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Context

Machine learning for “big data”

Large-scale machine learning: large d, large n

d: dimension of each observation (input)
n : number of observations

Examples: computer vision, bioinformatics, advertising

Ideal running-time complexity: O(dn)

Going back to simple methods

Stochastic gradient methods (Robbins, Monro, 1951)
Mixing statistics and optimization
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Supervised machine learning

Data: n observations (Xi, Yi) ∈ X × Y, i = 1, . . . , n, i.i.d.

Prediction as a linear function 〈θ,Φ(x)〉 of features Φ(x) ∈ Rd

(regularized) empirical risk minimization: find θ̂ solution of

min
θ∈Rd

1

n

n∑
i=1

`
(
Yi, 〈θ,Φ(Xi)〉

)
+ µΩ(θ)

convex data fitting term + regularizer

Francis Bach, Aymeric Dieuleveut, Alain Durmus, Eric Moulines CEMRACS 2021



Supervised Machine Learning
Smooth convex optimization

Non-smooth convex optimization
Stochastic approximation

Proximal methods
Applications

Set-up
Convex functions: basic ideas
Empirical risk minimization: convergence rates

Usual losses

Regression: y ∈ R, prediction φθ(x) = 〈θ,Φ(x)〉
quadratic loss `(y, 〈θ,Φ(x)〉) = 1

2
(y − 〈θ,Φ(x)〉)2

Classification: y ∈ {−1, 1}, prediction φθ(x) = sign(〈θ,Φ(x)〉)
0− 1 loss: `(y, 〈θ,Φ(x)〉) = 1{y·〈θ,Φ(x)〉<0}.
convex losses
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Convex loss
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square
logistic

Support vector machine (hinge loss)

`(Y, 〈θ,Φ(x)〉) = max{1−Y 〈θ,Φ(x)〉, 0}

Logistic regression:

`(Y, 〈θ,Φ(x)〉) = log(1+exp(−Y 〈θ,Φ(x)〉))

Least-squares regression

`(Y, 〈θ,Φ(x)〉) =
1

2
(Y − 〈θ,Φ(x)〉)2
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Usual regularizers

Main goal: avoid overfitting

(squared) Euclidean norm: ‖θ‖22 =
∑d
j=1 |θj |2

Sparsity-inducing norms

LASSO : `1-norm ‖θ‖1 =
∑d
j=1 |θj |

Perform model selection as well as regularization
Non-smooth optimization and structured sparsity
See, e.g., Bach, Jenatton, Mairal and Obozinski (2012a,b)
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Set-up
Convex functions: basic ideas
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”old style” Supervised learning

Data: n observations (Xi, Yi) ∈ X × Y, i = 1, . . . , n, i.i.d.

Prediction as a linear function 〈θ,Φ(x)〉 of features Φ(x) ∈ Rd

(regularized) empirical risk minimization: find θ̂ solution of

min
θ∈Rd

1

n

n∑
i=1

`
(
Yi, 〈θ,Φ(Xi)〉

)
such that Ω(θ) ≤ D

convex data fitting term + constraint

Empirical risk: f̂(θ) = n−1
∑n
i=1 `(Yi, 〈θ,Φ(Xi)〉)

Expected risk: f(θ) = E[`(Y, 〈θ,Φ(X)〉)] .
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General assumptions

Data: n observations (Xi, Yi) ∈ X × Y, i = 1, . . . , n, i.i.d.

Bounded features Φ(x) ∈ Rd: ‖Φ(x)‖2 ≤ R
Empirical risk f̂(θ) = n−1

∑n
i=1 `(Yi, 〈θ,Φ(Xi)〉)

Expected risk f(θ) = E[`(Y, 〈θ,Φ(X)〉)]
Loss for a single observation: fi(θ) = `(Yi, 〈θ,Φ(Xi)〉). For all i,
f(θ) = E[fi(θ)]

Properties of fi, f, f̂

Convex on Rd
Additional regularity assumptions: Lipschitz-continuity, smoothness
and strong convexity
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Lipschitz continuity

Bounded gradients of g ( ⇔ Lipschitz-continuity): the function g if
convex, differentiable and has gradients uniformly bounded by B on
the ball of center 0 and radius D: for all θ ∈ Rd ,

‖θ‖2 ≤ D ⇒ ‖∇g(θ)‖2 ≤ B
⇔

|g(θ)− g(θ′)| ≤ B‖θ − θ′‖2

Machine learning

g(θ) = n−1∑n
i=1 `(Yi, 〈θ,Φ(Xi)〉)

G-Lipschitz loss and R-bounded data: B = GR
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Smoothness

A function g : Rd → R is L-smooth if and only if it is differentiable
and its gradient is L-Lipschitz: for all θ, θ′ ∈ Rd;

‖∇g(θ1)−∇g(θ′)‖2 ≤ L‖θ − θ′‖2

If g is twice differentiable, for all θ ∈ Rd, ∇⊗2g(θ) 4 L · Id

smooth non−smooth
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Smoothness

A function g : Rd → R is L-smooth if and only if it is differentiable
and its gradient is L-Lipschitz: for all θ, θ′ ∈ Rd;

‖∇g(θ1)−∇g(θ′)‖2 ≤ L‖θ − θ′‖2

If g is twice differentiable, for all θ ∈ Rd, ∇⊗2g(θ) 4 L · Id
Machine learning

g(θ) = n−1
∑n
i=1 `(Yi, 〈θ,Φ(Xi)〉)

Hessian ≈ covariance matrix

n−1
n∑
i=1

Φ(Xi)Φ
>(Xi)῭(Yi, 〈θ,Φ(Xi)〉)

Lloss-smooth loss and R-bounded data: L = LlossR
2
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Strong convexity

A function g : Rd → R is µ-strongly convex if and only if, for all
θ, θ′ ∈ Rd,

g(θ) > g(θ′) + 〈∇g(θ′), θ − θ′〉+
µ

2
‖θ − θ′‖22

If g is twice differentiable: for all θ ∈ Rd, ∇2g(θ) < µ · Id

convex
strongly
convex
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n−1
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i=1

Φ(Xi)Φ(Xi)
> ῭(Yi, 〈θ,Φ(Xi)〉)

Data with invertible covariance matrix

Francis Bach, Aymeric Dieuleveut, Alain Durmus, Eric Moulines CEMRACS 2021



Supervised Machine Learning
Smooth convex optimization

Non-smooth convex optimization
Stochastic approximation

Proximal methods
Applications

Set-up
Convex functions: basic ideas
Empirical risk minimization: convergence rates

