \hat{f}(\theta)| \le \frac{D^2}{2} \left\| \frac{1}{n} \sum_{i=1}^{n} \Phi(X_i) \Phi(X_i)^{\top} - \mathbb{E}\Phi(X) \Phi(X)^{\top} \right\|_{\text{op}}$$

$$+ D \left\| \frac{1}{n} \sum_{i=1}^{n} Y_i \Phi(X_i) - \mathbb{E}Y \Phi(X) \right\|_2 + \frac{1}{2} \left| \frac{1}{n} \sum_{i=1}^{n} Y_i^2 - \mathbb{E}Y^2 \right|,$$

$$\sup_{\|f(\theta) - \hat{f}(\theta)\| \le O(1/\sqrt{n}) \text{ with high probability}$$

 $\|\theta\|_2 < D$

Proximal methods Applications Set-up

Convex functions: basic ideas

Empirical risk minimization: convergence rates

1 Supervised Machine Learning

Set-up

Convex functions: basic ideas

Empirical risk minimization: convergence rates

Gradient descent

Accelerated gradient methods

An introduction to stochastic approximation

Smooth strongly convex case

Stochastic subgradient descent/method

Proximal operator

Proximal gradient algorithm

Stochastic proximal gradient

6 Applications

Network structure estimation

■ High-dimensional logistic regression with random effect = > < = > Francis Bach, Aymeric Dieuleveut, Alain Durmus. Eric Moulines

Set-up

Convex functions: basic ideas

Empirical risk minimization: convergence rates

Slow rate for supervised learning

Assumptions (f is the expected risk, \hat{f} the empirical risk)

- "Linear" predictors: $\phi_{\theta}(x) = \langle \theta, \Phi(x) \rangle$, with $\|\Phi(x)\|_2 \leq R$
- G-Lipschitz loss: $f(\theta) = \ell(Y, \langle \theta, \Phi(X) \rangle)$ is GR-Lipschitz on $\Theta = \{\|\theta\|_2 \leq D\}$
- No convexity assumption

Assumptions (f is the expected risk, \hat{f} the empirical risk)

Proximal methods

- $\Omega(\theta) = \|\theta\|_2$ (Euclidean norm)
- "Linear" predictors: $\phi_{\theta}(x) = \langle \theta, \Phi(x) \rangle$, with $\|\Phi(x)\|_2 \leq R$
- G-Lipschitz loss: $f(\theta) = \ell(Y, \langle \theta, \Phi(X) \rangle)$ is GR-Lipschitz on $\Theta = \{\|\theta\|_2 \leq D\}$
- No convexity assumption

High-probability bounds: With probability greater than $1 - \delta$,

$$\sup_{\theta \in \Theta} |\hat{f}(\theta) - f(\theta)| \le \frac{\sup |\ell(Y,0)| + GRD}{\sqrt{n}} \left[2 + \sqrt{2\log \frac{2}{\delta}} \right]$$

Proximal methods Applications

Slow rate for supervised learning

Assumptions (f is the expected risk, \hat{f} the empirical risk)

- "Linear" predictors: $\phi_{\theta}(x) = \langle \theta, \Phi(x) \rangle$, with $\|\Phi(x)\|_2 \leq R$
- G-Lipschitz loss: $f(\theta) = \ell(Y, \langle \theta, \Phi(X) \rangle)$ is GR-Lipschitz on $\Theta = \{\|\theta\|_2 \leq D\}$
- No convexity assumption

Risk bounds

$$\mathbb{E}\big[\sup_{\theta\in\Theta}|\hat{f}(\theta)-f(\theta)|\big]\leq \frac{4\sup|\ell(Y,0)|+4GRD}{\sqrt{n}}$$

Slow rate for supervised learning

Assumptions (f is the expected risk, \hat{f} the empirical risk)

- "Linear" predictors: $\phi_{\theta}(x) = \langle \theta, \Phi(x) \rangle$, with $\|\Phi(x)\|_2 \leq R$
- G-Lipschitz loss: $f(\theta) = \ell(Y, \langle \theta, \Phi(X) \rangle)$ is GR-Lipschitz on $\Theta = \{\|\theta\|_2 \leq D\}$
- No convexity assumption

Method

- Tools: Symmetrization, Rademacher complexity (see Boucheron et al., 2012), McDiarmid inequality.
- Lipschitz functions ⇒ slow rate

Set-up

Convex functions: basic ideas

Empirical risk minimization: convergence rates

Empirical Risk vs Fluctuation

■ We have, with probability $1 - \delta$, for all $\theta \in \Theta$:

$$f(\hat{\theta}) - \min_{\theta \in \Theta} f(\theta) \le \sup_{\theta \in \Theta} \{\hat{f}(\theta) - f(\theta)\} + \sup_{\theta \in \Theta} \{f(\theta) - \hat{f}(\theta)\}$$
$$\le \frac{2}{\sqrt{n}} (\ell_0 + GRD)(4 + \sqrt{2\log \frac{1}{\delta}})$$

• Only need to optimize with precision $\approx 1/\sqrt{n}$

Slow rate for supervised learning

Assumptions (f is the expected risk, \hat{f} the empirical risk)

- $\square \Omega(\theta) = \|\theta\|_2$ (Euclidean norm)
- "Linear" predictors: $\phi_{\theta}(x) = \langle \theta, \Phi(x) \rangle$, with $\|\Phi(x)\|_2 \leq R$ a.s.
- G-Lipschitz loss: f and \hat{f} are GR-Lipschitz on $\Theta = \{\|\theta\|_2 \leq D\}$
- No assumptions regarding convexity
- With probability greater than $1-\delta$

$$\sup_{\theta \in \Theta} |\hat{f}(\theta) - f(\theta)| \le \frac{\ell_0 + GRD}{\sqrt{n}} \left[2 + \sqrt{2\log \frac{2}{\delta}} \right]$$

- Expected estimation error: $\mathbb{E}\big[\sup_{\theta \in \Theta} |\hat{f}(\theta) f(\theta)|\big] \leq \frac{4\ell_0 + 4GRD}{\sqrt{n}}$
- Under other conditions on the model, can we improve the rate $1/\sqrt{n}$?

Set-up

Set-up

Convex functions: basic ideas Empirical risk minimization: convergence rates

Non-smooth convex optimization Stochastic approximation Proximal methods Applications

Motivation from mean estimation

Estimator

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} Z_i = \arg\min_{\theta \in \mathbb{R}} \hat{f}(\theta)$$

where

$$\hat{f}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (Z_i - \theta)^2 \quad f(\theta) = \mathbb{E}\left[(Z - \theta)^2 \right]$$

Slow rate

$$f(\theta) = \frac{1}{2}(\theta - \mathbb{E}[Z])^2 + \frac{1}{2}\operatorname{var}(Z) = \hat{f}(\theta) + O(n^{-1/2})$$

Non-smooth convex optimization
Stochastic approximation
Proximal methods

Set-up
Convex functions: basic ideas
Empirical risk minimization: convergence rates

Motivation from mean estimation

Estimator

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} Z_i = \arg\min_{\theta \in \mathbb{R}} \hat{f}(\theta)$$

where

$$\hat{f}(\theta) = \frac{1}{2n} \sum_{i=1}^{n} (Z_i - \theta)^2 \quad f(\theta) = \mathbb{E}\left[(Z - \theta)^2 \right]$$

Fast rate

$$f(\hat{\theta}) - f(\mathbb{E}[Z]) = \frac{1}{2}(\hat{\theta} - \mathbb{E}[Z])^2$$

$$\mathbb{E}[f(\hat{\theta}) - f(\mathbb{E}[Z])] = \frac{1}{2}\mathbb{E}\left(\frac{1}{n}\sum_{i=1}^{n} Z_i - \mathbb{E}[Z]\right)^2 = \frac{1}{2n}\operatorname{var}(Z)$$

Bound only at $\hat{\theta}$ + strong convexity

Fast rate for supervised learning

Assumptions (f is the expected risk, \hat{f} the empirical risk)

■ Same as before (bounded features, Lipschitz loss) + strong convexity For any a > 0, with probability greater than $1 - \delta$, for all $\theta \in \mathbb{R}^d$,

$$f(\hat{\theta}) - \min_{\eta \in \mathbb{R}^d} f(\eta) \le \frac{8(1+a^{-1})G^2R^2(32 + \log(\delta^{-1}))}{\mu n}$$

- Results from (Sridharan et al., 2008), (Boucheron et al., 2012).
- Strongly convex functions ⇒ fast rate

Set-up
Convex functions: basic ideas
Empirical risk minimization: convergence rates

Minimization of the expected and empirical risk

- Conclusion: $\hat{\theta} \in \arg\min_{\theta \in \Theta} \hat{f}(\theta)$ is a good proxy as a minimizer of f as n is large.
- **Question**: How to find $\hat{\theta}$?
- Answer: gradient descent algorithms!
- Recall \hat{f} is assumed to be convex.
- Very efficient methods from convex optimization are available.

- 1 Supervised Machine Learning
- 2 Smooth convex optimization
- 3 Non-smooth convex optimization
- 4 Stochastic approximation
- 5 Proximal methods
- 6 Applications

Complexity results in convex optimisation

- **Assumption**: g convex on \mathbb{R}^d
- Classical generic algorithms
 - (sub)gradient method/descent
 - Accelerated gradient descent
 - Newton method
- Key additional properties of g
 - Lipschitz continuity, smoothness or strong convexity
- Key insight from (Bottou and Bousquet, 2008)
 - In machine learning, no need to optimize below estimation error
- Key references: (Nesterov, 2004), (Bubeck, 2015).

- Supervised Machine Learning
 - Set-up
 - Convex functions: basic ideas
 - Empirical risk minimization: convergence rates
- 2 Smooth convex optimization
 - Gradient descent
 - Accelerated gradient methods
- 3 Non-smooth convex optimization
- 4 Stochastic approximation
 - An introduction to stochastic approximation
 - Smooth strongly convex case
 - Stochastic subgradient descent/method
- 5 Proximal methods
 - Proximal operator
 - Proximal gradient algorithm
 - Stochastic proximal gradient
- 6 Applications
 - Network structure estimation
 - High-dimensional logistic regression with random effect > ✓ > ✓

(smooth) gradient descent - strong convexity

- Assumptions
 - \blacksquare g convex with L-Lipschitz gradient
 - lacksquare g μ -strongly convex
- Algorithm:

$$\theta_t = \theta_{t-1} - \frac{1}{L} \nabla g(\theta_{t-1})$$

Bound:

$$g(\theta_t) - g(\theta_*) \le (1 - \mu/L)^t \{g(\theta_0) - g(\theta_*)\}$$

(smooth) gradient descent

- Assumptions
 - g convex with L-Lipschitz gradient
 - Minimum attained at θ_*
- Algorithm:

$$\theta_t = \theta_{t-1} - \frac{1}{L} \nabla g(\theta_{t-1})$$

Bound:

$$g(\theta_t) - g(\theta_*) \le \frac{2L\|\theta_0 - \theta_*\|^2}{t+4}$$

Not best possible convergence rate

Key properties of smooth convex functions

 $g: \mathbb{R}^d \to \mathbb{R}$ a convex L-smooth function: for all $\theta, \eta \in \mathbb{R}^d$,

$$\|\nabla g(\theta) - \nabla g(\eta)\| \le L\|\theta - \eta\|$$

Quadratic upper bound

$$0 \le g(\theta) - g(\eta) - \langle \nabla g(\eta), \theta - \eta \rangle \le (L/2) \|\theta - \eta\|^2$$

Co-coercivity

$$\frac{1}{L} \|\nabla g(\theta) - \nabla g(\eta)\|^2 \le \langle \nabla g(\theta) - \nabla g(\eta), \theta - \eta \rangle$$

$$\frac{1}{L} \|\nabla g(\theta) - \nabla g(\eta)\|^2 \leq \langle \nabla g(\theta) - \nabla g(\eta), \theta - \eta \rangle$$

Set $\eta \in \mathbb{R}^d$ and consider the auxiliary function

$$\theta \mapsto h(\theta) = g(\theta) - \langle \nabla g(\eta), \theta \rangle \quad \nabla h(\theta) = \nabla g(\theta) - \nabla g(\eta)$$

Convex, global minimum at η and L-smooth. Using the quadratic upper bound for h at θ , we get for any $\theta \in \mathbb{R}^d$,

$$h(\eta) \le h\left(\theta - \frac{1}{L}\nabla h(\theta)\right) \le h(\theta) - \frac{1}{L}\|\nabla h(\theta)\|^2 + \frac{1}{2L}\|\nabla h(\theta)\|^2$$
$$\le h(\theta) - \frac{1}{2L}\|\nabla h(\theta)\|^2$$

$$\frac{1}{L} \|\nabla g(\theta) - \nabla g(\eta)\|^2 \le \langle \nabla g(\theta) - \nabla g(\eta), \theta - \eta \rangle$$

Partial conclusion:

$$h(\eta) \le h(\theta) - \frac{1}{2L} \|\nabla h(\theta)\|^2$$

with
$$h(\theta) = g(\theta) - \langle \nabla g(\eta), \theta \rangle$$
.

$$g(\eta) - \langle \nabla g(\eta), \eta \rangle \le g(\theta) - \langle \nabla g(\eta), \theta \rangle - \frac{1}{2L} \|\nabla g(\theta) - \nabla g(\eta)\|^2$$

$$\frac{1}{L} \|\nabla g(\theta) - \nabla g(\eta)\|^2 \le \langle \nabla g(\theta) - \nabla g(\eta), \theta - \eta \rangle$$

$$g(\eta) - \langle \nabla g(\eta), \eta \rangle \le g(\theta) - \langle \nabla g(\eta), \theta \rangle - \frac{1}{2L} \|\nabla g(\theta) - \nabla g(\eta)\|^2$$

Conclusion:

$$g(\theta) \ge g(\eta) + \langle \nabla g(\eta), \theta - \eta \rangle + \frac{1}{2L} \|\nabla g(\theta) - \nabla g(\eta)\|^2$$
.

Adding

$$g(\theta) \ge g(\eta) + \langle \nabla g(\eta), \theta - \eta \rangle + \frac{1}{2L} \|\nabla g(\theta) - \nabla g(\eta)\|^2$$

$$g(\eta) \ge g(\theta) + \langle \nabla g(\theta), \eta - \theta \rangle + \frac{1}{2L} \|\nabla g(\theta) - \nabla g(\eta)\|^2$$

we obtain

$$\frac{1}{L} \|\nabla g(\theta) - \nabla g(\eta)\|^2 \le \langle \nabla g(\theta) - \nabla g(\eta), \theta - \eta \rangle$$

Smooth Strongly convex functions

g is L-smooth and μ -strongly convex.

- Two key properties:
 - Strong convexity: $\langle \nabla g(\theta) \nabla g(\eta), \theta \eta \rangle \ge \mu \|\theta \eta\|^2$
 - Smoothness: $\|\nabla g(\theta) \nabla g(\eta)\| \ge L\|\theta \eta\|$
- The value $Q_g = L/\mu$ is the condition number of g.

Smooth Strongly convex functions

Strong convexity optimality certificate

$$g(\theta) \le g(\eta) + \langle \nabla g(\eta), (\theta - \eta) \rangle + \frac{1}{2\mu} \|\nabla g(\theta) - \nabla g(\eta)\|^2$$
.

Strong co-coercivity

$$\langle \nabla g(\theta) - \nabla g(\eta), \theta - \eta \rangle \ge \frac{\mu L}{\mu + L} \|\theta - \eta\|^2 + \frac{1}{\mu + L} \|\nabla g(\theta) - \nabla g(\eta)\|^2.$$

Proof of the upper bound for strongly convex functions

$$g(\theta) \le g(\eta) + \langle \nabla g(\eta), \theta - \eta \rangle + \frac{1}{2\mu} \|\nabla g(\theta) - \nabla g(\eta)\|^2$$

- $h: \theta \mapsto h(\theta) = g(\theta) \langle \nabla g(\eta), \theta \rangle$ is strongly convex with a global minimum at η .
- Since h is strongly convex, for all $\theta, \zeta \in \mathbb{R}^d$, we get

$$h(\zeta) \ge h(\theta) + \langle \nabla h(\theta), \zeta - \theta \rangle + \frac{\mu}{2} ||\zeta - \theta||^2$$
.

■ Hence, for all $\theta \in \mathbb{R}^d$,

$$h(\eta) = \min_{\zeta} h(\zeta) \ge \min_{\zeta} \left\{ h(\theta) + \langle \nabla h(\theta), \zeta - \theta \rangle + \frac{\mu}{2} \|\zeta - \theta\|^2 \right\}$$
$$\ge h(\theta) - \frac{1}{2\mu} \|\nabla h(\theta)\|^2$$

Proof of the upper bound for strongly convex functions

$$g(\theta) \le g(\eta) + \langle \nabla g(\eta), \theta - \eta \rangle + \frac{1}{2\mu} \|\nabla g(\theta) - \nabla g(\eta)\|^2$$

Optimality certificate: taking $\eta = \theta_*$ and using that

$$\nabla g(\theta_*) = 0$$

we get that for all $\theta \in \mathbb{R}^d$,

$$g(\theta) - g(\theta_*) \le \frac{1}{2\mu} \|\nabla g(\theta)\|^2$$

Proof of strong co-coercivity

Set
$$h(\theta) = g(\theta) - (\mu/2) \|\theta\|^2$$
. We get

$$\langle \nabla h(\theta) - \nabla h(\eta), \theta - \eta \rangle = \langle \nabla g(\theta) - \nabla g(\eta), \theta - \eta \rangle - \mu \|\theta - \eta\|^2$$

$$\leq (L - \mu) \|\theta - \eta\|^2$$

Hence, h is $L - \mu$ -smooth. The co-coercivity implies

$$\langle h(\theta) - h(\eta), \theta - \eta \rangle \ge \frac{1}{L - \mu} \|\theta - \eta\|^2$$
.

which yields the result.