Strong convexity
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θ, θ′ ∈ Rd,

g(θ) > g(θ′) + 〈∇g(θ′), θ − θ′〉+
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2
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Machine learning

g(θ) = n−1
∑n
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Hessian ≈ covariance matrix

n−1
n∑
i=1

Φ(Xi)Φ(Xi)
> ῭(Yi, 〈θ,Φ(Xi)〉)

Data with invertible covariance matrix

Adding regularization by µ
2 ‖θ‖

2 [! creates a bias (controlled by µ)]
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Smoothness/convexity assumptions: summary

Bounded gradients of g (Lipschitz-continuity): the function g if
convex, differentiable and has gradients uniformly bounded by B on
the ball of center 0 and radius D:

for all θ ∈ Rd, ‖θ‖2 ≤ D ⇒ ‖∇g(θ)‖2 ≤ B

Smoothness of g: the function g is convex, differentiable with
L-Lipschitz-continuous gradient ∇g:

for all θ, θ′ ∈ Rd, ‖∇g(θ)−∇g(θ′)‖2 ≤ L‖θ − θ′‖2

Strong convexity of g: The function g is strongly convex with
respect to the norm ‖ · ‖2, with convexity constant µ > 0: for all
θ, θ′‘ ∈ Rd,

g(θ) > g(θ′) + 〈∇g(θ′), θ − θ′〉+
µ

2
‖θ − θ′‖22
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Empirical risk minimization: rationale

The expected risk f(θ) = E[`(Y, 〈θ,X, )〉] is not tractable.

Only the empirical risk f̂(θ) = n−1
∑n
i=1[`(Yi, 〈θ,Xi, )〉] is.

Minimizing f̂ instead of f?

A simple observation:

f(θ̂)−min
θ∈Θ

f(θ) ≤ sup
θ∈Θ
{f̂(θ)− f(θ)}+ sup

θ∈Θ
{f(θ)− f̂(θ)}

Can we have a bound on supθ∈Θ |f̂(θ)− f(θ)|?
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Motivation from least-squares

For least-squares, we have `(y, 〈θ,Φ(x)〉) = 1
2 (y − 〈θ,Φ(x)〉)2, and

f(θ)− f̂(θ) =
1

2
θ>
(

1

n

n∑
i=1

Φ(Xi)Φ(Xi)
> − EΦ(X)Φ(X)>

)
θ

− θ>
(

1

n

n∑
i=1

YiΦ(Xi)− EY Φ(X)

)
+

1

2

(
1

n

n∑
i=1

Y 2
i − EY 2

)
,

sup
‖θ‖2≤D

|f(θ)− f̂(θ)| ≤ D2

2

∥∥∥∥ 1

n

n∑
i=1

Φ(Xi)Φ(Xi)
> − EΦ(X)Φ(X)>

∥∥∥∥
op

+D

∥∥∥∥ 1

n

n∑
i=1

YiΦ(Xi)− EY Φ(X)

∥∥∥∥
2

+
1

2

∣∣∣∣ 1n
n∑
i=1

Y 2
i − EY 2

∣∣∣∣,
sup
‖θ‖2≤D

|f(θ)− f̂(θ)| ≤ O(1/
√
n) with high probability
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Slow rate for supervised learning

Assumptions (f is the expected risk, f̂ the empirical risk)

Ω(θ) = ‖θ‖2 (Euclidean norm)

“Linear” predictors: φθ(x) = 〈θ,Φ(x)〉, with ‖Φ(x)‖2 ≤ R
G-Lipschitz loss: f(θ) = `(Y, 〈θ,Φ(X)〉) is GR-Lipschitz on
Θ = {‖θ‖2 ≤ D}
No convexity assumption
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Slow rate for supervised learning

Assumptions (f is the expected risk, f̂ the empirical risk)

Ω(θ) = ‖θ‖2 (Euclidean norm)

“Linear” predictors: φθ(x) = 〈θ,Φ(x)〉, with ‖Φ(x)‖2 ≤ R
G-Lipschitz loss: f(θ) = `(Y, 〈θ,Φ(X)〉) is GR-Lipschitz on
Θ = {‖θ‖2 ≤ D}
No convexity assumption

High-probability bounds: With probability greater than 1− δ,

sup
θ∈Θ
|f̂(θ)− f(θ)| ≤ sup |`(Y, 0)|+GRD√

n

[
2 +

√
2 log

2

δ

]

Francis Bach, Aymeric Dieuleveut, Alain Durmus, Eric Moulines CEMRACS 2021



Supervised Machine Learning
Smooth convex optimization

Non-smooth convex optimization
Stochastic approximation

Proximal methods
Applications

Set-up
Convex functions: basic ideas
Empirical risk minimization: convergence rates

Slow rate for supervised learning

Assumptions (f is the expected risk, f̂ the empirical risk)

Ω(θ) = ‖θ‖2 (Euclidean norm)

“Linear” predictors: φθ(x) = 〈θ,Φ(x)〉, with ‖Φ(x)‖2 ≤ R
G-Lipschitz loss: f(θ) = `(Y, 〈θ,Φ(X)〉) is GR-Lipschitz on
Θ = {‖θ‖2 ≤ D}
No convexity assumption

Risk bounds

E
[

sup
θ∈Θ
|f̂(θ)− f(θ)|

]
≤ 4 sup |`(Y, 0)|+ 4GRD√

n
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Slow rate for supervised learning

Assumptions (f is the expected risk, f̂ the empirical risk)

Ω(θ) = ‖θ‖2 (Euclidean norm)

“Linear” predictors: φθ(x) = 〈θ,Φ(x)〉, with ‖Φ(x)‖2 ≤ R
G-Lipschitz loss: f(θ) = `(Y, 〈θ,Φ(X)〉) is GR-Lipschitz on
Θ = {‖θ‖2 ≤ D}
No convexity assumption

Method

Tools: Symmetrization, Rademacher complexity (see Boucheron et
al., 2012), McDiarmid inequality.

Lipschitz functions ⇒ slow rate
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Empirical Risk vs Fluctuation

We have, with probability 1− δ, for all θ ∈ Θ:

f(θ̂)−min
θ∈Θ

f(θ) ≤ sup
θ∈Θ
{f̂(θ)− f(θ)}+ sup

θ∈Θ
{f(θ)− f̂(θ)}

≤ 2√
n

(`0 +GRD)(4 +

√
2 log

1

δ
)

Only need to optimize with precision ≈ 1/
√
n
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Slow rate for supervised learning

Assumptions (f is the expected risk, f̂ the empirical risk)

Ω(θ) = ‖θ‖2 (Euclidean norm)

“Linear” predictors: φθ(x) = 〈θ,Φ(x)〉, with ‖Φ(x)‖2 ≤ R a.s.

G-Lipschitz loss: f and f̂ are GR-Lipschitz on Θ = {‖θ‖2 ≤ D}
No assumptions regarding convexity

With probability greater than 1− δ

sup
θ∈Θ
|f̂(θ)− f(θ)| ≤ `0 +GRD√

n

[
2 +

√
2 log

2

δ

]

Expected estimation error: E
[

sup
θ∈Θ
|f̂(θ)− f(θ)|

]
≤ 4`0 + 4GRD√

n

Under other conditions on the model, can we improve the rate
1/
√
n?
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Motivation from mean estimation

Estimator

θ̂ =
1

n

n∑
i=1

Zi = arg min
θ∈R

f̂(θ)

where

f̂(θ) =
1

2n

n∑
i=1

(Zi − θ)2 f(θ) = E
[
(Z − θ)2

]
Slow rate

f(θ) =
1

2
(θ − E[Z])2 +

1

2
var(Z) = f̂(θ) +O(n−1/2)
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Set-up
Convex functions: basic ideas
Empirical risk minimization: convergence rates

Motivation from mean estimation

Estimator

θ̂ =
1

n

n∑
i=1

Zi = arg min
θ∈R

f̂(θ)

where

f̂(θ) =
1

2n

n∑
i=1

(Zi − θ)2 f(θ) = E
[
(Z − θ)2

]
Fast rate

f(θ̂)− f(E[Z]) =
1

2
(θ̂ − E[Z])2

E
[
f(θ̂)− f(E[Z])

]
=

1

2
E
(

1

n

n∑
i=1

Zi − E[Z]

)2

=
1

2n
var(Z)

Bound only at θ̂ + strong convexity
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Set-up
Convex functions: basic ideas
Empirical risk minimization: convergence rates

Fast rate for supervised learning

Assumptions (f is the expected risk, f̂ the empirical risk)

Same as before (bounded features, Lipschitz loss) + strong convexity

For any a > 0, with probability greater than 1− δ, for all θ ∈ Rd,

f(θ̂)− min
η∈Rd

f(η) ≤ 8(1 + a−1)G2R2(32 + log(δ−1))

µn

Results from (Sridharan et al., 2008), (Boucheron et al., 2012).

Strongly convex functions ⇒ fast rate

Francis Bach, Aymeric Dieuleveut, Alain Durmus, Eric Moulines CEMRACS 2021



Supervised Machine Learning
Smooth convex optimization

Non-smooth convex optimization
Stochastic approximation

Proximal methods
Applications

Set-up
Convex functions: basic ideas
Empirical risk minimization: convergence rates

Minimization of the expected and empirical risk

Conclusion: θ̂ ∈ arg min
θ∈Θ

f̂(θ) is a good proxy as a minimizer of f

as n is large.

Question: How to find θ̂?

Answer: gradient descent algorithms!

Recall f̂ is assumed to be convex.

Very efficient methods from convex optimization are available.
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Gradient descent
Accelerated gradient methods

1 Supervised Machine Learning

2 Smooth convex optimization

3 Non-smooth convex optimization

4 Stochastic approximation

5 Proximal methods

6 Applications
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Complexity results in convex optimisation

Assumption: g convex on Rd

Classical generic algorithms

(sub)gradient method/descent
Accelerated gradient descent
Newton method

Key additional properties of g

Lipschitz continuity, smoothness or strong convexity

Key insight from (Bottou and Bousquet, 2008)

In machine learning, no need to optimize below estimation error

Key references: (Nesterov, 2004), (Bubeck, 2015).
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Applications

Gradient descent
Accelerated gradient methods

1 Supervised Machine Learning
Set-up
Convex functions: basic ideas
Empirical risk minimization: convergence rates

2 Smooth convex optimization
Gradient descent
Accelerated gradient methods

3 Non-smooth convex optimization
4 Stochastic approximation

An introduction to stochastic approximation
Smooth strongly convex case
Stochastic subgradient descent/method

5 Proximal methods
Proximal operator
Proximal gradient algorithm
Stochastic proximal gradient

6 Applications
Network structure estimation
High-dimensional logistic regression with random effect
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(smooth) gradient descent - strong convexity

Assumptions

g convex with L-Lipschitz gradient
g µ-strongly convex

Algorithm:

θt = θt−1 −
1

L
∇g(θt−1)

Bound:
g(θt)− g(θ∗) ≤ (1− µ/L)t

{
g(θ0)− g(θ∗)

}
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(smooth) gradient descent

Assumptions

g convex with L-Lipschitz gradient
Minimum attained at θ∗

Algorithm:

θt = θt−1 −
1

L
∇g(θt−1)

Bound:

g(θt)− g(θ∗) ≤
2L‖θ0 − θ∗‖2

t+ 4

Not best possible convergence rate
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Key properties of smooth convex functions

g : Rd → R a convex L-smooth function: for all θ, η ∈ Rd,

‖∇g(θ)−∇g(η)‖ ≤ L‖θ − η‖

Quadratic upper bound

0 ≤ g(θ)− g(η)− 〈∇g(η), θ − η〉 ≤ (L/2)‖θ − η‖2

Co-coercivity

1

L
‖∇g(θ)−∇g(η)‖2 ≤ 〈∇g(θ)−∇g(η), θ − η〉
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Co-coercivity: proof

1

L
‖∇g(θ)−∇g(η)‖2 ≤ 〈∇g(θ)−∇g(η), θ − η〉

Set η ∈ Rd and consider the auxiliary function

θ 7→ h(θ) = g(θ)− 〈∇g(η), θ〉 ∇h(θ) = ∇g(θ)−∇g(η)

Convex, global minimum at η and L-smooth.
Using the quadratic upper bound for h at θ, we get for any θ ∈ Rd,

h(η) ≤ h
(
θ − 1

L
∇h(θ)

)
≤ h(θ)− 1

L
‖∇h(θ)‖2 +

1

2L
‖∇h(θ)‖2

≤ h(θ)− 1

2L
‖∇h(θ)‖2
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Co-coercivity: proof