Convergence proof - strongly convex functions

Iteration $\theta_t = \theta_{t-1} - \gamma \nabla g(\theta_{t-1})$ with $\gamma = 1/L.$ Quadratic Upper Bound:

$$\begin{split} g(\theta_t) &= g\left(\theta_{t-1} - \gamma \nabla g(\theta_{t-1})\right) \\ &\leq g(\theta_{t-1}) + \langle \nabla g(\theta_{t-1}), -\gamma \nabla g(\theta_{t-1}) \rangle + \frac{L}{2} \| - \gamma \nabla g(\theta_{t-1}) \|^2 \\ &= g(\theta_{t-1}) - \gamma (1 - \gamma L/2) \| \nabla g(\theta_{t-1}) \|^2 = g(\theta_{t-1}) - \frac{1}{2L} \| \nabla g(\theta_{t-1}) \|^2 \end{split}$$

Strong convexity optimality certificate

$$g(\theta_t) \le g(\theta_{t-1}) - \frac{\mu}{L} \{ g(\theta_{t-1}) - g(\theta_*) \}$$

Convergence proof - strongly convex functions

Iteration
$$\theta_t = \theta_{t-1} - \gamma \nabla g(\theta_{t-1})$$
 with $\gamma = 1/L$.
$$g(\theta_t) \leq g(\theta_{t-1}) - \frac{\mu}{L} \{g(\theta_{t-1}) - g(\theta_*)\}$$

$$g(\theta_t) - g(\theta_*) \leq (1 - \mu/L) \{g(\theta_{t-1}) - g(\theta_*)\}$$

which implies that

$$g(\theta_t) - g(\theta_*) \le (1 - \mu/L)^t \{g(\theta_0) - g(\theta_*)\}$$

Strongly convex functions: parameter convergence

g L-smooth and μ -strongly convex. Set $r_t^2 = \|\theta_t - \theta^*\|$. We get

$$\begin{aligned} r_{t+1}^2 &= \left\| \theta_t - \theta^* - \gamma \nabla g \left(\theta_t \right) \right\|^2 \\ &= r_t^2 - 2\gamma \left\langle \nabla g \left(\theta_t \right), \theta_t - \theta^* \right\rangle + \gamma^2 \left\| \nabla g \left(\theta_t \right) \right\|^2 \\ &\leq \left(1 - \frac{2\gamma \mu L}{\mu + L} \right) r_t^2 + \gamma \left(\gamma - \frac{2}{\mu + L} \right) \left\| \nabla g \left(\theta_t \right) \right\|^2 \end{aligned}$$

Taking $0 < \gamma \le \frac{2}{\mu + L}$, we finally get

$$r_{t+1}^2 \le \left(1 - \frac{2\gamma\mu L}{\mu + L}\right)r_t^2$$

Strongly convex functions: parameter convergence

If
$$\gamma = \frac{2}{\mu + L}$$
, then

$$\|\theta_t - \theta^*\| \le \left(\frac{Q_g - 1}{Q_g + 1}\right)^t \|\theta_0 - \theta^*\|$$

$$g(\theta_t) - g^* \le \frac{L}{2} \left(\frac{Q_g - 1}{Q_g + 1}\right)^{2t} \|\theta_0 - \theta^*\|^2$$

Iteration $\theta_t = \theta_{t-1} - \gamma \nabla g(\theta_{t-1})$ with $\gamma = 1/L$.

Property: The distance to the optimum θ_* decreases!

$$\begin{aligned} \|\theta_t - \theta_*\|^2 &= \|\theta_{t-1} - \theta_* - \gamma \nabla g(\theta_{t-1})\|^2 \\ &= \|\theta_{t-1} - \theta_*\|^2 + \gamma^2 \|\nabla g(\theta_{t-1})\|^2 - 2\gamma \langle \theta_{t-1} - \theta_*, \nabla g(\theta_{t-1}) \rangle \end{aligned}$$

The co-coercivity property implies that

$$\langle \theta_{t-1} - \theta_*, \nabla g(\theta_{t-1}) \rangle \ge (1/L) \|\nabla g(\theta_{t-1})\|^2$$

showing that

$$\|\theta_t - \theta_*\|^2 \le \|\theta_{t-1} - \theta_*\|^2 - \gamma(2/L - \gamma)\|\nabla g(\theta_{t-1})\|^2 \le \|\theta_{t-1} - \theta_*\|^2$$

$$\le \|\theta_0 - \theta_*\|^2$$

Iteration $\theta_t = \theta_{t-1} - \gamma \nabla g(\theta_{t-1})$ with $\gamma = 1/L$.

Quadratic upper bound:

$$g(\theta_t) \le g(\theta_{t-1}) - \frac{1}{2L} \|\nabla g(\theta_{t-1})\|^2$$

Convexity:

$$g(\theta_{t-1}) - g(\theta_*) \leq \left\langle \nabla g(\theta_{t-1}), \theta_{t-1} - \theta_* \right\rangle \leq \left\| \nabla g(\theta_{t-1}) \right\| \left\| \theta_{t-1} - \theta_* \right\|$$

■ Using that $\|\theta_t - \theta_*\| \le \|\theta_0 - \theta_*\|$,

$$g(\theta_t) - g(\theta_*) \le g(\theta_{t-1}) - g(\theta_*) - \frac{1}{2L\|\theta_0 - \theta_*\|^2} \{g(\theta_{t-1}) - g(\theta_*)\}^2$$

Setting

$$\Delta_t = g(\theta_t) - g(\theta_*)$$
 and $\alpha = \frac{1}{2L\|\theta_0 - \theta_*\|^2}$

we have to analyze the convergence of

$$\Delta_t \le \Delta_{t-1} - \alpha \Delta_{t-1}^2$$

Quadratic upper-bound:

$$\Delta_t = g(\theta_t) - g(\theta_*) \le (L/2) \|\theta_t - \theta_*\|^2$$
.

Setting

$$\Delta_t = g(\theta_t) - g(\theta_*) \quad \text{and} \quad \alpha = \frac{1}{2L\|\theta_0 - \theta_*\|^2}$$

we have to analyze the convergence of

$$\Delta_t \le \Delta_{t-1} - \alpha \Delta_{t-1}^2$$

$$\begin{split} \frac{1}{\Delta_{s-1}} &\leq \frac{1}{\Delta_s} - \alpha \frac{\Delta_{s-1}}{\Delta_s} \quad \text{divide by } \Delta_s \Delta_{s-1} \\ \frac{1}{\Delta_{s-1}} &\leq \frac{1}{\Delta_s} - \alpha \quad \text{because } \Delta_s \text{ is decreasing} \end{split}$$

Setting

$$\Delta_t = g(\theta_t) - g(\theta_*) \quad \text{and} \quad \alpha = \frac{1}{2L\|\theta_0 - \theta_*\|^2}$$

we have to analyze the convergence of

$$\Delta_t \le \Delta_{t-1} - \alpha \Delta_{t-1}^2$$

$$\frac{1}{\Delta_0} \leq \frac{1}{\Delta_t} - \alpha t \quad \text{by summing for } s = 1 \text{ to } t$$

$$\Delta_t \le \frac{\Delta_0}{1 + \alpha t \Delta_0} \ .$$

Using that $\alpha = \{2L\|\theta_0 - \theta_*\|^2\}^{-1}$ and $\Delta_0 \leq (L/2)\|\theta_0 - \theta_*\|^2$, yields

$$\Delta_t \le \frac{2L\|\theta_0 - \theta_*\|^2}{t+4}$$

Limits on convergence rate of first-order methods

- First-order method: any iterative algorithm that selects θ_t in $\theta_0 + \operatorname{span}(\nabla g(\theta_0), \dots, \nabla g(\theta_{t-1}))$
- Problem class: convex L-smooth functions with a global minimizer θ_*

Theorem

For every integer $t \leq (n-1)/2$ and every $\theta_0 \in \mathbb{R}^n$ there exist a function g in the problem class such that for any first-order method, we have that

$$g(\theta_t) - g(\theta_*) \ge \frac{3L\|\theta_0 - \theta_*\|^2}{32(t+1)^2}$$

where θ_* is the minimum of the function g.

O(1/t) rate for gradient method might not be optimal!

Consider the "worst function in the world" [Nesterov, 2004]. Set $n \in \mathbb{N}$ and for any $k \in \{1, ..., n\}$, consider the function

$$g_k(\theta) = \frac{L}{8} [(\theta^1)^2 + \sum_{i=1}^{k-1} (\theta^i - \theta^{i+1})^2 + (\theta^k)^2 - 2\theta^1]$$

Fact 1: g_k is convex and L-smooth:

$$\langle \nabla^2 g_k(\theta) s, s \rangle = \frac{L}{4} \left[(s^1)^2 + \sum_{i=1}^{k-1} (s^i - s^{i+1})^2 + (s^k)^2 \right]$$

and

$$\langle \nabla^2 g_k(\theta) s, s \rangle \le \frac{L}{2} \left[(s^1)^2 + 2 \sum_{i=1}^{k-1} 2((s^i)^2 + (s^{i+1})^2) + (s^k)^2 \right] \le L \sum_{i=1}^k (s^i)^2$$

Consider the "worst function in the world" [Nesterov, 2004]. Set $n \in \mathbb{N}$ and for any $k \in \{1, ..., n\}$, consider the function

$$g_k(\theta) = \frac{L}{8} [(\theta^1)^2 + \sum_{i=1}^{k-1} (\theta^i - \theta^{i+1})^2 + (\theta^k)^2 - 2\theta^1]$$

Fact 2 minimizer supported by first k coordinates (closed form)

$$\overline{\theta}_k^{(i)} = \left\{ \begin{array}{ll} 1 - \frac{i}{k+1}, & i = 1, \dots, k, \\ 0, & k+1 \le i \le n. \end{array} \right.$$

and the optimal value of function g_k is

$$g_k^* = \frac{L}{8} \left(-1 + \frac{1}{k+1} \right) .$$

Consider the "worst function in the world" [Nesterov, 2004]. Set $n \in \mathbb{N}$ and for any $k \in \{1, ..., n\}$, consider the function

$$g_k(\theta) = \frac{L}{8} [(\theta^1)^2 + \sum_{i=1}^{k-1} (\theta^i - \theta^{i+1})^2 + (\theta^k)^2 - 2\theta^1]$$

Fact 2 Note also that

$$\sum_{i=1}^{k} i^2 = \frac{k(k+1)(2k+1)}{6} \le \frac{(k+1)^3}{3}$$

Therefore

$$\begin{split} \|\overline{\theta}_k\|^2 &= \sum_{i=1}^n (\overline{\theta}_k^{(i)})^2 = \sum_{i=1}^k (1 - \frac{i}{k+1})^2 \\ &= k - \frac{2}{k+1} \sum_{i=1}^k i + \frac{1}{(k+1)^2} \sum_{i=1}^k i^2 = \frac{1}{3} (k+1) \; . \end{split}$$

Consider the "worst function in the world" [Nesterov, 2004]. Set $n \in \mathbb{N}$ and for any $k \in \{1, ..., n\}$, consider the function

$$g_k(\theta) = \frac{L}{8} [(\theta^1)^2 + \sum_{i=1}^{k-1} (\theta^i - \theta^{i+1})^2 + (\theta^k)^2 - 2\theta^1]$$

Fact 3 any first-order method starting from zero will be supported in the first k coordinates after iteration k

Denote $R^{k,n} = \{\theta \in R^n | \theta^{(i)} = 0, k+1 \le i \le n\}$; that is a subspace of R^n , in which only the first k components of the point can differ from zero. From the analytical form of the functions $\{g_k\}$ it is easy to see that for all $\theta \in R^{k,n}$ we have

$$g_p(\theta) = g_k(\theta) , p = k \dots n.$$

Consider the "worst function in the world" [Nesterov, 2004]. Set $n \in \mathbb{N}$ and for any $k \in \{1, ..., n\}$, consider the function

$$g_k(\theta) = \frac{L}{8} [(\theta^1)^2 + \sum_{i=1}^{k-1} (\theta^i - \theta^{i+1})^2 + (\theta^k)^2 - 2\theta^1]$$

Fact 3 any first-order method starting from zero will be supported in the first k coordinates after iteration k

Let us fix some $p, 1 \le p \le n$. Let $\theta_0 = 0$. Then for any sequence $\{\theta_k\}_{k=0}^p$ satisfying the condition

$$\theta_k \in \mathcal{L}_k = \operatorname{Lin}\{\nabla g_p(\theta_0), \dots, \nabla g_p(\theta_{k-1})\}\$$

we have $\mathcal{L}_k \subseteq \mathbb{R}^{k,n}$.

Consider the "worst function in the world" [Nesterov, 2004]. Set $n \in \mathbb{N}$ and for any $k \in \{1, ..., n\}$, consider the function

$$g_k(\theta) = \frac{L}{8} [(\theta^1)^2 + \sum_{i=1}^{k-1} (\theta^i - \theta^{i+1})^2 + (\theta^k)^2 - 2\theta^1]$$

Fact 4 For any sequence $\{\theta_k\}_{k=0}^p$ such that $\theta_0=0$ and $\theta_k\in\mathcal{L}_k$ we have

$$g_p(\theta_k) \ge g_k^*$$
.

Indeed, $\theta_k \in \mathcal{L}_k \subseteq R^{k,n}$ and therefore

$$g_p(\theta_k) = g_k(\theta_k) \ge g_k^*.$$

Consider the "worst function in the world" [Nesterov, 2004]. Set $n \in \mathbb{N}$ and for any $k \in \{1, ..., n\}$, consider the function

$$g_k(\theta) = \frac{L}{8} [(\theta^1)^2 + \sum_{i=1}^{k-1} (\theta^i - \theta^{i+1})^2 + (\theta^k)^2 - 2\theta^1]$$

At iteration k, take $g = g_{2k+1}$ and compute a lower-bound for

$$\frac{g(\theta_k) - g(\theta_*)}{\|\theta_0 - \theta_*\|^2}$$

- Supervised Machine Learning
 - Set-up
 - Convex functions: basic ideas
 - Empirical risk minimization: convergence rates
- 2 Smooth convex optimization
 - Gradient descent
 - Accelerated gradient methods
- 3 Non-smooth convex optimization
- 4 Stochastic approximation
 - An introduction to stochastic approximation
 - Smooth strongly convex case
 - Stochastic subgradient descent/method
- 5 Proximal methods
 - Proximal operator
 - Proximal gradient algorithm
 - Stochastic proximal gradient
- 6 Applications
 - Network structure estimation
 - High-dimensional logistic regression with random effect > → ← ≥ →

Accelerated gradient methods (Nesterov, 1983)

Assumptions: g convex, L-smooth $1 \min$. attained at θ_* Algorithm

$$\theta_t = \eta_{t-1} - \frac{1}{L} \nabla g(\eta_{t-1})$$

$$\eta_t = \theta_t + \frac{t-1}{t+2} (\theta_t - \theta_{t-1})$$

Bound

$$g(\theta_t) - g(\theta_*) \le \frac{2L\|\theta_0 - \theta_*\|^2}{(t+1)^2}$$

Extension to strongly-convex functions

Assumptions: g convex, L-smooth, strongly convex Algorithm

$$\theta_t = \eta_{t-1} - \frac{1}{L} \nabla g(\eta_{t-1})$$

$$\eta_t = \theta_t + \frac{1 - \sqrt{\mu/L}}{1 + \sqrt{\mu/L}} (\theta_t - \theta_{t-1})$$

Bound

$$g(\theta_t) - g(\theta_*) \le L \|\theta_0 - \theta_*\|^2 (1 - \sqrt{\mu/L})^t$$

Related to conjugate gradient for quadratic functions

Supervised Machine Learning Smooth convex optimization Non-smooth convex optimization Stochastic approximation Proximal methods Applications

- 1 Supervised Machine Learning
- 2 Smooth convex optimization
- 3 Non-smooth convex optimization
- 4 Stochastic approximation
- 5 Proximal methods
- 6 Applications

Subgradient

Definition

The subgradient $\partial f(\theta)$ of f at θ is the set of vectors $\theta \in \mathbb{R}^d$ satisfying

$$f(\vartheta) \ge f(\theta) + \langle s, \vartheta - \theta \rangle \quad \theta, \vartheta \in \mathbb{R}^d$$

- the definition is unilateral! the affine function $\vartheta \to f(\theta) + \langle s, \vartheta \theta \rangle$ minorizes f and coincides with f at $\theta = \vartheta$
- The definition is global in the sense that it involves all $\vartheta \in \mathbb{R}^d$
- Seems to deviate from the "classical" concept of differentials (no remainder terms, the condition is local and not global)

Basic subgradient calculus

- [a Scaling: $\partial(af) = a\partial f$ provided a>0. The condition a>0 makes the function f remain convex
- **(b)** Addition: $\partial \left(f+g \right) = \partial \left(f \right) + \partial \left(g \right)$ if int dom $f \cap \operatorname{dom} g \neq \emptyset$.
- (c) Affine composition: if $g(\theta) = f(A\theta + b)$ then $\partial g(\theta) = A^T \partial f(A\theta + b)$.
- (d) If f is differentiable at a point $\theta \in \operatorname{int} \operatorname{dom} f$ then $\partial f(\theta) = {\nabla f(\theta)}.$

Basic optimality conditions for convex optimization: unconstrained case

Theorem

Let f be convex. If θ is a local minimum of f, then θ is a global minimum of f. Furthermore, this happens if and only if $0 \in \partial f(\theta)$

Proof.

It can be easily seen that $0 \in \partial f(\theta)$ if and only if θ is a global minimum. Now assume that θ is a local minimum of f. Then for any η and λ small enough

$$f(\theta) \le f((1-\lambda)\theta + \lambda\eta) \le (1-\lambda)f(\theta) + \lambda f(\eta),$$

which implies that $f(\theta) \leq f(\eta)$ and thus that θ is a global minimum of f.

Basic optimality conditions for convex optimization: constrained case

Given a convex set $\Theta\subseteq\mathbb{R}^d$ and a convex function $f:\Theta\to\mathbb{R}$, we intend to

$$\min_{\theta \in \Theta} f(\theta)$$

Define the characteristic of the convex set Θ

$$I_{\Theta}(\theta) := \begin{cases} 0, & \theta \in \Theta \\ \infty & Otherwise \end{cases}$$

By definition of subgradients, the subdifferential of I_{Θ} is given by the normal cone at θ

$$\partial I_{\Theta}(\theta) = \{ w \in \mathbb{R}^n \mid \langle w, \eta - \theta \rangle \le 0, \forall \eta \in \Theta \}$$

Basic optimality conditions for convex optimization: constrained case

Theorem

Let $f: \mathbb{R}^d \to \mathbb{R}$ be a convex function and Θ be a convex set. Then θ_* is an optimal solution of $\min_{\theta \in \Theta} f(\theta)$ if and only if there exists $w_* \in \partial f(\theta_*)$ such that

$$\langle w_*, \eta - \theta_* \rangle \ge 0, \quad \forall \eta \in \Theta.$$

Subgradient: links with directional derivatives

■ Since for any $s \in \partial f(\theta)$, we have $f(\vartheta) \geq f(\theta) + \langle s, \vartheta - \theta \rangle$ for all $\vartheta \in \mathbb{R}^d$, for any $\zeta \in \mathbb{R}^d$ and $t \geq 0$ we get

$$t^{-1}\{f(\theta + t\zeta) - f(\theta)\} \ge \langle s, \zeta \rangle$$

■ Taking the limit at $t \downarrow 0^+$, for all $\theta, \zeta \in \mathbb{R}^d$,

$$\langle s, \zeta \rangle \le f'(\theta, \zeta)$$

Subgradient: links with directional derivatives

■ Conversely, if for all $\zeta \in \mathbb{R}^d$, $\langle s, \zeta \rangle \leq f'(\theta, \zeta)$, then for all $t \geq 0$, the increase slope property implies

$$\langle s, \zeta \rangle \le f'(\theta, \zeta) \le t^{-1} \{ f(\theta + t\zeta) - f(\theta) \}$$

■ Taking t = 1 and $\zeta = \vartheta - \theta$,

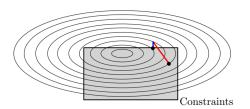
$$f(\theta) + \langle s, \vartheta - \theta \rangle \le f(\vartheta)$$

showing that $s \in \partial f(\theta)$.

$$\begin{split} \partial f(\theta) &= \{ s \in \mathbb{R}^d : f(\theta) + \langle s, \vartheta - \theta \rangle \leq f(\vartheta) \quad \text{for all } \vartheta \in \mathbb{R}^d \} \\ &= \{ s \in \mathbb{R}^d : \langle s, \zeta \rangle \leq f'(\theta, \zeta) \quad \text{for all } \zeta \in \mathbb{R}^d \} \end{split}$$

Subgradient method/descent

Assumptions: g convex and B-Lipschitz-continuous on $\{\|\theta\|_2 \leq D\}$ Algorithm: $\theta_t = \Pi_D \left(\theta_{t-1} - \gamma_t \partial g(\theta_{t-1})\right)$ where Π_D : orthogonal projection onto $\{\|\theta\|_2 \leq D\}$



Subgradient method/descent

Assumptions: g convex and B-Lipschitz-continuous on $\{\|\theta\|_2 \leq D\}$ Algorithm: $\theta_t = \Pi_D \left(\theta_{t-1} - \gamma_t \partial g(\theta_{t-1})\right)$ where Π_D : orthogonal projection onto $\{\|\theta\|_2 \leq D\}$

Bound [with optimally chosen stepsize γ_t]

$$g\left(\frac{1}{t}\sum_{k=0}^{t-1}\theta_k\right) - g(\theta_*) \le \frac{2DB}{\sqrt{t}}$$

Best possible convergence rate after O(d) iterations (Bubeck, 2015)

Subgradient method/descent - proof - I

Iteration:
$$\theta_t = \Pi_D(\theta_{t-1} - \gamma_t \partial g(\theta_{t-1}))$$

Assumption: $\|\partial g(\theta)\|_2 \leq B$ and $\|\theta\|_2 \leq D$

$$\|\theta_t - \theta_*\|_2^2 \le \|\theta_{t-1} - \theta_* - \gamma_t \partial g(\theta_{t-1})\|_2^2$$

$$<\|\theta_{t-1} - \theta_*\|_2^2 + B^2 \gamma_t^2 - 2\gamma_t \langle \theta_{t-1} - \theta_*, \partial q(\theta_{t-1}) \rangle$$

$$\leq \|\theta_{t-1} - \theta_*\|_2^2 + B^2 \gamma_t^2 - 2\gamma_t \langle \theta_{t-1} - \theta_*, \partial g(\theta_{t-1}) \rangle$$

$$\leq \|\theta_{t-1} - \theta_*\|_2^2 + B^2 \gamma_t^2 - 2\gamma_t [g(\theta_{t-1}) - g(\theta_*)]$$

by contractivity of projections

because $\|\partial g(\theta_{t-1})\|_2 \leq B$

property of subgradients

leading to

$$g(\theta_{t-1}) - g(\theta_*) \le \frac{B^2 \gamma_t}{2} + \frac{1}{2\gamma_t} [\|\theta_{t-1} - \theta_*\|_2^2 - \|\theta_t - \theta_*\|_2^2]$$

Subgradient method/descent - proof - I

$$g(\theta_{t-1}) - g(\theta_*) \le \frac{B^2 \gamma_t}{2} + \frac{1}{2\gamma_t} \left[\|\theta_{t-1} - \theta_*\|_2^2 - \|\theta_t - \theta_*\|_2^2 \right]$$

Constant step-size $\gamma_t = \gamma$

$$\sum_{u=1}^{t} [g(\theta_{u-1}) - g(\theta_*)] \le \sum_{u=1}^{t} \frac{B^2 \gamma}{2} + \sum_{u=1}^{t} \frac{1}{2\gamma} [\|\theta_{u-1} - \theta_*\|_2^2 - \|\theta_u - \theta_*\|_2^2]$$

$$\le t \frac{B^2 \gamma}{2} + \frac{1}{2\gamma} \|\theta_0 - \theta_*\|_2^2 \le t \frac{B^2 \gamma}{2} + \frac{2}{\gamma} D^2$$

Optimal step-size $\gamma_t = \frac{2D}{B\sqrt{t}}$ depends on the horizon

Convexity:
$$g\left(\frac{1}{t}\sum_{k=0}^{t-1}\theta_k\right)-g(\theta_*)\leq \frac{2DB}{\sqrt{t}}$$

Sub-gradient: decreasing stepsize

$$g(\theta_{t-1}) - g(\theta_*) \le \frac{B^2 \gamma_t}{2} + \frac{1}{2\gamma_t} \left[\|\theta_{t-1} - \theta_*\|_2^2 - \|\theta_t - \theta_*\|_2^2 \right]$$

$$\sum_{u=1}^t \left[g(\theta_{u-1}) - g(\theta_*) \right] \le \sum_{u=1}^t \frac{B^2 \gamma_u}{2} + \sum_{u=1}^t \frac{1}{2\gamma_u} \left[\|\theta_{u-1} - \theta_*\|_2^2 - \|\theta_u - \theta_*\|_2^2 \right]$$

$$= \sum_{u=1}^t \frac{B^2 \gamma_u}{2} + \sum_{u=1}^{t-1} \|\theta_u - \theta_*\|_2^2 \left(\frac{1}{2\gamma_{u+1}} - \frac{1}{2\gamma_u} \right) + \frac{\|\theta_0 - \theta_*\|_2^2}{2\gamma_1} - \frac{\|\theta_t - \theta_*\|_2^2}{2\gamma_t}$$

$$\le \sum_{u=1}^t \frac{B^2 \gamma_u}{2} + \sum_{u=1}^{t-1} 4D^2 \left(\frac{1}{2\gamma_{u+1}} - \frac{1}{2\gamma_u} \right) + \frac{4D^2}{2\gamma_1} = \sum_{u=1}^t \frac{B^2 \gamma_u}{2} + \frac{4D^2}{2\gamma_t} .$$

Convexity: with $\gamma_u = 2D/(B\sqrt{u})$ we get

$$g\left(\frac{1}{t}\sum_{k=0}^{t-1}\theta_k\right) - f(\theta_*) \le \frac{2DB}{\sqrt{t}}$$

Subgradient descent for machine learning

Assumptions (f is the expected risk, \hat{f} the empirical risk)

- "Linear" predictors: $\theta(x) = \langle \theta, \Phi(x) \rangle$, with $\|\Phi(x)\|_2 \leq R$
- $\hat{f}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(Y_i, \langle \Phi(X_i), \theta \rangle)$
- G-Lipschitz loss: f and \hat{f} are GR-Lipschitz on $\Theta = \{\|\theta\|_2 \le D\}$

High-probability bound: with probability greater than $1-\delta$

$$\sup_{\theta \in \Theta} |\hat{f}(\theta) - f(\theta)| \le \frac{GRD}{\sqrt{n}} \left[2 + \sqrt{2\log\frac{2}{\delta}} \right]$$

Optimization: after t iterations of subgradient method

$$\hat{f}(\hat{\theta}) - \min_{\theta \in \Theta} \hat{f}(\theta) \le \frac{GRD}{\sqrt{t}}$$

t=n iterations, with total running-time complexity of $Q(n^2d)$

Summary: rate of convergence

Assumption g convex Gradient descent $\theta_t = \Pi_{\mathcal{D}}\left(\theta_{t-1} - \gamma_t \partial g(\theta_{t-1})\right)$ Problem parameters

- D diameter of the domain
- *B* Lipschitz-constant
- *L* smoothness constant
- lacksquare μ strong convexity constant

	convex	strongly convex
nonsmooth	deterministic: BD/\sqrt{t}	deterministic: B^2/t
smooth	deterministic: LD^2/t^2	deterministic: $\exp(-t\sqrt{\mu/L})$

Going back to minimization of expected and empirical risks

■ From a finite set of observations: Z_1, \ldots, Z_n , the empirical risk:

$$\hat{f}(\theta) = (1/n) \sum_{i=1}^{n} \ell(\theta, Z_i) .$$

- In the case n is moderate, we can use the algorithms considered before.
- In the case
 - $\blacksquare n$ is very large (say $\ge 10^6$),
 - the data is distributed among different devices,

these methods cannot be used anymore.

- Solution: batch learning
- This method belongs to the very rich class of stochastic approximation schemes.

- 1 Supervised Machine Learning
- 2 Smooth convex optimization
- 3 Non-smooth convex optimization
- 4 Stochastic approximation
- 5 Proximal methods
- 6 Applications

An introduction to stochastic approximation

Smooth strongly convex case Stochastic subgradient descent/method

- 1 Supervised Machine Learning
 - Set-up
 - Convex functions: basic ideas
 - Empirical risk minimization: convergence rates
- 2 Smooth convex optimization
 - Gradient descent
 - Accelerated gradient methods
- 3 Non-smooth convex optimization
- 4 Stochastic approximation
 - An introduction to stochastic approximation
 - Smooth strongly convex case
 - Stochastic subgradient descent/method
- 5 Proximal methods
 - Proximal operator
 - Proximal gradient algorithm
 - Stochastic proximal gradient
- 6 Applications
 - Network structure estimation
 - Network Structure estimation

Links with batch learning

Empirical risk minimization

- Finite set of observations: Z_1, \ldots, Z_n
- Minimize the empirical risk: $\hat{f}(\theta) = \frac{1}{n} \sum_{k=1}^{n} \ell(\theta, Z_i)$

Batch stochastic gradient

- Let $S \subset \{1, ..., n\}$ be a mini-batch sampled with/without replacement in $\{1, ..., n\}$ with cardinal |S| = N.
- Define the mini-batch gradient

$$\nabla \hat{f}_S(\theta) = (1/p) \sum_{i \in S} \nabla_{\theta} \ell(\theta, Z_i) ,$$

where
$$p = n/N$$
 or $p = 1/\binom{N}{n}$.

■ Then, $\nabla \hat{f}_S$ is an unbiased estimator of $\nabla \hat{f}$, i.e.

$$\mathbb{E}[\nabla \hat{f}_S(\theta)|(Z_i)_{i\in\{1,\ldots,n\}}] = \nabla \hat{f}(\theta) .$$

Links with batch learning

Empirical risk minimization

■ Minimize the empirical risk: $\hat{f}(\theta) = \frac{1}{n} \sum_{k=1}^{n} \ell(\theta, Z_i)$

Batch stochastic gradient

■ Batch stochastic optimization consists in replacing $\nabla \hat{f}(\theta_k)$ by the minibatch estimate $\nabla \hat{f}_{S_{k+1}}(\theta_k)$ in the gradient descent scheme to define the iterates $(\theta_k)_{k\in\mathbb{N}}$,

$$\theta_{k+1} = \theta_k - \gamma_{k+1} \nabla \hat{f}_{S_{k+1}}(\theta_k) ,$$

where (S_k) is an i.i.d. sequence of minibatches and $(\gamma_k)_{k\in\mathbb{N}^*}$ is a sequence of stepsizes.

Links with batch learning

Remarks

- $(S_k)_{k \in \mathbb{N}^*}$ uniform with/without replacement non necessary the best choice.
- $(\gamma_k)_{k\in\mathbb{N}^*}$ is either held constant or decreasing going to 0:
 - If it is constant $\gamma_k \equiv \gamma$, the scheme does not converge in general: there exists a small bias of order γ ;
 - If $\lim_{k\to+\infty} \gamma_k = 0$, then the scheme converge under appropriate conditions.
- This scheme belongs to the class of stochastic approximation schemes.

Links with online learning

Expected risk minimization

■ Minimize the expected risk: $f(\theta) = \mathbb{E}[\ell(\theta, Z)]$

Online stochastic gradient

- Let $(Z_k)_{k \in \mathbb{N}^*}$ be an i.i.d. sequence.
- Define for any $k \in \mathbb{N}^*$,

$$\nabla f_k(\theta) = \nabla_{\theta} \ell(\theta, Z_k) .$$

■ Then, ∇f_k is an unbiased estimator of ∇f , i.e.

$$\mathbb{E}[\nabla \hat{f}_k(\theta)] = \nabla \hat{f}(\theta)$$

where the expectation is taken over the data $(Z_k)_{k\in\mathbb{N}^*}$.

Links with online learning

Empirical risk minimization

■ Minimize the expected risk: $f(\theta) = \mathbb{E}[\ell(\theta, Z)]$

Online stochastic gradient

■ Online stochastic gradient defines the iterates $(\theta_k)_{k \in \mathbb{N}}$,

$$\theta_{n+1} = \theta_n - \gamma_{n+1} \nabla f_{n+1}(\theta_n) ,$$

where $(\gamma_k)_{k\in\mathbb{N}^*}$ is a sequence of stepsizes.

Remarks

- $(\gamma_k)_{k\in\mathbb{N}^*}$ is either constant or decrease to 0.
- This scheme also belongs to the class of stochastic approximation/optimization schemes.

Stochastic gradient descent

Goal of stochastic gradient:

- Minimize a function f defined on \mathbb{R}^d
- **given** only unbiased estimates ∇f_n of ∇f ,
- or ∂f_n of its subgradients ∂f .

Online learning

- loss for a single pair of observations: $\Big|f_n(\theta)=\ell(Y_n,\langle\theta,\Phi(X_n)\rangle)\Big|$
- $lacksquare f(heta)=\mathbb{E}[f_n(heta)]=\mathbb{E}[\ell(Y_n,\langle heta,\Phi(X_n)
 angle)]=$ generalization error
- Expected gradient:

$$\nabla f(\theta) = \mathbb{E}[\nabla f_n(\theta)] = \mathbb{E}[\dot{\ell}(Y_n, \langle \theta, \Phi(X_n) \rangle) \Phi(X_n)]$$

■ Non-asymptotic results

Convex stochastic approximation

Key properties of f and/or f_n

- Smoothness: f B-Lipschitz continuous, ∇f L-Lipschitz continuous
- Strong convexity: $f \mu$ -strongly convex

Key algorithm: Stochastic (sub)gradient descent (a.k.a. Robbins-Monro)

$$\theta_n = \theta_{n-1} - \gamma_n \nabla f_n(\theta_{n-1}) , \quad \theta_n = \theta_{n-1} - \gamma_n \partial f_n(\theta_{n-1})$$

Stochastic approximation beyond convex optimization

- Stochastic approximation goes far beyond convex optimization.
- Problem: find the roots of the mean field function h, i.e. solve $h(\theta) = 0$.
- In stochastic optimization: $h = \nabla f$.
- The function h is not known in closed form, but

$$h(\theta) = \int H(\theta, x) \nu(\mathrm{d}x)$$

where $H: \Theta \times X \to \Theta$ is a known function and ν is a probability distribution over X.