1

L
‖∇g(θ)−∇g(η)‖2 ≤ 〈∇g(θ)−∇g(η), θ − η〉

Partial conclusion:

h(η) ≤ h(θ)− 1

2L
‖∇h(θ)‖2

with h(θ) = g(θ)− 〈∇g(η), θ〉.

g(η)− 〈∇g(η), η〉 ≤ g(θ)− 〈∇g(η), θ〉 − 1

2L
‖∇g(θ)−∇g(η)‖2

Francis Bach, Aymeric Dieuleveut, Alain Durmus, Eric Moulines CEMRACS 2021



Supervised Machine Learning
Smooth convex optimization

Non-smooth convex optimization
Stochastic approximation

Proximal methods
Applications
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Co-coercivity: proof

1

L
‖∇g(θ)−∇g(η)‖2 ≤ 〈∇g(θ)−∇g(η), θ − η〉

g(η)− 〈∇g(η), η〉 ≤ g(θ)− 〈∇g(η), θ〉 − 1

2L
‖∇g(θ)−∇g(η)‖2

Conclusion:

g(θ) ≥ g(η) + 〈∇g(η), θ − η〉+
1

2L
‖∇g(θ)−∇g(η)‖2 .
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Co-coercivity: proof

Adding

g(θ) ≥ g(η) + 〈∇g(η), θ − η〉+
1

2L
‖∇g(θ)−∇g(η)‖2

g(η) ≥ g(θ) + 〈∇g(θ), η − θ〉+
1

2L
‖∇g(θ)−∇g(η)‖2

we obtain

1

L
‖∇g(θ)−∇g(η)‖2 ≤ 〈∇g(θ)−∇g(η), θ − η〉
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Smooth Strongly convex functions

g is L-smooth and µ-strongly convex.

Two key properties:

Strong convexity: 〈∇g(θ)−∇g(η), θ − η〉 ≥ µ‖θ − η‖2
Smoothness: ‖∇g(θ)−∇g(η)‖ ≥ L‖θ − η‖

The value Qg = L/µ is the condition number of g.
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Smooth Strongly convex functions

Strong convexity optimality certificate

g(θ) ≤ g(η) + 〈∇g(η), (θ − η)〉+
1

2µ
‖∇g(θ)−∇g(η)‖2 .

Strong co-coercivity

〈∇g(θ)−∇g(η), θ−η〉 ≥ µL

µ+ L
‖θ−η‖2+

1

µ+ L
‖∇g(θ)−∇g(η)‖2 .
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Proof of the upper bound for strongly convex functions

g(θ) ≤ g(η) + 〈∇g(η), θ − η〉+
1

2µ
‖∇g(θ)−∇g(η)‖2

h : θ 7→ h(θ) = g(θ)− 〈∇g(η), θ〉 is strongly convex with a global
minimum at η.
Since h is strongly convex, for all θ, ζ ∈ Rd, we get

h(ζ) ≥ h(θ) + 〈∇h(θ), ζ − θ〉+
µ

2
‖ζ − θ‖2 .

Hence, for all θ ∈ Rd,

h(η) = min
ζ
h(ζ) ≥ min

ζ

{
h(θ) + 〈∇h(θ), ζ − θ〉+

µ

2
‖ζ − θ‖2

}
≥ h(θ)− 1

2µ
‖∇h(θ)‖2
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Proof of the upper bound for strongly convex functions

g(θ) ≤ g(η) + 〈∇g(η), θ − η〉+
1

2µ
‖∇g(θ)−∇g(η)‖2

Optimality certificate: taking η = θ∗ and using that

∇g(θ∗) = 0

we get that for all θ ∈ Rd,

g(θ)− g(θ∗) ≤
1

2µ
‖∇g(θ)‖2
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Proof of strong co-coercivity

Set h(θ) = g(θ)− (µ/2)‖θ‖2. We get

〈∇h(θ)−∇h(η), θ − η〉 = 〈∇g(θ)−∇g(η), θ − η〉 − µ‖θ − η‖2

≤ (L− µ)‖θ − η‖2

Hence, h is L− µ-smooth. The co-coercivity implies

〈h(θ)− h(η), θ − η〉 ≥ 1

L− µ
‖θ − η‖2 .

which yields the result.
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Convergence proof - strongly convex functions

Iteration θt = θt−1 − γ∇g(θt−1) with γ = 1/L.
Quadratic Upper Bound:

g(θt) = g (θt−1 − γ∇g(θt−1))

≤ g(θt−1) + 〈∇g(θt−1),−γ∇g(θt−1)〉+
L

2
‖ − γ∇g(θt−1)‖2

= g(θt−1)− γ(1− γL/2)‖∇g(θt−1)‖2 = g(θt−1)− 1

2L
‖∇g(θt−1)‖2

Strong convexity optimality certificate

g(θt) ≤ g(θt−1)− µ

L
{g(θt−1)− g(θ∗)}
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Convergence proof - strongly convex functions

Iteration θt = θt−1 − γ∇g(θt−1) with γ = 1/L.

g(θt) ≤ g(θt−1)− µ

L
{g(θt−1)− g(θ∗)}

g(θt)− g(θ∗) ≤ (1− µ/L){g(θt−1)− g(θ∗)}

which implies that

g(θt)− g(θ∗) ≤ (1− µ/L)t{g(θ0)− g(θ∗)}
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Strongly convex functions: parameter convergence

g L-smooth and µ-strongly convex. Set r2
t = ‖θt − θ∗‖. We get

r2
t+1 = ‖θt − θ∗ − γ∇g (θt)‖2

= r2
t − 2γ 〈∇g (θt) , θt − θ∗〉+ γ2 ‖∇g (θt)‖2

≤
(

1− 2γµL

µ+ L

)
r2
t + γ

(
γ − 2

µ+ L

)
‖∇g (θt)‖2

Taking 0 < γ ≤ 2
µ+L , we finally get

r2
t+1 ≤

(
1− 2γµL

µ+ L

)
r2
t
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Strongly convex functions: parameter convergence

If γ = 2
µ+L , then

‖θt − θ∗‖ ≤
(
Qg − 1

Qg + 1

)t
‖θ0 − θ∗‖

g (θt)− g∗ ≤
L

2

(
Qg − 1

Qg + 1

)2t

‖θ0 − θ∗‖2
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Convergence proof - gradient descent smooth convex
function

Iteration θt = θt−1 − γ∇g(θt−1) with γ = 1/L.

Property: The distance to the optimum θ∗ decreases !