Stochastic approximation beyond convex optimization: Robbins Monro set up

- Assume that there is an i.i.d. sequence $\{X_n,\ n\in\mathbb{N}\}$ distributed according to ν
- The stochastic approximation procedure:

$$\theta_n = \theta_{n-1} + \gamma_n H(\theta_{n-1}, X_n) \text{ with } \mathbb{E}[h_n(\theta_{n-1})|\mathcal{F}_{n-1}] = h(\theta_{n-1})$$

where \mathcal{F}_{n-1} is the σ -algebra of summarizing "past" observations.

■ Can alternatively be written

$$\theta_n = \theta_{n-1} + \gamma_n h(\theta_{n-1}) + \gamma_n M_n$$

where
$$M_n = H(\theta_{n-1}, X_n) - h(\theta_n)$$
.

Under the stated assumptions, $\mathbb{E}\left[\left.M_n\,\right|\mathcal{F}_{n-1}\right]=0$, i.e. the sequence $\{M_n,\;n\in\mathbb{N}\}$ is a martingale increment sequence.

- 1 Supervised Machine Learning
 - Set-up
 - Convex functions: basic ideas
 - Empirical risk minimization: convergence rates
- 2 Smooth convex optimization
 - Gradient descent
 - Accelerated gradient methods
- 3 Non-smooth convex optimization
- 4 Stochastic approximation
 - An introduction to stochastic approximation
 - Smooth strongly convex case
 - Stochastic subgradient descent/method
- 5 Proximal methods
 - Proximal operator
 - Proximal gradient algorithm
 - Stochastic proximal gradient
- 6 Applications
 - Network structure estimation
 - High-dimensional logistic regression with random effect > → ← > →

Convex stochastic approximation

Key properties of f and/or f_n

- Smoothness: f B-Lipschitz continuous, ∇f L-Lipschitz continuous
- Strong convexity: $f \mu$ -strongly convex

Key algorithm: Stochastic (sub)gradient descent (a.k.a. Robbins-Monro)

$$\theta_n = \theta_{n-1} - \gamma_n \nabla f_n(\theta_{n-1}) , \quad \theta_n = \theta_{n-1} - \gamma_n \partial f_n(\theta_{n-1})$$

- Polyak-Ruppert averaging: $\bar{\theta}_n = n^{-1} \sum_{k=0}^{n-1} \theta_k$
- Which learning rate sequence γ_n ? Classical setting: $\gamma_n = C n^{-\alpha}$

Desirable practical behavior

- Applicable (at least) to classical supervised learning problems
- Robustness to (potentially unknown) constants (L,B,μ)
- Adaptivity to difficulty of the problem (e.g., strong convexity)

Smoothness/convexity assumptions

Iteration
$$\theta_n = \theta_{n-1} - \gamma_n \nabla f_n(\theta_{n-1})$$
.

Polyak-Ruppert averaging
$$\overline{\theta}_n = \frac{1}{n} \sum_{k=0}^{n-1} \theta_k$$

Strong convexity of f: The function f is strongly convex with respect to the norm $\|\cdot\|_2$ with convexity constant $\mu > 0$:

- Invertible population covariance matrix or regularization by $\frac{\mu}{2}\|\theta\|^2$
- there exists a unique minimizer θ^*

Smoothness of f_n : For each $n \ge 1$ the function f_n satisfies a.s.:

- convex;
- differentiable with L-Lipschitz-continuous gradient ∇f_n ;
- bounded variance (bounded data): almost surely

$$\mathbb{E}[\|\nabla f_{n+1}(\theta^*)\|^2|\mathcal{F}_n] \le \sigma^2.$$

Summary of new results (Bach and Moulines, 2011-2013)

Assumptions

- Stochastic gradient descent with learning rate $\gamma_n = C n^{-\alpha}$
- Strongly convex smooth objective functions
- Bounded variance (bounded data): w.p. 1, $\mathbb{E}[\|\nabla f_{n+1}(\theta^*)\|^2|\mathcal{F}_n] \leq \sigma^2.$

Results

- Old: $O(n^{-1})$ rate achieved without averaging for $\alpha = 1$
- New: $O(n^{-1})$ rate achieved with averaging for $\alpha \in [1/2, \ 1]$
- Non-asymptotic analysis with explicit constants
- Robustness to the choice of C

Summary of new results (Bach and Moulines, 2011-2013)

Assumptions

- Stochastic gradient descent with learning rate $\gamma_n = C n^{-\alpha}$
- Strongly convex smooth objective functions
- Bounded variance (bounded data): w.p. 1, $\mathbb{E}[\|\nabla f_{n+1}(\theta^*)\|^2|\mathcal{F}_n] \leq \sigma^2.$

Results

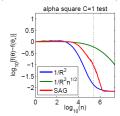
- Old: $O(n^{-1})$ rate achieved without averaging for $\alpha = 1$
- New: $O(n^{-1})$ rate achieved with averaging for $\alpha \in [1/2, 1]$
- Non-asymptotic analysis with explicit constants
- Robustness to the choice of C

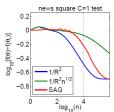
Convergence rate for
$$\mathbb{E}[\|\theta_n - \theta^{\star}\|^2]$$
 and $\mathbb{E}[\|\overline{\theta}_n - \theta^{\star}\|^2]$.

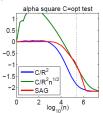
- without averaging: $O(\gamma_n) + O(e^{-\mu n \gamma_n}) \|\theta_0 \theta^{\star}\|^2$
- with averaging: $O(n^{-1}) + O(n^{-2\alpha}) + \mu^{-2} \|\theta_0 \theta^\star\|^2 O(n^{-2})$

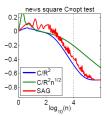
Examples

• alpha (d = 500, n = 500 000), news (d = 1 300 000, n = 20 000)









Sketch of proof - f strongly convex, f_n smooth, bounded variance

- Consider $\delta_n = \|\theta_n \theta^*\|^2$.
- Then, we have almost surely

$$\delta_{n+1} = \delta_n - \gamma_{n+1} \langle \nabla f_{n+1}(\theta_n), \theta_n - \theta^* \rangle + \gamma_{n+1}^2 \| \nabla f_{n+1}(\theta_n) \|^2.$$

f is strongly convex:

$$\mathbb{E}[\delta_{n+1}|\mathcal{F}_n] = \delta_n - \gamma_{n+1} \langle \nabla f(\theta_n), \theta_n - \theta^* \rangle + \gamma_{n+1}^2 \mathbb{E}[\|\nabla f_{n+1}(\theta_n)\|^2 |\mathcal{F}_n]$$

$$\leq (1 - \mu \gamma_{n+1}) \delta_n + \gamma_{n+1}^2 \mathbb{E}[\|\nabla f_{n+1}(\theta_n) - \nabla f(\theta^*)\|^2 |\mathcal{F}_n].$$

Sketch of proof - f strongly convex, f_n smooth, bounded variance

- Consider $\delta_n = \|\theta_n \theta^*\|^2$.
- Then, we have almost surely

$$\delta_{n+1} = \delta_n - \gamma_{n+1} \langle \nabla f_{n+1}(\theta_n), \theta_n - \theta^* \rangle + \gamma_{n+1}^2 \| \nabla f_{n+1}(\theta_n) \|^2.$$

■ Since ∇f_{n+1} is a.s. Lipschitz with bounded variance at θ^* ,

$$\mathbb{E}\left[\left\|\nabla f_{n+1}(\theta_n) - \nabla f(\theta^*)\right\|^2 \middle| \mathcal{F}_n\right]$$

$$\leq \mathbb{E}\left[\left\|\nabla f_{n+1}(\theta_n) - \nabla f_{n+1}(\theta_*) + \nabla f_{n+1}(\theta_*) - \nabla f(\theta^*)\right\|^2 \middle| \mathcal{F}_n\right]$$

$$\leq 2(L^2\delta_n + \sigma^2).$$

Sketch of proof - f strongly convex, f_n smooth, bounded variance

- Consider $\delta_n = \|\theta_n \theta^*\|^2$.
- Then, we have almost surely

$$\delta_{n+1} = \delta_n - \gamma_{n+1} \langle \nabla f_{n+1}(\theta_n), \theta_n - \theta^* \rangle + \gamma_{n+1}^2 \| \nabla f_{n+1}(\theta_n) \|^2.$$

Conclusion:

$$\mathbb{E}[\delta_{n+1}|\mathcal{F}_n] \le (1 - \mu \gamma_{n+1} + 2L^2 \gamma_{n+1}^2) \delta_n + 2\sigma^2 \gamma_{n+1}^2.$$

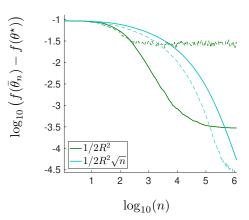
Stochastic Approximation: take home message

- Powerful algorithm:
 - Simple to implement
 - Cheap
 - No regularization needed
 - Convergence guarantees

Problems:

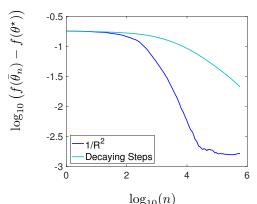
- Initial conditions can be forgotten slowly: could we use even larger/fixed step sizes?
- For fixed step sizes, the previous bounds do not show that $\mathbb{E}[\|\theta_n \theta^\star\|^2] \not\to 0$ or $\mathbb{E}[\|\bar{\theta}_n \theta^\star\|^2] \not\to 0$.
- We only have $\mathbb{E}[\|\theta_n \theta^*\|^2] = O(\gamma)$ and $\mathbb{E}[\|\bar{\theta}_n \theta^*\|^2] = O(\gamma)$.
- We illustrate these two facts using numerical simulations

Motivation 1/2. Large step sizes!



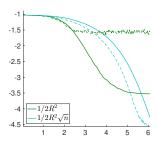
Logistic regression. Final iterate (dashed), and averaged recursion (plain).

Motivation 1/2. Large step sizes, real data



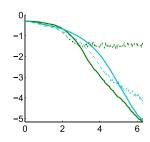
Logistic regression, Covertype dataset, n=581012, d=54. Comparison between a constant learning rate and decaying learning rate as $\frac{1}{\sqrt{n}}$.

Motivation 2/2. Difference between quadratic and logistic loss



Logistic Regression

$$\mathbb{E}f(\bar{\theta}_n) - f(\theta^{\star}) = O(\gamma^2)$$
 with $\gamma = 1/(2R^2)$



Least-Squares Regression

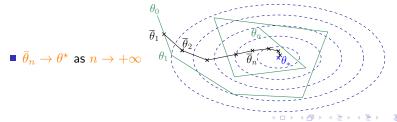
$$\mathbb{E}f(\bar{\theta}_n) - f(\theta^*) = O\left(\frac{1}{n}\right)$$
 with $\gamma = 1/(2R^2)$

Constant learning rate SGD: convergence in the quadratic case

Least-squares: $f(\theta) = \frac{1}{2}\mathbb{E}[(Y - \langle \Phi(X), \theta \rangle)^2]$ with $\theta \in \mathbb{R}^d$

- SGD = least-mean-square algorithm
- With strong convexity assumption $\mathbb{E} \big[\Phi(X) \otimes \Phi(X) \big] = H \succcurlyeq \mu \cdot \mathrm{Id}$

$$\theta^{\star} = H^{-1}\mathbb{E}[Y\Phi(X)]$$



Constant learning rate SGD: convergence in the quadratic case

Key identity:

$$\theta_{n+1} - \theta^* = (\operatorname{Id} - \gamma H)(\theta_n - \theta^*) + \gamma \eta_{n+1}(\theta_n) , \ \mathbb{E}[\eta_{n+1}(\theta_n) | \mathcal{F}_n] = 0 ,$$

$$\eta_{n+1}(\theta) = H\theta - \mathbb{E}[Y\Phi(X)] - \Phi(X_{n+1})\Phi(X_{n+1})^{\top}\theta + Y_{n+1}\Phi(X_{n+1}) .$$

■ Therefore.

$$\theta_{n+1} - \theta^* = (\operatorname{Id} - \gamma H)^{n+1} (\theta_0 - \theta^*) + \gamma \sum_{k=0}^{n} (\operatorname{Id} - \gamma H)^{n-k} \eta_{k+1} (\theta_k) ,$$

and

$$\bar{\theta}_n - \theta^* = (n+1)^{-1} \sum_{k=0}^n (\theta_k - \theta^*) \approx (n+1)^{-1} \sum_{k=0}^n \eta(\theta_k)$$
.

Constant learning rate SGD: convergence in the quadratic case

$$\begin{split} \textbf{Least-squares:} \ f(\theta) &= \tfrac{1}{2} \mathbb{E} \big[(Y - \langle \Phi(X), \theta \rangle)^2 \big] \ \text{with} \ \theta \in \mathbb{R}^d \\ \theta_{n+1} - \theta^\star &= (\operatorname{Id} - \gamma H) (\theta_n - \theta^\star) + \gamma \eta_{n+1}(\theta_n) \ , \end{split}$$

- The sequence $(\theta_n)_{n\geq 0}$ is a homogeneous Markov chain
 - 1 Converges to a stationary measure π_{γ}
 - 2 $\bar{\theta}_n$ converges to $\bar{\theta}_{\gamma} = \int_{\mathbb{R}^d} \vartheta d\pi_{\gamma}(\vartheta)$
- Identification of $\bar{\theta}_{\gamma}$
 - If $\theta_0 \sim \pi_\gamma$, then $\theta_1 \sim \pi_\gamma$.
 - lacksquare Taking expectation, and using $\mathbb{E}\left[\eta_1(heta)
 ight]=0$ for any $heta\in\mathbb{R}^d$,

$$\int_{\mathbb{R}^d} H(\vartheta - \theta^*) d\pi_{\gamma}(\vartheta) = 0 \Rightarrow \bar{\theta}_{\gamma} = \theta^*.$$

- Conclusion $\bar{\theta}_n \to \theta^*$ as $n \to +\infty$ if ergodic
- Question: What happens in the general case?

SGD: an homogeneous Markov chain

- Consider a L-smooth and μ -strongly convex function f.
- SGD with a step-size $\gamma > 0$ is an homogeneous Markov chain:

$$\begin{aligned} \theta_{k+1}^{\gamma} &= \theta_{k}^{\gamma} - \gamma \nabla f_{k+1}(\theta_{k}^{\gamma}) = \theta_{k}^{\gamma} - \gamma \left[\nabla f(\theta_{k}^{\gamma}) + \eta_{k+1}(\theta_{k}^{\gamma}) \right] , \\ \eta_{k+1}(\theta_{k}^{\gamma}) &= \nabla f_{k+1}(\theta_{k}^{\gamma}) - \nabla f(\theta_{k}^{\gamma}) , \mathbb{E}[\eta_{k+1}(\theta_{k}^{\gamma}) | \mathcal{F}_{n}] = 0 . \end{aligned}$$

Additional assumptions

■ $\nabla f_k = \nabla f + \eta_{k+1}$ is almost surely L-co-coercive: for any $\theta_1, \theta_2 \in \mathbb{R}^d$,

$$\langle \nabla f_k(\theta_1) - \nabla f_k(\theta_2), \theta_1 - \theta_2 \rangle \ge L^{-1} \|\nabla f_k(\theta_1) - \nabla f_k(\theta_2)\|^2$$
.

■ Bounded moments for *p* large enough,

$$\mathbb{E}[\|\epsilon_k(\theta^*)\|^p] < \infty.$$

Stochastic gradient descent as a Markov Chain: Analysis framework²

- Let R_{γ} be the Markov kernel associated with $(\theta_n^{\gamma})_{n \in \mathbb{N}}$.
- Existence of a stationary distribution π_{γ} for R_{γ} , and convergence to this distribution.
- Behavior under the limit distribution $(\gamma \to 0)$: $\bar{\theta}_{\gamma} = \theta^* + ?$ \hookrightarrow Provable convergence improvement with extrapolation tricks used for numerical integration and applied probability.
- Analysis of the convergence of $\bar{\theta}_n^{\gamma}$ to $\bar{\theta}_{\gamma} = \int_{\mathbb{R}^d} \vartheta \mathrm{d}\pi_{\gamma}(\vartheta)$ through its MSE.

²Dieuleveut, D., Bach.

Existence and convergence to a stationary distribution

Definition

Wasserstein metric: u and λ probability measures on \mathbb{R}^d

$$W_2(\lambda, \nu) := \inf_{\xi \in \Pi(\lambda, \nu)} \left(\int \|\theta - \eta\|^2 \xi (d\theta \cdot d\eta) \right)^{1/2}$$

 $\Pi(\lambda, \nu)$ is the set of probability measure ξ s.t. $A \in \mathcal{B}(\mathbb{R}^d)$, $\xi(A \times \mathbb{R}^d) = \lambda(A)$, $\xi(\mathbb{R}^d \times A) = \nu(A)$.

Theorem

For $\gamma < L^{-1}$, the chain $(\theta_k^{\gamma})_{k \geq 0}$ admits a unique stationary distribution π_{γ} and for all $\theta \in \mathbb{R}^d$, $n \in \mathbb{N}$:

$$W_2^2(\delta_{\theta}R_{\gamma}^n, \pi_{\gamma}) \le (1 - 2\mu\gamma(1 - \gamma L))^n \int_{\mathbb{R}^d} \|\theta - \vartheta\|^2 d\pi_{\gamma}(\vartheta).$$

Existence of a limit distribution: proof I /III

■ Coupling: θ^1, θ^2 be independent and distributed according to λ_1, λ_2 respectively, and $(\theta_{k,\gamma}^{(1)})_{\geq 0}, (\theta_{k,\gamma}^{(2)})_{k\geq 0}$ SGD iterates:

$$\begin{cases} \theta_{k+1,\gamma}^{(1)} &= \theta_{k,\gamma}^{(1)} - \gamma \big[\nabla f(\theta_{k,\gamma}^{(1)}) + \eta_{k+1}(\theta_{k,\gamma}^{(1)}) \big] \\ \theta_{k+1,\gamma}^{(2)} &= \theta_{k,\gamma}^{(2)} - \gamma \big[\nabla f(\theta_{k,\gamma}^{(2)}) + \eta_{k+1}(\theta_{k,\gamma}^{(2)}) \big] \; . \end{cases}$$

• for all $k\geq 0$, the distribution of $(\theta_{k,\gamma}^{(1)},\theta_{k,\gamma}^{(2)})$ is in $\Pi(\lambda_1R_{\gamma}^k,\lambda_2R_{\gamma}^k)$

Existence of a limit distribution: proof II/III

$$\mathbb{E}\left[\|\theta_{1,\gamma}^{(1)} - \theta_{1,\gamma}^{(2)}\|^{(2)}\right] \leq \mathbb{E}\left[\|\theta^{(1)} - \gamma\nabla f_{1}(\theta^{(1)}) - (\theta^{(2)} - \gamma\nabla f_{1}(\theta^{(2)})))\|^{2}\right] \\
\leq \mathbb{E}\left[\left\|\theta^{(1)} - \theta^{(2)}\right\|^{2} - 2\gamma\left\langle\nabla f_{1}(\theta^{(1)}) - \nabla f_{1}(\theta^{(2)}), \theta^{(1)} - \theta^{(2)}\right\rangle\right] \\
+ \gamma^{2}\mathbb{E}\left[\left\|\nabla f_{1}(\theta^{(1)}) - \nabla f_{1}(\theta^{(2)})\right\|^{2}\right] \\
\stackrel{coco}{\leq} \mathbb{E}\left[\left\|\theta^{(1)} - \theta^{(2)}\right\|^{2}\right] - 2\gamma(1 - \gamma L)\mathbb{E}\left[\left\langle\nabla f_{1}(\theta^{(1)}) - \nabla f_{1}(\theta^{(2)}), \theta^{(1)} - \theta^{(2)}\right\rangle\right] \\
\stackrel{unbiased}{\leq} \mathbb{E}\left[\left\|\theta^{(1)} - \theta^{(2)}\right\|^{2}\right] - 2\gamma(1 - \gamma L)\mathbb{E}\left[\left\langle\nabla f(\theta^{(1)}) - \nabla f(\theta^{(2)}), \theta^{(1)} - \theta^{(2)}\right\rangle\right] \\
\stackrel{s.cvx.}{\leq} (1 - 2\mu\gamma(1 - \gamma L))\mathbb{E}\left[\left\|\theta^{(1)} - \theta^{(2)}\right\|^{2}\right].$$

Existence of a limit distribution: proof III/III

■ By induction:

$$W_2^2(\lambda_1 R_{\gamma}^n, \lambda_2 R_{\gamma}^n) \le \mathbb{E}\left[\|\theta_{n,\gamma}^{(1)} - \theta_{n,\gamma}^{(2)}\|^2\right]$$

$$\le (1 - 2\mu\gamma(1 - \gamma L))^n \int_{x,y} \|\theta_1 - \theta_2\|^2 d\lambda_1(\theta_1) d\lambda_2(\theta_2) .$$

- Thus $W_2(\delta_{\theta_1}R_{\gamma}^n, \delta_{\theta_2}R_{\gamma}^n) \leq (1 2\mu\gamma(1 \gamma L))^n \|\theta_1 \theta_2\|^2$.
- Uniqueness, invariance, and Theorem follow:

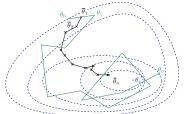
$$W_2^2(\delta_{\theta}R_{\gamma}^n, \pi_{\gamma}) \le (1 - 2\mu\gamma(1 - \gamma L))^n \int_{\mathbb{R}^d} \|\theta - \theta\|^2 d\pi_{\gamma}(\theta).$$

Behavior under limit distribution.

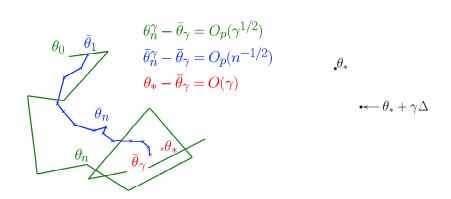
- Then we have $\mathbb{E}[\bar{\theta}_n] \to \bar{\theta}_{\gamma}$. Where is $\bar{\theta}_{\gamma}$? Close to θ^{\star} ?
- In the quadratic case $\bar{\theta}_{\gamma} = \theta^{\star}$
- In the general case, we show that

$$\begin{split} \bar{\theta}_{\gamma} &= \theta^{\star} + \gamma \Delta(\theta^{\star}) + O(\gamma^{2}) \\ \Delta(\theta^{\star}) &= f''(\theta^{\star})^{-1} f'''(\theta^{\star}) \Big(\big[f''(\theta^{\star}) \otimes I + I \otimes f''(\theta^{\star}) \big]^{-1} \mathbb{E}[\eta(\theta^{\star})^{\otimes 2}] \Big) \;. \end{split}$$

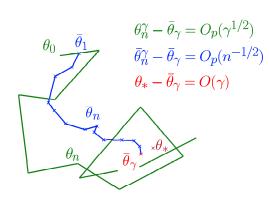
Linearization of the proof for the least-square



An introduction to stochastic approximation Smooth strongly convex case Stochastic subgradient descent/method

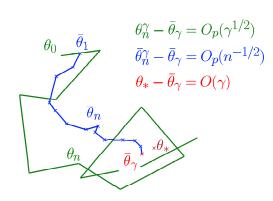


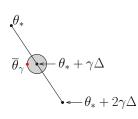
Richardson extrapolation

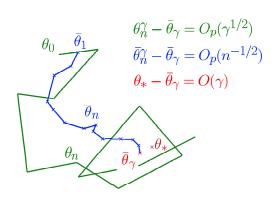


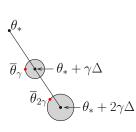
 θ_*

$$\overline{\theta}_{\gamma}$$
 $\theta_* + \gamma \Delta$

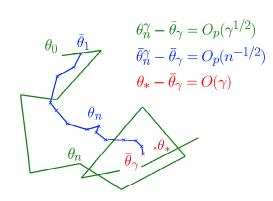


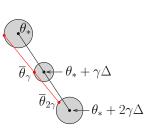




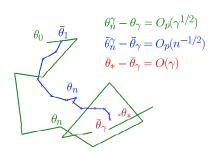


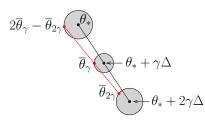
An introduction to stochastic approximation Smooth strongly convex case Stochastic subgradient descent/method





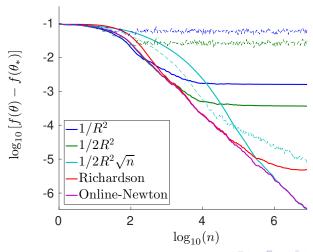
Richardson extrapolation



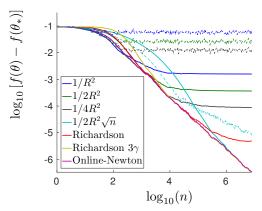


Recovering convergence closer to θ_* by Richardson extrapolation $2\bar{\theta}_*^\gamma - \bar{\theta}_*^{2\gamma}$

Experiments



Experiments: Double Richardson



Synthetic data, logistic regression, $n = 8.10^6$

"Richardson 3γ ": estimator built using *Richardson on 3 different* sequences: $\tilde{\theta}_n^3 = \frac{8}{3}\bar{\theta}_n^{\gamma} - 2\bar{\theta}_n^{2\gamma} + \frac{1}{3}\bar{\theta}_n^{4\gamma}$

Real data

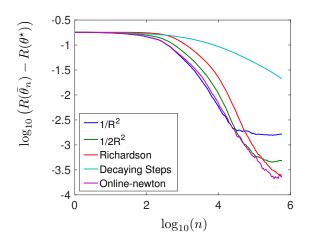


Figure: Logistic regression, Covertype dataset. n = 581012, d = 54.

- 1 Supervised Machine Learning
 - Set-up
 - Convex functions: basic ideas
 - Empirical risk minimization: convergence rates
- 2 Smooth convex optimization
 - Gradient descent
 - Accelerated gradient methods
- 3 Non-smooth convex optimization
- 4 Stochastic approximation
 - An introduction to stochastic approximation
 - Smooth strongly convex case
 - Stochastic subgradient descent/method
- 5 Proximal methods
 - Proximal operator
 - Proximal gradient algorithm
 - Stochastic proximal gradient
- 6 Applications
 - Network structure estimation
 - High-dimensional logistic regression with random effect >> < >> <

Stochastic subgradient descent/method

Assumptions

- f_n convex and B-Lipschitz-continuous on $\{\|\theta\|_2 \leq D\}$
- $lacksquare (f_n)$ i.i.d. functions such that $\mathbb{E}[f_n(heta)] = f(heta)$
- lacksquare θ_* global optimum of f on $\{\|\theta\|_2 \leq D\}$

Algorithm:
$$\theta_n = \Pi_D \left(\theta_{n-1} - \frac{2D}{B\sqrt{n}} \partial f_n(\theta_{n-1}) \right)$$

Risk Bound:

$$\mathbb{E}\left[f\left(\frac{1}{n}\sum_{k=0}^{n-1}\theta_k\right)\right] - f(\theta_*) \le \frac{2DB}{\sqrt{n}}.$$

- Minimax convergence rate
- lacktriangle Running-time complexity: O(dn) after n iterations

$$\theta_n = \Pi_D(\theta_{n-1} - \gamma_n \partial f_n(\theta_{n-1}))$$
 where $\mathcal{F}_n = \sigma((Y_k, X_k), j \leq n)$.

$$\begin{split} &\|\theta_n - \theta_*\|_2^2 \leq \|\theta_{n-1} - \theta_* - \gamma_n \partial f_n(\theta_{n-1})\|_2^2 & \text{contractivity of projections} \\ &\leq \|\theta_{n-1} - \theta_*\|_2^2 + B^2 \gamma_n^2 - 2\gamma_n \langle \theta_{n-1} - \theta_*, \partial f_n(\theta_{n-1}) \rangle & \|\partial f_n(\theta_{n-1})\|_2 \leq B \end{split}$$

Taking the conditional expectations of the both sides

$$\begin{split} &\mathbb{E}\big[\|\theta_n - \theta_*\|_2^2 |\mathcal{F}_{n-1}\big] \leq \|\theta_{n-1} - \theta_*\|_2^2 + B^2 \gamma_n^2 - 2\gamma_n \langle (\theta_{n-1} - \theta_*), \partial f(\theta_{n-1}) \rangle \\ &\leq \|\theta_{n-1} - \theta_*\|_2^2 + B^2 \gamma_n^2 - 2\gamma_n \big[f(\theta_{n-1}) - f(\theta^\star)\big] \text{ (subgradient property)} \end{split}$$

$$\theta_n = \Pi_D(\theta_{n-1} - \gamma_n \partial f_n(\theta_{n-1}))$$
 where $\mathcal{F}_n = \sigma((Y_k, X_k), j \leq n)$.

From

$$\mathbb{E}[\|\theta_n - \theta_*\|_2^2 | \mathcal{F}_{n-1}] \le \|\theta_{n-1} - \theta_*\|_2^2 + B^2 \gamma_n^2 - 2\gamma_n [f(\theta_{n-1}) - f(\theta^*)]$$

the tower property of conditional expectation implies

$$\mathbb{E}[\|\theta_n - \theta_*\|_2^2] \le \mathbb{E}[\|\theta_{n-1} - \theta_*\|_2^2] + B^2 \gamma_n^2 - 2\gamma_n \left[\mathbb{E}[f(\theta_{n-1})] - f(\theta^*) \right]$$

leading to

$$\mathbb{E}[f(\theta_{n-1})] - f(\theta^*) \le \frac{B^2 \gamma_n}{2} + \frac{1}{2\gamma_n} \left\{ \mathbb{E}[\|\theta_{n-1} - \theta_*\|_2^2] - \mathbb{E}[\|\theta_n - \theta_*\|_2^2] \right\}$$

Stochastic subgradient

$$\mathbb{E}[f(\theta_{n-1})] - f(\theta^*) \le \frac{B^2 \gamma_n}{2} + \frac{1}{2\gamma_n} \left[\mathbb{E} \|\theta_{n-1} - \theta_*\|_2^2 - \mathbb{E} \|\theta_n - \theta_*\|_2^2 \right]$$

Constant step size

$$\sum_{u=1}^{n} \left[\mathbb{E}[f(\theta_{u-1})] - f(\theta^{*}) \right] \leq \sum_{u=1}^{n} \frac{B^{2} \gamma}{2} + \sum_{u=1}^{n} \frac{1}{2 \gamma} \left\{ \mathbb{E} \left[\|\theta_{u-1} - \theta^{*}\|_{2}^{2} \right] - \mathbb{E} \left[\|\theta_{u} - \theta^{*}\|_{2}^{2} \right] \right\}$$

$$\leq \frac{nB^{2} \gamma}{2} + \frac{4D^{2}}{2 \gamma}.$$

Optimum stepsize $\gamma = 2D/(\sqrt{n}B)$ (depends on the horizon).

Proximal methods

Stochastic subgradient

$$\mathbb{E}[f(\theta_{n-1})] - f(\theta^*) \le \frac{B^2 \gamma_n}{2} + \frac{1}{2\gamma_n} \left[\mathbb{E} \|\theta_{n-1} - \theta_*\|_2^2 - \mathbb{E} \|\theta_n - \theta_*\|_2^2 \right]$$

Constant step size

$$\sum_{u=1}^{n} \left[\mathbb{E}[f(\theta_{u-1})] - f(\theta^{*}) \right] \leq \sum_{u=1}^{n} \frac{B^{2} \gamma}{2} + \sum_{u=1}^{n} \frac{1}{2\gamma} \left\{ \mathbb{E}\left[\|\theta_{u-1} - \theta^{*}\|_{2}^{2} \right] - \mathbb{E}\left[\|\theta_{u} - \theta^{*}\|_{2}^{2} \right] \right\}$$
$$\leq \frac{nB^{2} \gamma}{2} + \frac{4D^{2}}{2\gamma}.$$

Convexity [fixed horizon]:

$$\mathbb{E}\left[f\left(\frac{1}{n}\sum_{k=0}^{n-1}\theta_k\right)\right] - f(\theta_*) \le \frac{2DB}{\sqrt{n}}$$

Beyond convergence in expectation

Convergence in expectation: $\mathbb{E}\left[f\left(n^{-1}\sum_{k=0}^{n-1}\theta_k\right)-f(\theta^\star)\right] \leq \frac{2DB}{\sqrt{n}}$ High-probability bounds

- Markov inequality: $\mathbb{P}\left(f\left(n^{-1}\sum_{k=0}^{n-1}\theta_k\right) f(\theta^\star) \geq \epsilon\right) \leq \frac{2DB}{\sqrt{n}\epsilon}$
- Concentration inequality (Nemirovski et al., 2009; Nesterov and Vial, 2008)

$$\mathbb{P}\left(f\left(\frac{1}{n}\sum_{k=0}^{n-1}\theta_k\right) - f(\theta^*) \ge \frac{2DB}{\sqrt{n}}(2+4t)\right) \le 2\exp(-t^2)$$

$$\theta_n = \Pi_D(\theta_{n-1} - \gamma_n \partial f_n(\theta_{n-1}))$$
 with $\mathcal{F}_n = \sigma((Y_k, X_k), j \leq n)$.

$$\begin{split} &\|\theta_n-\theta_*\|_2^2 \leq \|\theta_{n-1}-\theta_*-\gamma_n\partial f_n(\theta_{n-1})\|_2^2 & \text{contractivity of projections} \\ &\leq \|\theta_{n-1}-\theta_*\|_2^2 + B^2\gamma_n^2 - 2\gamma_n\langle\theta_{n-1}-\theta_*,\partial f_n(\theta_{n-1})\rangle & \|\partial f_n(\theta_{n-1})\|_2 \leq B \end{split}$$

Define by Z_n the error (approximation of the "true" subgradient by its noisy version)

$$Z_n = -2\langle \theta_{n-1} - \theta^*, \partial f_n(\theta_{n-1}) - \partial f(\theta_{n-1}) \rangle$$

and using the convexity we get

$$\|\theta_n - \theta^*\|_2^2 \le \|\theta_{n-1} - \theta^*\|_2^2 + B^2 \gamma_n^2 - 2\gamma_n [f(\theta_{n-1}) - f(\theta^*)] + 2\gamma_n Z_n$$

$$Z_n = -\langle \theta_{n-1} - \theta^*, \partial f_n(\theta_{n-1}) - \partial f(\theta_{n-1}) \rangle$$