‖θt − θ∗‖2 = ‖θt−1 − θ∗ − γ∇g(θt−1)‖2

= ‖θt−1 − θ∗‖2 + γ2‖∇g(θt−1)‖2 − 2γ〈θt−1 − θ∗,∇g(θt−1)〉

The co-coercivity property implies that

〈θt−1 − θ∗,∇g(θt−1)〉 ≥ (1/L)‖∇g(θt−1)‖2

showing that

‖θt − θ∗‖2 ≤ ‖θt−1 − θ∗|2 − γ(2/L− γ)‖∇g(θt−1)‖2 ≤ ‖θt−1 − θ∗‖2

≤ ‖θ0 − θ∗‖2
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Convergence proof - gradient descent smooth convex
function

Iteration θt = θt−1 − γ∇g(θt−1) with γ = 1/L.

Quadratic upper bound:

g(θt) ≤ g(θt−1)− 1

2L
‖∇g(θt−1)‖2

Convexity:

g(θt−1)− g(θ∗) ≤ 〈∇g(θt−1), θt−1 − θ∗〉 ≤ ‖∇g(θt−1)‖ ‖θt−1 − θ∗‖

Using that ‖θt − θ∗‖ ≤ ‖θ0 − θ∗‖,

g(θt)− g(θ∗) ≤ g(θt−1)− g(θ∗)−
1

2L‖θ0 − θ∗‖2
{g(θt−1)− g(θ∗)}2

Francis Bach, Aymeric Dieuleveut, Alain Durmus, Eric Moulines CEMRACS 2021



Supervised Machine Learning
Smooth convex optimization

Non-smooth convex optimization
Stochastic approximation

Proximal methods
Applications

Gradient descent
Accelerated gradient methods

Convergence proof - gradient descent smooth convex
function

Setting

∆t = g(θt)− g(θ∗) and α =
1

2L‖θ0 − θ∗‖2

we have to analyze the convergence of

∆t ≤ ∆t−1 − α∆2
t−1

Quadratic upper-bound:

∆t = g(θt)− g(θ∗) ≤ (L/2)‖θt − θ∗‖2 .
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Convergence proof - gradient descent smooth convex
function

Setting

∆t = g(θt)− g(θ∗) and α =
1

2L‖θ0 − θ∗‖2

we have to analyze the convergence of

∆t ≤ ∆t−1 − α∆2
t−1

1

∆s−1
≤ 1

∆s
− α∆s−1

∆s
divide by ∆s∆s−1

1

∆s−1
≤ 1

∆s
− α because ∆s is decreasing
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Convergence proof - gradient descent smooth convex
function

Setting

∆t = g(θt)− g(θ∗) and α =
1

2L‖θ0 − θ∗‖2
we have to analyze the convergence of

∆t ≤ ∆t−1 − α∆2
t−1

1

∆0
≤ 1

∆t
− αt by summing for s = 1 to t

∆t ≤
∆0

1 + αt∆0
.

Using that α = {2L‖θ0 − θ∗‖2}−1 and ∆0 ≤ (L/2)‖θ0 − θ∗‖2, yields

∆t ≤
2L‖θ0 − θ∗‖2

t+ 4
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Limits on convergence rate of first-order methods

First-order method: any iterative algorithm that selects θt in
θ0 + span(∇g(θ0), . . . ,∇g(θt−1))

Problem class: convex L-smooth functions with a global minimizer
θ∗

Theorem

For every integer t ≤ (n− 1)/2 and every θ0 ∈ Rn there exist a function
g in the problem class such that for any first-order method, we have that

g(θt)− g(θ∗) ≥
3L‖θ0 − θ∗‖2

32(t+ 1)2

where θ∗ is the minimum of the function g.

O(1/t) rate for gradient method might not be optimal!
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Proof of the lower bound

Consider the ”worst function in the world” [Nesterov, 2004]. Set n ∈ N
and for any k ∈ {1, . . . , n}, consider the function

gk(θ) =
L

8
[(θ1)2 +

k−1∑
i=1

(θi − θi+1)2 + (θk)2 − 2θ1]

Fact 1: gk is convex and L-smooth:

〈∇2gk(θ)s, s〉 =
L

4

[
(s1)2 +

k−1∑
i=1

(si − si+1)2 + (sk)2

]
and

〈∇2gk(θ)s, s〉 ≤ L

2

[
(s1)2 + 2

k−1∑
i=1

2((si)2 + (si+1)2) + (sk)2

]
≤ L

k∑
i=1

(si)2
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Proof of the lower bound

Consider the ”worst function in the world” [Nesterov, 2004]. Set n ∈ N
and for any k ∈ {1, . . . , n}, consider the function

gk(θ) =
L

8
[(θ1)2 +

k−1∑
i=1

(θi − θi+1)2 + (θk)2 − 2θ1]

Fact 2 minimizer supported by first k coordinates (closed form)

θ
(i)

k =

{
1− i

k+1 , i = 1, . . . , k,

0, k + 1 ≤ i ≤ n.

and the optimal value of function gk is

g∗k =
L

8

(
−1 +

1

k + 1

)
.
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Proof of the lower bound

Consider the ”worst function in the world” [Nesterov, 2004]. Set n ∈ N
and for any k ∈ {1, . . . , n}, consider the function

gk(θ) =
L

8
[(θ1)2 +

k−1∑
i=1

(θi − θi+1)2 + (θk)2 − 2θ1]

Fact 2 Note also that
k∑
i=1

i2 =
k(k + 1)(2k + 1)

6
≤ (k + 1)3

3

Therefore

‖θk‖2 =

n∑
i=1

(θ
(i)

k )2 =

k∑
i=1

(1− i

k + 1
)2

= k − 2

k + 1

k∑
i=1

i+
1

(k + 1)2

k∑
i=1

i2 =
1

3
(k + 1) .
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Proof of the lower bound

Consider the ”worst function in the world” [Nesterov, 2004]. Set n ∈ N
and for any k ∈ {1, . . . , n}, consider the function

gk(θ) =
L

8
[(θ1)2 +

k−1∑
i=1

(θi − θi+1)2 + (θk)2 − 2θ1]

Fact 3 any first-order method starting from zero will be supported in
the first k coordinates after iteration k
Denote Rk,n = {θ ∈ Rn|θ(i) = 0, k + 1 ≤ i ≤ n}; that is a subspace of
Rn, in which only the first k components of the point can differ from
zero. From the analytical form of the functions {gk} it is easy to see that
for all θ ∈ Rk,n we have

gp(θ) = gk(θ) , p = k . . . n.
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Proof of the lower bound