From the inequality

$$\|\theta_n - \theta^*\|_2^2 \le \|\theta_{n-1} - \theta^*\|_2^2 + B^2 \gamma_n^2 - 2\gamma_n [f(\theta_{n-1}) - f(\theta^*)] + 2\gamma_n Z_n$$

we get

$$f(\theta_{n-1}) - f(\theta^*) \le \frac{1}{2\gamma_n} \left\{ \|\theta_{n-1} - \theta^*\|_2^2 - \|\theta_n - \theta^*\|_2^2 \right\} + \frac{B^2\gamma_n}{2} + Z_n$$

Summing up this identity

$$\sum_{u=1}^{n} [f(\theta_{u-1}) - f(\theta^{\star})] \le \sum_{u=1}^{n} \frac{B^{2} \gamma_{u}}{2} + \sum_{u=1}^{n} \frac{1}{2 \gamma_{u}} \{ \|\theta_{u-1} - \theta^{\star}\|_{2}^{2} - \|\theta_{u} - \theta^{\star}\|_{2}^{2} \} + \sum_{u=1}^{n} Z_{u}$$

$$Z_n = -\langle \theta_{n-1} - \theta^*, \partial f_n(\theta_{n-1}) - \partial f(\theta_{n-1}) \rangle$$

Setting $\gamma_u = 2D/(B\sqrt{n})$ [depending on the horizon n] in

$$\sum_{u=1}^{n} [f(\theta_{u-1}) - f(\theta^{\star})] \le \sum_{u=1}^{n} \frac{B^{2} \gamma_{u}}{2} + \sum_{u=1}^{n} \frac{1}{2 \gamma_{u}} \{ \|\theta_{u-1} - \theta^{\star}\|_{2}^{2} - \|\theta_{u} - \theta^{\star}\|_{2}^{2} \} + \sum_{u=1}^{n} Z_{u}$$

we get

$$\frac{1}{n} \sum_{u=1}^{n} \{ f(\theta_{u-1}) - f(\theta^{\star}) \} \le \frac{2DB}{\sqrt{n}} + \frac{1}{n} \sum_{u=1}^{n} Z_u$$

$$Z_n = -\langle \theta_{n-1} - \theta^*, \partial f_n(\theta_{n-1}) - \partial f(\theta_{n-1}) \rangle$$

Setting $\gamma_u = 2D/(B\sqrt{n})$ [depending on the horizon n] in

$$\sum_{u=1}^{n} [f(\theta_{u-1}) - f(\theta^{\star})] \le \sum_{u=1}^{n} \frac{B^{2} \gamma_{u}}{2} + \sum_{u=1}^{n} \frac{1}{2 \gamma_{u}} \{ \|\theta_{u-1} - \theta^{\star}\|_{2}^{2} - \|\theta_{u} - \theta^{\star}\|_{2}^{2} \} + \sum_{u=1}^{n} Z_{u}$$

we get

$$\frac{1}{n} \sum_{u=1}^{n} \{ f(\theta_{u-1}) - f(\theta^{\star}) \} \le \frac{2DB}{\sqrt{n}} + \frac{1}{n} \sum_{u=1}^{n} Z_u$$

Require to study $n^{-1} \sum_{k=1}^{n} Z_k$ where $(Z_k)_{k \ge 1}$ is a bounded martingale increment sequence: $|Z_k| \le 4DB$.

$$Z_n = -\langle \theta_{n-1} - \theta^*, \partial f_n(\theta_{n-1}) - \partial f(\theta_{n-1}) \rangle$$

Setting $\gamma_u = 2D/(B\sqrt{n})$ [depending on the horizon n] in

$$\sum_{u=1}^{n} [f(\theta_{u-1}) - f(\theta^{\star})] \le \sum_{u=1}^{n} \frac{B^{2} \gamma_{u}}{2} + \sum_{u=1}^{n} \frac{1}{2 \gamma_{u}} \{ \|\theta_{u-1} - \theta^{\star}\|_{2}^{2} - \|\theta_{u} - \theta^{\star}\|_{2}^{2} \} + \sum_{u=1}^{n} Z_{u}$$

we get

$$\frac{1}{n} \sum_{u=1}^{n} \{ f(\theta_{u-1}) - f(\theta^{\star}) \} \le \frac{2DB}{\sqrt{n}} + \frac{1}{n} \sum_{u=1}^{n} Z_u$$

Azuma-Hoeffding inequality for bounded martingale increments:

$$\mathbb{P}\left(\frac{1}{n}\sum_{u=1}^{n} Z_u \ge \frac{4DBt}{\sqrt{n}}\right) \le \exp(-t^2/2)$$

$$Z_n = -\langle \theta_{n-1} - \theta^*, \partial f_n(\theta_{n-1}) - \partial f(\theta_{n-1}) \rangle$$

Setting $\gamma_u = 2D/(B\sqrt{n})$ [depending on the horizon n] in

$$\sum_{u=1}^{n} [f(\theta_{u-1}) - f(\theta^{\star})] \le \sum_{u=1}^{n} \frac{B^{2} \gamma_{u}}{2} + \sum_{u=1}^{n} \frac{1}{2 \gamma_{u}} \{ \|\theta_{u-1} - \theta^{\star}\|_{2}^{2} - \|\theta_{u} - \theta^{\star}\|_{2}^{2} \} + \sum_{u=1}^{n} Z_{u}$$

we get

$$\frac{1}{n} \sum_{u=1}^{n} \{ f(\theta_{u-1}) - f(\theta^{\star}) \} \le \frac{2DB}{\sqrt{n}} + \frac{1}{n} \sum_{u=1}^{n} Z_u$$

Moment bounds can be deduced from Burkholder-Rosenthal-Pinelis inequality (Pinelis, 1994)

- 1 Supervised Machine Learning
- 2 Smooth convex optimization
- 3 Non-smooth convex optimization
- 4 Stochastic approximation
- 5 Proximal methods
- 6 Applications

- 1 Supervised Machine Learning
 - Set-up
 - Convex functions: basic ideas
 - Empirical risk minimization: convergence rates
- 2 Smooth convex optimization
 - Gradient descent
 - Accelerated gradient methods
- 3 Non-smooth convex optimization
- 4 Stochastic approximation
 - An introduction to stochastic approximation
 - Smooth strongly convex case
 - Stochastic subgradient descent/method
- 5 Proximal methods
 - Proximal operator
 - Proximal gradient algorithm
 - Stochastic proximal gradient
- 6 Applications
 - Network structure estimation
 - High-dimensional logistic regression with random effect >> < >> <

Definition

Definition (Proximal mapping)

g: closed convex function; γ : stepsize

$$\operatorname{prox}_{\gamma,g}(\theta) = \operatorname*{argmin}_{\eta \in \Theta} \left(g(\eta) + (2\gamma)^{-1} \| \eta - \theta \|_2^2 \right)$$

- The uniqueness of the minimizer stems from the strong convexity of the function $\eta \mapsto g(\eta) + 1/(2\gamma) \|\eta \theta\|_2^2$
- If $g = \mathbb{I}_{\mathcal{K}}$, where \mathcal{K} is a closed convex set, then $\operatorname{prox}_{\gamma,g}$ is the Euclidean projection on \mathcal{K}

$$\operatorname{prox}_{\gamma,g}(\theta) = \operatorname*{argmin}_{\eta \in \mathcal{K}} \|\eta - \theta\|_2^2 = P_{\mathcal{K}}(\theta)$$

■ The proximal operator may be seen as a generalisation of the projection on closed convex sets.

Proximal operator

Lemma

If
$$\theta=(\theta_1,\theta_2,\dots,\theta_p)$$
 and $g(\theta)=\sum_{i=1}^pg_i(\theta_i)$, then
$$\mathrm{prox}_{\gamma,g}(\theta)=(\mathrm{prox}_{\gamma,g_1}(\theta_1),\mathrm{prox}_{\gamma,g_2}(\theta_2),\dots,\mathrm{prox}_{\gamma,g_p}(\theta_p))$$

Applications

Proximal operator

Lemma

If
$$\theta=(\theta_1,\theta_2,\ldots,\theta_p)$$
 and $g(\theta)=\sum_{i=1}^pg_i(\theta_i)$, then
$$\mathrm{prox}_{\gamma,g}(\theta)=(\mathrm{prox}_{\gamma,g_1}(\theta_1),\mathrm{prox}_{\gamma,g_2}(\theta_2),\ldots,\mathrm{prox}_{\gamma,g_p}(\theta_p))$$

Applications

$$\underset{(\eta_1, \dots, \eta_p)}{\operatorname{argmin}} \left\{ \sum_{i=1}^p g_i(\eta_i) + 2\gamma^{-1} \sum_{i=1}^p \|\eta_i - \theta_i\|^2 \right\}$$

$$= \sum_{i=1}^p \underset{\eta_i}{\operatorname{argmin}} \left\{ g_i(\eta_i) + (2\gamma)^{-1} \|\eta_i - \theta_i\|^2 \right\}$$

A characterization of the proximal operator

Theorem

Let g be a convex function on Θ , $(\theta, p) \in \Theta^2$,

$$p = \operatorname{prox}_{\gamma,g}(\theta) \Longleftrightarrow \operatorname{for all} \, \eta \in \Theta, \quad g(p) + \gamma^{-1} \langle \eta - p, \theta - p \rangle \leq g(\eta)$$

i.e. p is the unique element of Θ satisfying $\gamma^{-1}(\theta - p) \in \partial g(p)$.

Applications

A characterization of the proximal operator

Theorem

Let g be a convex function on Θ , $(\theta, p) \in \Theta^2$,

$$p = \operatorname{prox}_{\gamma,g}(\theta) \Longleftrightarrow \text{ for all } \eta \in \Theta, \quad g(p) + \gamma^{-1} \langle \eta - p, \theta - p \rangle \leq g(\eta)$$

i.e. p is the unique element of Θ satisfying $\gamma^{-1}(\theta - p) \in \partial g(p)$.

Follows also from the characterization of the subdifferential

$$p$$
 is the minimizer of $\eta\mapsto g(\eta)+(2\gamma)^{-1}\|\eta-\theta\|_2^2$
$$\iff 0\in\partial g(p)+\gamma^{-1}(p-\theta).$$

Applications

Proximal operator: LASSO and Elastic net

■ If $g(\theta) = \sum_{i=1}^p \lambda_i |\theta_i|$ then $\text{prox}_{\gamma,g}$ is shrinkage (soft threshold) operation

$$\left[S_{\lambda,\gamma}(\theta)\right]_{i} = \begin{cases} \theta_{i} - \gamma \lambda_{i} & \theta_{i} \geq \gamma \lambda_{i} \\ 0 & |\theta_{i}| \leq \gamma \lambda_{i} \\ \theta_{i} + \gamma \lambda_{i} & \theta_{i} \leq -\gamma \lambda_{i} \end{cases}$$

If $g(\theta) = \lambda \left((1 - \alpha)/2 \|\theta\|_2^2 + \alpha \|\theta\|_1 \right)$

$$\left(\operatorname{Prox}_{\gamma,g}(\tau)\right)_i = \frac{1}{1 + \gamma\lambda(1 - \alpha)} \begin{cases} \tau_i - \gamma\lambda\alpha & \text{if } \tau_i \geq \gamma\lambda\alpha \\ \tau_i + \gamma\lambda\alpha & \text{if } \tau_i \leq -\gamma\lambda\alpha \\ 0 & \text{otherwise} \end{cases}$$

Fixed points of the proximal operator

Theorem

Let g be a proper convex function on Θ . The set of fixed points

$$\{\theta \in \Theta, \mathit{prox}_{\gamma,g}(\theta) = \theta\}$$

coincide with the set of global minimum of g.

Fixed points of the proximal operator

Theorem

Let g be a proper convex function on Θ . The set of fixed points

$$\{\theta \in \Theta, \mathit{prox}_{\gamma,g}(\theta) = \theta\}$$

coincide with the set of global minimum of g.

Characterization of the proximal point

$$\gamma^{-1}(\theta - \mathsf{prox}_{\gamma,g}(\theta)) \in \partial g(\mathsf{prox}_{\gamma,g}(\theta)).$$

■ Sub-gradient: for all $\eta \in \Theta$,

$$\gamma^{-1}\langle \eta - \mathsf{prox}_{\gamma,g}(\theta), \theta - \mathsf{prox}_{\gamma,g}(\theta) \rangle + g(\mathsf{prox}_{\gamma,g}(\theta)) \le g(\eta)$$

Conclusion

$$\theta = \mathrm{prox}_{\gamma,g}(\theta) \Longleftrightarrow \text{for all } \eta \in \Theta, g(\mathrm{prox}_{\gamma,g}(\theta)) \leq g(\eta) \; .$$

Firm non-expansiveness

Theorem

If g is a proper convex function, then $\operatorname{prox}_{\gamma,g}$ and $(\operatorname{Id} - \operatorname{prox}_{\gamma,g})$ are firmly non-expansive (or co-coercive with constant 1), i.e. for all $\theta, \eta \in \Theta$,

$$||p - q||^2 + ||(\theta - p) - (\eta - q)||^2 \le ||\theta - \eta||^2$$
,
 $\iff \langle p - q, \theta - \eta \rangle \ge ||p - q||^2$.

where
$$p = \operatorname{prox}_{\gamma,g}(\theta)$$
 and $q = \operatorname{prox}_{\gamma,g}(\eta)$.

Firm non-expansiveness

Theorem

If g is a proper convex function, then $\operatorname{prox}_{\gamma,g}$ and $(\operatorname{Id}-\operatorname{prox}_{\gamma,g})$ are firmly non-expansive (or co-coercive with constant 1), i.e. for all $\theta,\eta\in\Theta$,

$$||p - q||^2 + ||(\theta - p) - (\eta - q)||^2 \le ||\theta - \eta||^2$$
,
 $\iff \langle p - q, \theta - \eta \rangle \ge ||p - q||^2$.

where $p = \operatorname{prox}_{\gamma,g}(\theta)$ and $q = \operatorname{prox}_{\gamma,g}(\eta)$.

$$\gamma^{-1}\langle q-p,\theta-p\rangle+g(p)\leq g(q) \quad \gamma^{-1}\langle p-q,\eta-q\rangle+g(q)\leq g(p)$$

Adding these two equations yield

$$\langle p-q, (\theta-p)-(\eta-q)\rangle \geq 0.$$

Assumptions

(P)
$$\min_{\theta \in \mathbb{R}^d} F(\theta)$$
 $F(\theta) = f(\theta) + g(\theta)$,

Assumptions

- $lack g: \mathbb{R}^d o (-\infty, +\infty]$ closed convex
- $f: \Theta \to \mathbb{R}$ is convex continuously differentiable and ∇f is gradient Lipshitz: for all $\theta, \theta' \in \Theta$,

$$\|\nabla f(\theta) - \nabla f(\theta')\| \le L\|\theta - \theta'\|,$$

- - Set-up
 - Convex functions: basic ideas
 - Empirical risk minimization: convergence rates
- - Gradient descent
 - Accelerated gradient methods
- - An introduction to stochastic approximation
 - Smooth strongly convex case
 - Stochastic subgradient descent/method
- 5 Proximal methods
 - Proximal operator
 - Proximal gradient algorithm
 - Stochastic proximal gradient
- 6 Applications
 - Network structure estimation

Applications

Proximal gradient algorithm

$$\theta_{n+1} = \text{Prox}_{\gamma_{n+1}, g} (\theta_n - \gamma_{n+1} \nabla f(\theta_n))$$

where

$$\operatorname{Prox}_{\gamma,g}(\tau) = \min_{\theta \in \Theta} \left(g(\theta) + \frac{1}{2\gamma} \|\theta - \tau\|^2 \right)$$

Majorization-Minimization interpretation

lacksquare Since f is gradient Lipshitz, for all $\gamma \in (0,1/L]$

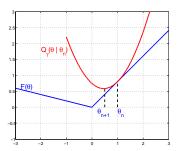
$$F(\eta) = f(\eta) + g(\eta) \le f(\theta) + \langle \nabla f(\theta), \eta - \theta \rangle + \frac{1}{2\gamma} \|\theta - \eta\|^2 + g(\eta)$$

Consider the following surrogate function

$$Q_{\gamma}(\eta|\theta) = f(\theta) + \langle \nabla f(\theta), \eta - \theta \rangle + \frac{1}{2\gamma} \|\theta - \eta\|^2 + g(\eta)$$

■ For all $\theta \in \Theta$, $\eta \mapsto Q_{\gamma}(\eta|\theta)$ is strongly convex and has a unique minimum and

$$F(\eta) \le Q_{\gamma}(\eta|\theta)$$
 $F(\theta) = Q_{\gamma}(\theta|\theta)$



$$F(\eta) \le Q_{\gamma}(\eta|\theta_n)$$
 $F(\theta_n) = Q_{\gamma}(\theta_n|\theta_n)$

Majorization-Minimization interpretation

$$Q_{\gamma}(\eta|\theta) \stackrel{\text{def}}{=} f(\theta) + \langle \nabla f(\theta), \eta - \theta \rangle + \frac{1}{2\gamma} \|\eta - \theta\|^2 + g(\eta)$$
$$= f(\theta) + \frac{1}{2\gamma} \|\eta - (\theta - \gamma \nabla f(\theta))\|^2 - \frac{\gamma}{2} \|\nabla f(\theta)\|^2 + g(\eta),$$