Consider the ”worst function in the world” [Nesterov, 2004]. Set n ∈ N
and for any k ∈ {1, . . . , n}, consider the function

gk(θ) =
L

8
[(θ1)2 +

k−1∑
i=1

(θi − θi+1)2 + (θk)2 − 2θ1]

Fact 3 any first-order method starting from zero will be supported in
the first k coordinates after iteration k
Let us fix some p, 1 ≤ p ≤ n. Let θ0 = 0. Then for any sequence
{θk}pk=0 satisfying the condition

θk ∈ Lk = Lin{∇gp(θ0), . . . ,∇gp(θk−1)}

we have Lk ⊆ Rk,n.
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Gradient descent
Accelerated gradient methods

Proof of the lower bound

Consider the ”worst function in the world” [Nesterov, 2004]. Set n ∈ N
and for any k ∈ {1, . . . , n}, consider the function

gk(θ) =
L

8
[(θ1)2 +

k−1∑
i=1

(θi − θi+1)2 + (θk)2 − 2θ1]

Fact 4 For any sequence {θk}pk=0 such that θ0 = 0 and θk ∈ Lk we
have

gp(θk) ≥ g∗k.

Indeed, θk ∈ Lk ⊆ Rk,n and therefore

gp(θk) = gk(θk) ≥ g∗k.
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Gradient descent
Accelerated gradient methods

Proof of the lower bound

Consider the ”worst function in the world” [Nesterov, 2004]. Set n ∈ N
and for any k ∈ {1, . . . , n}, consider the function

gk(θ) =
L

8
[(θ1)2 +

k−1∑
i=1

(θi − θi+1)2 + (θk)2 − 2θ1]

At iteration k, take g = g2k+1and compute a lower-bound for

g(θk)− g(θ∗)

‖θ0 − θ∗‖2
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High-dimensional logistic regression with random effect
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Gradient descent
Accelerated gradient methods

Accelerated gradient methods (Nesterov, 1983)

Assumptions: g convex, L-smooth 1 min. attained at θ∗
Algorithm

θt = ηt−1 −
1

L
∇g(ηt−1)

ηt = θt +
t− 1

t+ 2
(θt − θt−1)

Bound

g(θt)− g(θ∗) ≤
2L‖θ0 − θ∗‖2

(t+ 1)2

Francis Bach, Aymeric Dieuleveut, Alain Durmus, Eric Moulines CEMRACS 2021



Supervised Machine Learning
Smooth convex optimization

Non-smooth convex optimization
Stochastic approximation

Proximal methods
Applications

Gradient descent
Accelerated gradient methods

Extension to strongly-convex functions

Assumptions: g convex, L-smooth, strongly convex
Algorithm

θt = ηt−1 −
1

L
∇g(ηt−1)

ηt = θt +
1−

√
µ/L

1 +
√
µ/L

(θt − θt−1)

Bound
g(θt)− g(θ∗) ≤ L‖θ0 − θ∗‖2(1−

√
µ/L)t

Related to conjugate gradient for quadratic functions
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Subgradient

Definition

The subgradient ∂f(θ) of f at θ is the set of vectors ϑ ∈ Rd satisfying

f(ϑ) ≥ f(θ) + 〈s, ϑ− θ〉 θ, ϑ ∈ Rd

the definition is unilateral ! the affine function ϑ→ f(θ) + 〈s, ϑ− θ〉
minorizes f and coincides with f at θ = ϑ

The definition is global in the sense that it involves all ϑ ∈ Rd

Seems to deviate from the ”classical” concept of differentials (no
remainder terms, the condition is local and not global)
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Basic subgradient calculus

(a) Scaling: ∂(af) = a∂f provided a > 0. The condition a > 0 makes
the function f remain convex

(b) Addition: ∂ (f + g) = ∂ (f) + ∂ (g) if int dom f ∩ dom g 6= ∅.
(c) Affine composition: if g(θ) = f(Aθ + b) then
∂g(θ) = AT∂f(Aθ + b).

(d) If f is differentiable at a point θ ∈ int dom f then
∂f (θ) = {∇f (θ)}.
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Basic optimality conditions for convex optimization:
unconstrained case

Theorem

Let f be convex. If θ is a local minimum of f , then θ is a global
minimum of f . Furthermore, this happens if and only if 0 ∈ ∂f(θ)

Proof.

It can be easily seen that 0 ∈ ∂f(θ) if and only if θ is a global minimum.
Now assume that θ is a local minimum of f . Then for any η and λ small
enough

f(θ) ≤ f((1− λ)θ + λη) ≤ (1− λ)f(θ) + λf(η),

which implies that f(θ) ≤ f(η) and thus that θ is a global minimum of
f .
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Basic optimality conditions for convex optimization:
constrained case

Given a convex set Θ ⊆ Rd and a convex function f : Θ→ R, we intend
to

min
θ∈Θ

f(θ)

Define the characteristic of the convex set Θ

IΘ(θ) :=

{
0, θ ∈ Θ

∞ Otherwise

By definition of subgradients, the subdifferential of IΘ is given by the
normal cone at θ

∂IΘ(θ) = {w ∈ Rn | 〈w, η − θ〉 ≤ 0,∀η ∈ Θ}
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Basic optimality conditions for convex optimization:
constrained case

Theorem

Let f : Rd → R be a convex function and Θ be a convex set. Then θ∗ is
an optimal solution of minθ∈Θ f(θ) if and only if there exists
w∗ ∈ ∂f(θ∗) such that

〈w∗, η − θ∗〉 ≥ 0, ∀η ∈ Θ .
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Subgradient: links with directional derivatives

Since for any s ∈ ∂f(θ), we have f(ϑ) ≥ f(θ) + 〈s, ϑ− θ〉 for all
ϑ ∈ Rd, for any ζ ∈ Rd and t ≥ 0 we get

t−1{f(θ + tζ)− f(θ)} ≥ 〈s, ζ〉

Taking the limit at t ↓ 0+, for all θ, ζ ∈ Rd,

〈s, ζ〉 ≤ f ′(θ, ζ)
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Subgradient: links with directional derivatives

Conversely, if for all ζ ∈ Rd, 〈s, ζ〉 ≤ f ′(θ, ζ), then for all t ≥ 0, the
increase slope property implies

〈s, ζ〉 ≤ f ′(θ, ζ) ≤ t−1{f(θ + tζ)− f(θ)}

Taking t = 1 and ζ = ϑ− θ,

f(θ) + 〈s, ϑ− θ〉 ≤ f(ϑ)

showing that s ∈ ∂f(θ).

∂f(θ) = {s ∈ Rd : f(θ) + 〈s, ϑ− θ〉 ≤ f(ϑ) for all ϑ ∈ Rd}
= {s ∈ Rd : 〈s, ζ〉 ≤ f ′(θ, ζ) for all ζ ∈ Rd}
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Subgradient method/descent

Assumptions: g convex and B-Lipschitz-continuous on {‖θ‖2 ≤ D}

Algorithm: θt = ΠD

(
θt−1 − γt∂g(θt−1)

)
where ΠD : orthogonal

projection onto {‖θ‖2 ≤ D}
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Subgradient method/descent

Assumptions: g convex and B-Lipschitz-continuous on {‖θ‖2 ≤ D}

Algorithm: θt = ΠD

(
θt−1 − γt∂g(θt−1)

)
where ΠD : orthogonal

projection onto {‖θ‖2 ≤ D}
Bound [with optimally chosen stepsize γt]

g

(
1

t

t−1∑
k=0

θk

)
− g(θ∗) ≤

2DB√
t

Best possible convergence rate after O(d) iterations (Bubeck, 2015)
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Subgradient method/descent - proof - I

Iteration: θt = ΠD(θt−1 − γt∂g(θt−1))

Assumption: ‖∂g(θ)‖2 ≤ B and ‖θ‖2 ≤ D

‖θt − θ∗‖22 ≤ ‖θt−1 − θ∗ − γt∂g(θt−1)‖22 by contractivity of projections

≤ ‖θt−1 − θ∗‖22 +B2γ2
t − 2γt〈θt−1 − θ∗, ∂g(θt−1)〉 because ‖∂g(θt−1)‖2 ≤ B

≤ ‖θt−1 − θ∗‖22 +B2γ2
t − 2γt

[
g(θt−1)− g(θ∗)

]
property of subgradients

leading to

g(θt−1)− g(θ∗) ≤
B2γt

2
+

1

2γt

[
‖θt−1 − θ∗‖22 − ‖θt − θ∗‖22

]
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Subgradient method/descent - proof - I

g(θt−1)− g(θ∗) ≤
B2γt

2
+

1

2γt

[
‖θt−1 − θ∗‖22 − ‖θt − θ∗‖22

]
Constant step-size γt = γ

t∑
u=1

[g(θu−1)− g(θ∗)] ≤
t∑

u=1

B2γ

2
+

t∑
u=1

1

2γ
[‖θu−1 − θ∗‖22 − ‖θu − θ∗‖22]

≤ t
B2γ

2
+

1

2γ
‖θ0 − θ∗‖22 ≤ t

B2γ

2
+

2

γ
D2

Optimal step-size γt = 2D
B
√
t

depends on the horizon

Convexity: g

(
1

t

t−1∑
k=0

θk

)
− g(θ∗) ≤

2DB√
t
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Sub-gradient: decreasing stepsize

g(θt−1)− g(θ∗) ≤
B2γt

2
+

1

2γt

[
‖θt−1 − θ∗‖22 − ‖θt − θ∗‖22

]
t∑

u=1

[
g(θu−1)− g(θ∗)

]
≤

t∑
u=1

B2γu
2

+

t∑
u=1

1

2γu

[
‖θu−1 − θ∗‖22 − ‖θu − θ∗‖22

]
=

t∑
u=1

B2γu
2

+

t−1∑
u=1

‖θu − θ∗‖22
( 1

2γu+1
− 1

2γu

)
+
‖θ0 − θ∗‖22

2γ1
− ‖θt − θ∗‖

2
2

2γt

≤
t∑

u=1

B2γu
2

+

t−1∑
u=1

4D2( 1

2γu+1
− 1

2γu

)
+

4D2

2γ1
=

t∑
u=1

B2γu
2

+
4D2

2γt
.

Convexity: with γu = 2D/(B
√
u) we get

g

(
1

t

t−1∑
k=0

θk

)
− f(θ∗) ≤

2DB√
t
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Subgradient descent for machine learning

Assumptions (f is the expected risk, f̂ the empirical risk)

“Linear” predictors: θ(x) = 〈θ,Φ(x)〉, with ‖Φ(x)‖2 ≤ R
f̂(θ) = 1

n

∑n
i=1 `(Yi, 〈Φ(Xi), θ〉)

G-Lipschitz loss: f and f̂ are GR-Lipschitz on Θ = {‖θ‖2 ≤ D}
High-probability bound: with probability greater than 1− δ

sup
θ∈Θ
|f̂(θ)− f(θ)| ≤ GRD√

n

[
2 +

√
2 log

2

δ

]
Optimization: after t iterations of subgradient method

f̂(θ̂)−min
θ∈Θ

f̂(θ) ≤ GRD√
t

t = n iterations, with total running-time complexity of O(n2d)
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Summary: rate of convergence

Assumption g convex
Gradient descent θt = ΠD (θt−1 − γt∂g(θt−1))
Problem parameters

D diameter of the domain

B Lipschitz-constant

L smoothness constant

µ strong convexity constant

convex strongly convex

nonsmooth deterministic: BD/
√
t deterministic: B2/t

smooth deterministic: LD2/t2 deterministic: exp(−t
√
µ/L)
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Going back to minimization of expected and empirical risks

From a finite set of observations: Z1, . . . , Zn, the empirical risk:

f̂(θ) = (1/n)

n∑
i=1

`(θ, Zi) .

In the case n is moderate, we can use the algorithms considered
before.

In the case

n is very large (say ≥ 106),
the data is distributed among different devices,

these methods cannot be used anymore.

Solution: batch learning

This method belongs to the very rich class of stochastic
approximation schemes.
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Links with batch learning

Empirical risk minimization

Finite set of observations: Z1, . . . , Zn
Minimize the empirical risk: f̂(θ) = 1

n

∑n
k=1 `(θ, Zi)

Batch stochastic gradient

Let S ⊂ {1, . . . , n} be a mini-batch sampled with/without
replacement in {1, . . . , n} with cardinal |S| = N .

Define the mini-batch gradient

∇f̂S(θ) = (1/p)
∑
i∈S
∇θ`(θ, Zi) ,

where p = n/N or p = 1/
(
N
n

)
.

Then, ∇f̂S is an unbiased estimator of ∇f̂ , i.e.