The iterates of the proximal gradient algorithms may be rewritten as $\theta_{n+1}=T_{\gamma_{n+1}}(\theta_n)$ with the point-to-point map T_γ defined by

$$T_{\gamma}(\theta) \stackrel{\text{def}}{=} \operatorname{Prox}_{\gamma,d} (\theta - \gamma \nabla f(\theta))$$
$$= \operatorname{argmin}_{\eta \in \operatorname{Dom}(g)} Q_{\gamma}(\eta | \theta) .$$

Proximal gradient

■ If $g(\theta) \equiv 0$, \hookrightarrow gradient proximal = classical stochastic gradient

$$\theta_n = \theta_{n-1} - \gamma_n \nabla f(\theta_{n-1})$$

Proximal gradient

■ If $g(\theta) \equiv 0$, \hookrightarrow gradient proximal = classical stochastic gradient

$$\theta_n = \theta_{n-1} - \gamma_n \nabla f(\theta_{n-1})$$

■ If $g(\theta) \equiv 0$ if $\theta \in \mathcal{C}$ and $g(\theta) = +\infty$ otherwise where \mathcal{C} is a closed convex set,

$$\operatorname{Prox}_{\gamma,g}(\tau) = \min_{\theta \in \mathcal{C}} \|\tau - \theta\|^2$$

 \hookrightarrow gradient proximal = projected gradient

$$\theta_n = \Pi_{\mathcal{C}} \left(\theta_{n-1} - \gamma_n \nabla f(\theta_{n-1}) \right)$$

Proximal gradient for the elastic net penalty

Applications

If
$$g(\theta) = \lambda \left(\frac{1-\alpha}{2} \|\theta\|_2^2 + \alpha \|\theta\|_1 \right)$$

$$\left(\operatorname{Prox}_{\gamma,g}(\tau)\right)_i = \frac{1}{1 + \gamma\lambda(1 - \alpha)} \begin{cases} \tau_i - \gamma\lambda\alpha & \text{if } \tau_i \geq \gamma\lambda\alpha \\ \tau_i + \gamma\lambda\alpha & \text{if } \tau_i \leq -\gamma\lambda\alpha \\ 0 & \text{otherwise} \end{cases}$$

→ Proximal gradient = soft-thresholded gradient

$$\theta_{n+1} = S_{\alpha,\lambda,\gamma_{n+1}} (\theta_n - \gamma_{n+1} \nabla f(\theta_n))$$

Stationary points of the proximal gradient

$$\theta_{n+1} = \operatorname{Prox}_{\gamma,g} (\theta_n - \gamma \nabla f(\theta_n)) = T_{\gamma}(\theta_n) ,$$

where T_{γ} is the proximal map,

$$T_{\gamma}(\theta) \stackrel{\text{def}}{=} \operatorname{Prox}_{\gamma,g} (\theta - \gamma \nabla f(\theta)) = \operatorname{argmin}_{\eta \in \operatorname{Dom}(g)} Q_{\gamma}(\eta | \theta) .$$

Theorem

The fixed points of the proximal map are the global minimizers of $F(\theta) = f(\theta) + g(\theta)$:

$$\mathbf{L} = \{\theta: \theta = \operatorname{Prox}_{\gamma,g}(\theta - \gamma \nabla f(\theta))\} = \{\theta \in \operatorname{Dom}(g): 0 \in \nabla f(\theta) + \partial g(\theta)\}.$$

Applications

Fixed points of the proximal map

Since

$$F(\theta) = f(\theta) + g(\theta) ,$$

we get

$$0 \in \partial F(\theta) \iff 0 \in \partial \gamma F(\theta)$$

$$\iff 0 \in \gamma \nabla f(\theta) + \partial \gamma g(\theta)$$

$$\iff \theta - \gamma \nabla f(\theta) \in (\theta + \gamma \partial g(\theta))$$

Fixed points of the proximal map

Since

$$F(\theta) = f(\theta) + g(\theta) ,$$

we get

$$\begin{array}{ll} 0 \in \partial F(\theta) & \Longleftrightarrow & 0 \in \partial \gamma F(\theta) \\ & \Longleftrightarrow & 0 \in \gamma \nabla f(\theta) + \partial \gamma g(\theta) \\ & \Longleftrightarrow & \theta - \gamma \nabla f(\theta) \in (\theta + \gamma \partial g(\theta)) \end{array}$$

Recall that, for any η

$$p = \mathsf{prox}_{\gamma g}(\eta) \Longleftrightarrow (\eta - p) \in \gamma \partial g(p) \Longleftrightarrow \eta \in p + \gamma \partial g(p).$$

Applications

Fixed points of the proximal map

Since

$$F(\theta) = f(\theta) + g(\theta) ,$$

we get

$$0 \in \partial F(\theta) \iff 0 \in \partial \gamma F(\theta)$$

$$\iff 0 \in \gamma \nabla f(\theta) + \partial \gamma g(\theta)$$

$$\iff \theta - \gamma \nabla f(\theta) \in (\theta + \gamma \partial g(\theta))$$

Recall that, for any η

$$p = \mathsf{prox}_{\gamma g}(\eta) \Longleftrightarrow (\eta - p) \in \gamma \partial g(p) \Longleftrightarrow \eta \in p + \gamma \partial g(p).$$

Hence, taking
$$p \leftarrow \theta$$
 and $\eta \leftarrow \theta - \gamma \nabla f(\theta)$

$$0 \in \partial F(\theta) \Longleftrightarrow \theta = T_{\gamma}(\theta)$$

Lyapunov function

$$Q_{\gamma}(\eta|\theta) = f(\theta) + \langle \nabla f(\theta), \eta - \theta \rangle + \frac{1}{2\gamma} \|\theta - \eta\|^2 + g(\eta)$$

■ For all $\theta \in \Theta$, $F \circ T_{\gamma}(\theta) \leq F(\theta)$:

$$F \circ T_{\gamma}(\theta) \le Q_{\gamma}(T_{\gamma}(\theta)|\theta) \le Q_{\gamma}(\theta|\theta) = F(\theta)$$

Moreover, the inequality is strict unless θ is a fixed point of the mapping T_{γ} .

• F is a Lyapunov function for the proximal map T_{γ} .

Convergence result

(P)
$$(\arg)\min_{\theta\in\Theta} \{f(\theta) + g(\theta)\},\$$

- lacktriangle the objective function always converge $\{F(\theta_n), n \geq 0\}$
- f is convex: then $\{\theta_n, n \in \mathbb{N}\}$ converges to θ_{\star} , where θ_{\star} is a minimizer of F.
- $F(\theta_n) F(\theta_*) = O(1/n).$
- Results similar to smooth optimization (O(1/n)) where n is the number of iterations)
- Acceleration methods: Nesterov, 2007; Beck and Teboulle, 2009. $\left(O(1/n^2)\right)$ [algorithm FISTA]

- 1 Supervised Machine Learning
 - Set-up
 - Convex functions: basic ideas
 - Empirical risk minimization: convergence rates
- 2 Smooth convex optimization
 - Gradient descent
 - Accelerated gradient methods
- 3 Non-smooth convex optimization
- 4 Stochastic approximation
 - An introduction to stochastic approximation
 - Smooth strongly convex case
 - Stochastic subgradient descent/method
- 5 Proximal methods
 - Proximal operator
 - Proximal gradient algorithm
 - Stochastic proximal gradient
- 6 Applications
 - Network structure estimation
 - Network structure estimation

Stochastic proximal gradient

Objective

Exact algorithm :

$$\theta_{n+1} = \operatorname{Prox}_{\gamma_{n+1},g} (\theta_n - \gamma_{n+1} \nabla f(\theta_n))$$

Pertubed algorithm :

$$\theta_{n+1} = \operatorname{Prox}_{\gamma_{n+1}, g} \left(\theta_n - \gamma_{n+1} H_{n+1} \right)$$

where H_{n+1} is a noisy approximation of the true gradient $\nabla f(\theta_n)$.

Problem find sufficient conditions on the stochastic error

$$\eta_{n+1} = H_{n+1} - \nabla f(\theta_n)$$

to preserve convergence (closely related to SA).

Convergence of the parameter

Theorem

Assume f is L-smooth and the set $\mathbf{L} = \operatorname{argmin}_{\theta \in \Theta} F(\theta)$ is non-empty. Assume in addition that $\gamma_n \in (0, 1/L]$ for any $n \geq 1$ and $\sum_n \gamma_n = +\infty$. If the following series converge

$$\sum_{n\geq 0} \gamma_{n+1} \langle T_{\gamma_{n+1}}(\theta_n), \eta_{n+1} \rangle , \quad \sum_{n\geq 0} \gamma_{n+1} \eta_{n+1} , \quad \sum_{n\geq 0} \gamma_{n+1}^2 \|\eta_{n+1}\|^2 ,$$

then there exists $\theta_{\infty} \in \mathbf{L}$ such that $\lim_{n} \theta_{n} = \theta_{\infty}$.

Convergence of the function

Theorem

Assume f is L-smooth and the set $\mathbf{L} = \operatorname{argmin}_{\theta \in \Theta} F(\theta)$ is non-empty. Assume that $\gamma_n \in (0,1/L]$ and let $\{a_0,\cdots,a_n\}$ be nonnegative weights. Then, for any $\theta_\star \in \mathbf{L}$ and $n \geq 1$,

$$\sum_{k=1}^{n} a_k \left\{ F(\theta_k) - \min F \right\} \le U_n(\theta_\star)$$

where

$$U_n(\theta_{\star}) \stackrel{\text{def}}{=} \frac{1}{2} \sum_{k=1}^n \left(\frac{a_k}{\gamma_k} - \frac{a_{k-1}}{\gamma_{k-1}} \right) \|\theta_{k-1} - \theta_{\star}\|^2 + \frac{a_0}{2\gamma_0} \|\theta_0 - \theta_{\star}\|^2$$
$$- \sum_{k=1}^n a_k \langle T_{\gamma_k}(\theta_{k-1}) - \theta_{\star}, \eta_k \rangle + \sum_{k=1}^n a_k \gamma_k \|\eta_k\|^2.$$

Sanity check

■ Assume that the gradient is exact, i.e. $\eta_n = 0$. Set $A_n = \sum_{k=1}^n a_k$ Then

$$F\left(A_n^{-1} \sum_{j=1}^n \theta_j\right) - \min F \le A_n^{-1} \sum_{j=1}^n a_j F(\theta_j) - \min F$$

$$\le \frac{1}{2} \sum_{k=1}^n \left(\frac{a_k}{\gamma_k} - \frac{a_{k-1}}{\gamma_{k-1}}\right) \|\theta_{k-1} - \theta_\star\|^2 + \frac{a_0}{2\gamma_0} \|\theta_0 - \theta_\star\|^2$$

■ Setting $a_k \equiv 1$ and $\gamma_k \equiv 1/L$

$$F\left(n^{-1}\sum_{j=1}^{n}\theta_{j}\right) - \min F \le n^{-1}\sum_{j=1}^{n}F(\theta_{j}) - \min F$$
$$\le \frac{L}{2}\|\theta_{0} - \theta_{\star}\|^{2}$$

Up to constant, this is the same bound than the gradient algorithm for 4 D A 4 P A 2 B A 2 B A 2 B smooth convex function.

Perturbed gradient

■ Take $a_k = \gamma_k$, for $k \in \{1, \ldots, n\}$. Then, for any $\theta_\star \in \mathbf{L}$ and $n \ge 1$,

$$F\left(\Gamma_{n}^{-1} \sum_{k=1}^{n} \gamma_{k} \theta_{k}\right) - \min F \leq \frac{1}{2\Gamma_{n}} \|\theta_{0} - \theta_{\star}\|^{2}$$
$$-\Gamma_{n}^{-1} \sum_{k=1}^{n} \gamma_{k} \langle T_{\gamma_{k}}(\theta_{k-1}) - \theta_{\star}, \eta_{k} \rangle + \Gamma_{n}^{-1} \sum_{k=1}^{n} \gamma_{k}^{2} \|\eta_{k}\|^{2}.$$

■ Problem: Control the sequences $\sum_{k=1}^{n} \gamma_k \langle T_{\gamma_k}(\theta_{k-1}) - \theta_{\star}, \eta_k \rangle$ and $\sum_{k=1}^{n} \gamma_k^2 \|\eta_k\|^2$ in expectation or using high-probability bounds.

Robbins-Monro setting

$$\nabla f(\theta) = \int_{\mathsf{X}} H_{\theta}(x) \pi(\mathrm{d}x)$$

Set

$$H_{n+1} = m_{n+1}^{-1} \sum_{j=1}^{m_{n+1}} H_{\theta_n}(X_{n+1}^{(j)})$$

where m_{n+1} is the size of the batch and $\{X_{n+1}^{(j)}, 1 \leq j \leq m_{n+1}\}$ is a sample from π independent of $\sigma(\theta_\ell, \ell \leq n)$.

In such case,

$$\begin{split} \mathbb{E}\left[\left.H_{n+1} \,\middle|\, \mathcal{F}_n\right] &= m_{n+1}^{-1} \sum_{j=1}^{m_{n+1}} \mathbb{E}\left[\left.H_{\theta_n}(X_{n+1}^{(j)})\,\middle|\, \mathcal{F}_n\right] = \nabla f(\theta_n) \text{ and } \\ \eta_{n+1} &= H_{n+1} - \nabla f(\theta_n) \text{ is a martingale increment.} \end{split}$$

Bounded case / Constant stepsizes - Risk Bounds

- Assume that $\|H_{\theta}(x)\| \leq B$, then $\|\eta_{n+1}\| \leq 2B$ and the stepsizes are constant $\gamma_k \equiv 1/B\sqrt{n}$ for $k \in \{1, \ldots, n\}$.
- On one hand

$$\Gamma_n^{-1} \sum_{k=1}^n \gamma_k^2 ||\eta_{k+1}||^2 \le \frac{4B}{\sqrt{n}}$$

■ Risk bound: since $\mathbb{E}\left[\left\langle T_{\gamma_k}(\theta_{k-1}) - \theta_{\star}, \eta_k \right\rangle \middle| \mathcal{F}_{k-1} \right] = 0$ (since $\mathbb{E}\left[\left. \eta_k \middle| \mathcal{F}_{k-1} = 0 \right] = 0 \right)$, the risk bound is

$$\mathbb{E}\left[F\left(n^{-1}\sum_{k=1}^{n}\theta_{k}\right)\right] - \min F \leq \frac{B}{2\sqrt{n}}\|\theta_{0} - \theta_{\star}\|^{2} + \frac{4B}{\sqrt{n}}.$$

Same risk bound than the Stochastic subgradient method (minimax rate)

Bounded case / Constant stepsizes - Concentration

Azuma-Hoeffding inequality for bounded martingale increments $\{Z_k, k \in \mathbb{N}^*\}$:

$$\mathbb{P}\left(\frac{1}{n}\sum_{k=1}^{n} Z_k \ge \frac{Ct}{\sqrt{n}}\right) \le \exp(-t^2/2)$$

Apply it to

$$Z_k = \langle T_{\gamma_k}(\theta_{k-1}) - \theta_{\star}, \eta_k \rangle$$
.

- 1 Supervised Machine Learning
- 2 Smooth convex optimization
- 3 Non-smooth convex optimization
- 4 Stochastic approximation
- 5 Proximal methods
- 6 Applications

Network structure estimation High-dimensional logistic regression with random effect

- Supervised Machine Learning
 - Set-up
 - Convex functions: basic ideas
 - Empirical risk minimization: convergence rates
- 2 Smooth convex optimization
 - Gradient descent
 - Accelerated gradient methods
- 3 Non-smooth convex optimization
- 4 Stochastic approximation
 - An introduction to stochastic approximation
 - Smooth strongly convex case
 - Stochastic subgradient descent/method
- 5 Proximal methods
 - Proximal operator
 - Proximal gradient algorithm
 - Stochastic proximal gradient
- 6 Applications
 - Network structure estimation
 - High-dimensional logistic regression with random effect → ← → → →

Network structure estimation

- Problem fitting a discrete graphical models in a setting where the number of nodes in the graph is large compared to the sample size.
- Formalization Let A be a nonempty finite set, and $p \ge 1$ an integer. Consider a graphical model on $X = A^p$ with p.m.f.

$$f_{\theta}(x_1,\ldots,x_p) = \frac{1}{Z_{\theta}} \exp \left\{ \sum_{k=1}^p \theta_{kk} B_0(x_k) + \sum_{1 \le j < k \le p} \theta_{kj} B(x_k,x_j) \right\},\,$$

for a non-zero function $B_0: A \to \mathbb{R}$ and a symmetric non-zero function $B: A \times A \to \mathbb{R}$.

■ The term Z_{θ} is the normalizing constant of the distribution (the partition function), which cannot (in general) be computed explicitly.

Network structure estimation

- Problem fitting a discrete graphical models in a setting where the number of nodes in the graph is large compared to the sample size.
- Formalization Let A be a nonempty finite set, and $p \ge 1$ an integer. Consider a graphical model on $X = A^p$ with p.m.f.

$$f_{\theta}(x_1,\ldots,x_p) = \frac{1}{Z_{\theta}} \exp\left\{ \sum_{k=1}^p \theta_{kk} B_0(x_k) + \sum_{1 \le j < k \le p} \theta_{kj} B(x_k,x_j) \right\},\,$$

for a non-zero function $B_0: A \to \mathbb{R}$ and a symmetric non-zero function $B: A \times A \to \mathbb{R}$.

The real-valued symmetric matrix θ defines the graph structure and is the parameter of interest. Same interpretation as the precision matrix in a multivariate Gaussian distribution.

Network structure estimation

- Problem: Estimate θ from N realizations $\{x^{(i)}, 1 \leq i \leq N\}$ where $x^{(i)} = (x_1^{(i)}, \dots, x_p^{(i)}) \in \mathsf{A}^p$ under sparsity constraint.
- Applications biology, social sciences,
- Main difficulty: the log-partition function $\log Z_{\theta}$ is intractable in general.
 - Most of the existing results use a pseudo-likelihood function.
 - One exception is [hoefling09], using an active set strategy (to preserve sparsity), and the junction tree algorithm for computing the partial derivatives of the log-partition function. However, this algorithm does not scale

Model

■ Penalized likelihood $F(\theta) = -\ell(\theta) + g(\theta)$ where

$$\ell(\theta) = \frac{1}{N} \sum_{i=1}^{N} \langle \theta, \bar{B}(x^{(i)}) \rangle - \log Z_{\theta} \text{ and } g(\theta) = \lambda \sum_{1 \leq k \leq j \leq p} |\theta_{jk}| ;$$

the matrix-valued function $\bar{B}:\mathsf{X}\to\mathbb{R}^{p\times p}$ is defined by

$$\bar{B}_{kk}(x) = B_0(x_k)$$
 $\bar{B}_{kj}(x) = B(x_k, x_j), k \neq j.$

Intractable canonical exponential model.

Model

■ Penalized likelihood $F(\theta) = -\ell(\theta) + g(\theta)$ where

$$\ell(\theta) = \frac{1}{N} \sum_{i=1}^{N} \langle \theta, \bar{B}(x^{(i)}) \rangle - \log Z_{\theta} \text{ and } g(\theta) = \lambda \sum_{1 \leq k \leq j \leq p} |\theta_{jk}| ;$$

the matrix-valued function $\bar{B}:\mathsf{X}\to\mathbb{R}^{p\times p}$ is defined by

$$\bar{B}_{kk}(x) = B_0(x_k)$$
 $\bar{B}_{kj}(x) = B(x_k, x_j), k \neq j.$

lacksquare $\theta \mapsto -\ell(\theta)$ is convex and

$$\nabla \ell(\theta) = \frac{1}{N} \sum_{i=1}^{N} \bar{B}(x^{(i)}) - \int_{\mathsf{X}} \bar{B}(z) f_{\theta}(z) \mu(\mathrm{d}z) ,$$

Implementation

- Direct simulation from the distribution f_{θ} is not feasible.
- If X is not too large, then a Gibbs sampler that samples from the full conditional distributions of f_{θ} can be easily implemented.
- Gibbs sampler is a generic algorithm that in some cases is known to mix poorly. Whenever possible we recommend the use of specialized problem-specific MCMC algorithms with better mixing properties...

Set up

- X = {1,..., M}, $B_0(x) = 0$, and $B(x,y) = \mathbf{1}_{\{x=y\}}$, which corresponds to the Potts model.
- We use M = 20, $B_0(x) = x$, N = 250 and for $p \in \{50, 100, 200\}$.
- We generate the 'true' matrix θ_{true} such that it has on average p non-zero elements off-diagonal which are simulated from a uniform distribution on $(-4,-1) \cup (1,4)$.
- All the diagonal elements are set to 0.

Algorithms

- Two versions of the stochastic proximal gradient are considered
 - Solver 1: A version with a fixed Monte Carlo batch size $m_n = 500$, and decreasing step size $\gamma_n = \frac{25}{n} \frac{1}{n^{0.7}}$.
 - 2 Solver 2: A version with increasing Monte Carlo batch size $m_n = 500 + n^{1.2}$, and fixed step size $\gamma_n = \frac{25}{n} \frac{1}{\sqrt{50}}$.
- The set-up is such that both solvers draw approximately the same number of Monte Carlo samples.

Algorithms

- Two versions of the stochastic proximal gradient are considered
 - 1 Solver 1: A version with a fixed Monte Carlo batch size $m_n = 500$, and decreasing step size $\gamma_n = \frac{25}{p} \frac{1}{n^{0.7}}$.
 - 2 Solver 2: A version with increasing Monte Carlo batch size $m_n=500+n^{1.2}$, and fixed step size $\gamma_n=\frac{25}{p}\frac{1}{\sqrt{50}}$.
- We evaluate the convergence of each solver by computing the relative error $\|\theta_n \theta_\infty\|/\|\theta_\infty\|$, along the iterations, where θ_∞ denotes the value returned by the solver on its last iteration.

Algorithms

- Two versions of the stochastic proximal gradient are considered
 - 1 Solver 1: A version with a fixed Monte Carlo batch size $m_n = 500$, and decreasing step size $\gamma_n = \frac{25}{p} \frac{1}{n^{0.7}}$.
 - 2 Solver 2: A version with increasing Monte Carlo batch size $m_n = 500 + n^{1.2}$, and fixed step size $\gamma_n = \frac{25}{p} \frac{1}{\sqrt{50}}$.
- We compare the optimizer output to θ_{∞} , not θ_{true} . Ideally, we would like to compare the iterates to the solution of the optimization problem. However in the present setting a solution is not available in closed form (and there could be more than one solution).

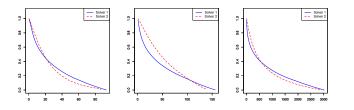


Figure: Relative errors plotted as function of computing time for Solver 1 and Solver 2

When measured as function of resource used, Solver 1 and Solver 2 have roughly the same convergence rate.

Sensitivity and Precision

- We also compute the statistic $F_n \stackrel{\text{def}}{=} \frac{2\mathsf{Sen}_n\mathsf{Prec}_n}{\mathsf{Sen}_n+\mathsf{Prec}_n}$ which measures the recovery of the sparsity structure of θ_∞ along the iteration.
- In this definition Sen_n is the sensitivity, and Prec_n is the precision defined as

$$\begin{split} & \mathsf{Sen}_n = \frac{\sum_{j < i} \mathbf{1}_{\{|\theta_{n,ij}| > 0\}} \mathbf{1}_{\{|\theta_{\infty,ij}| > 0\}}}{\sum_{j < i} \mathbf{1}_{\{|\theta_{\infty,ij}| > 0\}}} \\ & \mathsf{Prec}_n = \frac{\sum_{j < i} \mathbf{1}_{\{|\theta_{n,ij}| > 0\}} \mathbf{1}_{\{|\theta_{\infty,ij}| > 0\}}}{\sum_{j < i} \mathbf{1}_{\{|\theta_{\infty,ij}| > 0\}}}. \end{split}$$

Sensitivity and Precision

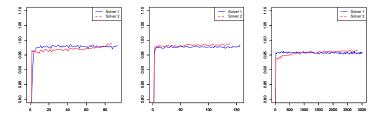


Figure: Statistic F_n plotted as function of computing time for Solver 1 and Solver 2.

- 1 Supervised Machine Learning
 - Set-up
 - Convex functions: basic ideas
 - Empirical risk minimization: convergence rates
- 2 Smooth convex optimization
 - Gradient descent
 - Accelerated gradient methods
- 3 Non-smooth convex optimization
- 4 Stochastic approximation
 - An introduction to stochastic approximation
 - Smooth strongly convex case
 - Stochastic subgradient descent/method
- 5 Proximal methods
 - Proximal operator
 - Proximal gradient algorithm
 - Stochastic proximal gradient
- 6 Applications
 - Network structure estimation

High-dimensional logistic regression with random effects

- Observations : N observations $\mathbf{Y} \in \{0,1\}^N$
- **Random effect** : Conditionally to U, for all $i = 1, \dots, N$,

$$Y_i \stackrel{\text{ind.}}{\sim} \mathcal{B}\left(\frac{\exp(\eta_i)}{1 + \exp(\eta_i)}\right)$$

where

$$\begin{bmatrix} \eta_1 \\ \vdots \\ \eta_N \end{bmatrix} = \mathbf{X}\beta_* + \sigma_* \mathbf{Z} \mathbf{U}$$

- The regressors $\mathbf{X} \in \mathbb{R}^{N \times p}$ and the factor loadings $\mathbf{Z} \in \mathbb{R}^{N \times q}$, known.
- Objective: estimate $\beta_* \in \mathbb{R}^p, \sigma_* > 0$.

Penalized likelihood

lacksquare log-likelihood : Taking $\mathbf{U} \sim \mathcal{N}_q(0,I)$, setting

$$\theta = (\beta, \sigma)$$
 $F(\eta) = \frac{\exp(\eta)}{1 + \exp(\eta)}$

the log-likelihood of the observations Y (with respect to θ) is

$$\ell(\theta) = \log \int \prod_{i=1}^{N} \left\{ F\left(\mathbf{X}_{i}.\beta + \sigma(\mathbf{Z}\mathbf{U})_{i}\right) \right\}^{Y_{i}} \left\{ 1 - F\left(\mathbf{X}_{i}.\beta + \sigma(\mathbf{Z}\mathbf{U})_{i}\right) \right\}^{1 - Y_{i}} \phi(\mathbf{u}) d\mathbf{u}$$

■ Elastic net penalty

$$\begin{split} g_{\lambda,\theta}(\theta) &= \lambda \left(\frac{1-\alpha}{2} \|\beta\|_2^2 + \alpha \|\beta\|_1 \right) \\ \tilde{g}_{\mathcal{C}}(\theta) &= \left\{ \begin{array}{ll} 0 & \text{si } \theta \in \mathcal{C} \\ +\infty & \text{otherwise} \end{array} \right. \end{split}$$

Penalized likelihood

$$\min_{\theta \in \Theta} (f(\theta) + g(\theta)), \quad f(\theta) = -\ell(\theta),$$

with

$$\ell(\theta) = \log \int \exp\left(\ell_c(\theta|\mathbf{u})\right) \phi(\mathbf{u}) d\mathbf{u}$$

$$\ell_c(\theta|\mathbf{u}) = \sum_{i=1}^{N} \left\{ Y_i \left(\mathbf{X}_{i \cdot \beta} + \sigma(\mathbf{Z}\mathbf{U})_i \right) - \ln \left(1 + \exp \left(\mathbf{X}_{i \cdot \beta} + \sigma(\mathbf{Z}\mathbf{U})_i \right) \right) \right\}$$

Gradient:

$$\nabla \ell(\theta) = \int \nabla \ell_c(\theta|\mathbf{u}) \pi_{\theta}(\mathbf{u}) d\mathbf{u}$$

where $\pi_{\theta}(\mathbf{u})$ is the posterior distribution of the random effect given the observations

$$\pi_{\theta}(\mathbf{u}) = \exp\left(\ell_c(\theta|\mathbf{u}) - \ell(\theta)\right) \phi(\mathbf{u})$$

Penalized likelihood

$$\min_{\theta \in \Theta} \left(f(\theta) + g(\theta) \right) , \quad f(\theta) = -\ell(\theta)$$

where

$$\begin{split} g_{\lambda,\theta}(\theta) &= \lambda \left(\frac{1-\alpha}{2} \|\beta\|_2^2 + \alpha \|\beta\|_1 \right) + \mathbb{I}_{\mathcal{C}}(\theta) \\ \mathbb{I}_{\mathcal{C}}(\theta) &= \begin{cases} 0 & \text{if } \theta \in \mathcal{C} \\ +\infty & \text{otherwise} \end{cases} \quad \mathcal{C} \text{ compact convex set} \end{split}$$

→ proper convex, lower-semi continuous, not differentiable.

MCMC algorithm

- The distribution π_{θ} is sampled using the MCMC sampler proposed in (Polson et al, 2012) based on data-augmentation.
- We write $-\nabla \ell(\theta) = \int_{\mathbb{R}^q \times \mathbb{R}^N} H_{\theta}(\mathbf{u}) \tilde{\pi}_{\theta}(\mathbf{u}, \mathbf{w}) \, \mathrm{d}\mathbf{u} \mathrm{d}\mathbf{w}$ where $\tilde{\pi}_{\theta}(\mathbf{u}, \mathbf{w})$ is defined for $\mathbf{u} \in \mathbb{R}^q$ and $\mathbf{w} = (w_1, \cdots, w_N) \in \mathbb{R}^N$ by

$$\tilde{\pi}_{\theta}(\mathbf{u}, \mathbf{w}) = \left(\prod_{i=1}^{N} \bar{\pi}_{PG} \left(w_i; x_i' \beta + \sigma z_i' \mathbf{u} \right) \right) \pi_{\theta}(\mathbf{u}) ;$$

• in this expression, $\bar{\pi}_{PG}(\cdot;c)$ is the density of the Polya-Gamma distribution on the positive real line with parameter c given by

$$\bar{\pi}_{PG}(w;c) = \cosh(c/2) \exp\left(-wc^2/2\right) \rho(w) \mathbb{1}_{\mathbb{R}^+}(w) ,$$

where
$$\rho(w) \propto \sum_{k \geq 0} (-1)^k (2k+1) \exp(-(2k+1)^2/(8w)) w^{-3/2}$$

MCMC algorithm

- The distribution π_{θ} is sampled using the MCMC sampler proposed in (Polson et al, 2012) based on data-augmentation.
- We write $-\nabla \ell(\theta) = \int_{\mathbb{R}^q \times \mathbb{R}^N} H_{\theta}(\mathbf{u}) \tilde{\pi}_{\theta}(\mathbf{u}, \mathbf{w}) \, \mathrm{d}\mathbf{u} \mathrm{d}\mathbf{w}$ where $\tilde{\pi}_{\theta}(\mathbf{u}, \mathbf{w})$ is defined for $\mathbf{u} \in \mathbb{R}^q$ and $\mathbf{w} = (w_1, \dots, w_N) \in \mathbb{R}^N$ by

$$\tilde{\pi}_{\theta}(\mathbf{u}, \mathbf{w}) = \left(\prod_{i=1}^{N} \bar{\pi}_{PG} \left(w_i; x_i' \beta + \sigma z_i' \mathbf{u} \right) \right) \pi_{\theta}(\mathbf{u}) ;$$

Thus, we have

$$\tilde{\pi}_{\theta}(\mathbf{u}, \mathbf{w}) = C_{\theta}\phi(\mathbf{u}) \prod_{i=1}^{N} \exp\left(\sigma(Y_i - 1/2)z_i'\mathbf{u} - w_i(x_i'\beta + \sigma z_i'\mathbf{u})^2/2\right) \rho(w_i) \mathbb{1}$$

where
$$\ln C_{\theta} = -N \ln 2 - \ell(\theta) + \sum_{i=1}^{N} (Y_i - 1/2) x_i' \beta$$
.

MCMC algorithm

- The distribution π_{θ} is sampled using the MCMC sampler proposed in (Polson et al, 2012) based on data-augmentation.
- We write $-\nabla \ell(\theta) = \int_{\mathbb{R}^q \times \mathbb{R}^N} H_{\theta}(\mathbf{u}) \tilde{\pi}_{\theta}(\mathbf{u}, \mathbf{w}) \, \mathrm{d}\mathbf{u} \mathrm{d}\mathbf{w}$ where $\tilde{\pi}_{\theta}(\mathbf{u}, \mathbf{w})$ is defined for $\mathbf{u} \in \mathbb{R}^q$ and $\mathbf{w} = (w_1, \dots, w_N) \in \mathbb{R}^N$ by

$$\tilde{\pi}_{\theta}(\mathbf{u}, \mathbf{w}) = \left(\prod_{i=1}^{N} \bar{\pi}_{PG} \left(w_i; x_i' \beta + \sigma z_i' \mathbf{u} \right) \right) \pi_{\theta}(\mathbf{u}) ;$$

■ This target distribution can be sampled using a Gibbs algorithm

Numerics

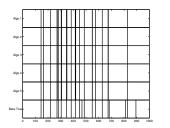
- We test the algorithms with N=500, p=1,000 and q=5.
- We generate the $N \times p$ covariates matrix X columnwise, by sampling a stationary \mathbb{R}^N -valued autoregressive model with parameter $\rho=0.8$ and Gaussian noise $\sqrt{1-\rho^2}\,\mathcal{N}_N(0,I)$.
- We generate the vector of regressors β_{true} from the uniform distribution on [1,5] and randomly set 98% of the coefficients to zero.
- The variance of the random effect is set to $\sigma^2 = 0.1$.

Numerics

We first illustrate the ability of Monte Carlo Proximal Gradient algorithms to find a minimizer of F. We compare the Monte Carlo proximal gradient algorithm

- II with fixed batch size: $\gamma_n=0.01/\sqrt{n}$ and $m_n=275$ (Algo 1); $\gamma_n=0.5/n$ and $m_n=275$ (Algo 2).
- 2 with increasing batch size: $\gamma_n=\gamma=0.005, \ m_n=200+n$ (Algo 3); $\gamma_n=\gamma=0.001, \ m_n=200+n$ (Algo 4); and $\gamma_n=0.05/\sqrt{n}$ and $m_n=270+\lceil\sqrt{n}\rceil$ (Algo 5).

Results



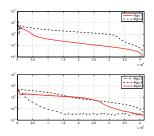


Figure: [left] The support of the sparse vector β_{∞} obtained by Algo 1 to Algo 5; for comparison, the support of β_{true} is on the bottom row. [right] Relative error along one path of each algorithm as a function of the total number of Monte Carlo samples.

Results

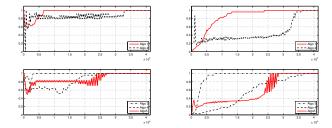


Figure: The sensitivity Sen_n [left] and the precision Prec_n [right] along a path, versus the total number of Monte Carlo samples up to time n

Bibliography I