E[∇f̂S(θ)|(Zi)i∈{1,...,n}] = ∇f̂(θ) .
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An introduction to stochastic approximation
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Links with batch learning

Empirical risk minimization

Minimize the empirical risk: f̂(θ) = 1
n

∑n
k=1 `(θ, Zi)

Batch stochastic gradient

Batch stochastic optimization consists in replacing ∇f̂(θk) by the

minibatch estimate ∇f̂Sk+1
(θk) in the gradient descent scheme to

define the iterates (θk)k∈N,

θk+1 = θk − γk+1∇f̂Sk+1
(θk) ,

where (Sk) is an i.i.d. sequence of minibatches and (γk)k∈N∗ is a
sequence of stepsizes.
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An introduction to stochastic approximation
Smooth strongly convex case
Stochastic subgradient descent/method

Links with batch learning

Remarks

(Sk)k∈N∗ uniform with/without replacement non necessary the best
choice.

(γk)k∈N∗ is either held constant or decreasing going to 0:

If it is constant γk ≡ γ, the scheme does not converge in general:
there exists a small bias of order γ;
If limk→+∞ γk = 0, then the scheme converge under appropriate
conditions.

This scheme belongs to the class of stochastic approximation
schemes.
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Links with online learning

Expected risk minimization

Minimize the expected risk: f(θ) = E[`(θ, Z)]

Online stochastic gradient

Let (Zk)k∈N∗ be an i.i.d. sequence.

Define for any k ∈ N∗,

∇fk(θ) = ∇θ`(θ, Zk) .

Then, ∇fk is an unbiased estimator of ∇f , i.e.

E[∇f̂k(θ)] = ∇f̂(θ)

where the expectation is taken over the data (Zk)k∈N∗ .
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An introduction to stochastic approximation
Smooth strongly convex case
Stochastic subgradient descent/method

Links with online learning

Empirical risk minimization

Minimize the expected risk: f(θ) = E[`(θ, Z)]

Online stochastic gradient

Online stochastic gradient defines the iterates (θk)k∈N,

θn+1 = θn − γn+1∇fn+1(θn) ,

where (γk)k∈N∗ is a sequence of stepsizes.

Remarks

(γk)k∈N∗ is either constant or decrease to 0.

This scheme also belongs to the class of stochastic
approximation/optimization schemes.
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Stochastic gradient descent

Goal of stochastic gradient:

Minimize a function f defined on Rd

given only unbiased estimates ∇fn of ∇f ,

or ∂fn of its subgradients ∂f .

Online learning

loss for a single pair of observations: fn(θ) = `(Yn, 〈θ,Φ(Xn)〉)
f(θ) = E[fn(θ)] = E[`(Yn, 〈θ,Φ(Xn)〉)] = generalization error

Expected gradient:

∇f(θ) = E[∇fn(θ)] = E[ ˙̀(Yn, 〈θ,Φ(Xn)〉) Φ(Xn)
]

Non-asymptotic results

Number of iterations = number of observations
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Convex stochastic approximation

Key properties of f and/or fn

Smoothness: f B-Lipschitz continuous, ∇f L-Lipschitz continuous

Strong convexity: f µ-strongly convex

Key algorithm: Stochastic (sub)gradient descent (a.k.a. Robbins-Monro)

θn = θn−1 − γn∇fn(θn−1) , θn = θn−1 − γn∂fn(θn−1)
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Stochastic approximation beyond convex optimization

Stochastic approximation goes far beyond convex optimization.

Problem: find the roots of the mean field function h, i.e. solve
h(θ) = 0.

In stochastic optimization: h = ∇f .

The function h is not known in closed form, but

h(θ) =

∫
H(θ, x)ν(dx)

where H : Θ× X→ Θ is a known function and ν is a probability
distribution over X.
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An introduction to stochastic approximation
Smooth strongly convex case
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Stochastic approximation beyond convex optimization:
Robbins Monro set up

Assume that there is an i.i.d. sequence {Xn, n ∈ N} distributed
according to ν

The stochastic approximation procedure:

θn = θn−1 + γnH(θn−1, Xn) with E
[
hn(θn−1)|Fn−1

]
= h(θn−1)

where Fn−1 is the σ-algebra of summarizing ”past” observations.

Can alternatively be written

θn = θn−1 + γnh(θn−1) + γnMn

where Mn = H(θn−1, Xn)− h(θn).

Under the stated assumptions, E [Mn | Fn−1] = 0, i.e. the sequence
{Mn, n ∈ N} is a martingale increment sequence.
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An introduction to stochastic approximation
Smooth strongly convex case
Stochastic subgradient descent/method

Convex stochastic approximation

Key properties of f and/or fn

Smoothness: f B-Lipschitz continuous, ∇f L-Lipschitz continuous

Strong convexity: f µ-strongly convex

Key algorithm: Stochastic (sub)gradient descent (a.k.a. Robbins-Monro)

θn = θn−1 − γn∇fn(θn−1) , θn = θn−1 − γn∂fn(θn−1)

Polyak-Ruppert averaging: θ̄n = n−1
∑n−1
k=0 θk

Which learning rate sequence γn? Classical setting: γn = Cn−α

Desirable practical behavior

Applicable (at least) to classical supervised learning problems

Robustness to (potentially unknown) constants (L,B,µ)

Adaptivity to difficulty of the problem (e.g., strong convexity)
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Smoothness/convexity assumptions

Iteration θn = θn−1 − γn∇fn(θn−1).

Polyak-Ruppert averaging θn =
1

n

n−1∑
k=0

θk

Strong convexity of f : The function f is strongly convex with respect to
the norm ‖‖2 with convexity constant µ > 0:

- Invertible population covariance matrix or regularization by
µ

2
‖θ‖2

- there exists a unique minimizer θ?

Smoothness of fn: For each n ≥ 1 the function fn satisfies a.s.:

convex;

differentiable with L-Lipschitz-continuous gradient ∇fn;

bounded variance (bounded data): almost surely

E[‖∇fn+1(θ?)‖2|Fn] ≤ σ2 .
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Summary of new results (Bach and Moulines, 2011-2013)

Assumptions

Stochastic gradient descent with learning rate γn = Cn−α

Strongly convex smooth objective functions

Bounded variance (bounded data): w.p. 1,
E[‖∇fn+1(θ?)‖2|Fn] ≤ σ2.

Results

- Old: O(n−1) rate achieved without averaging for α = 1

- New: O(n−1) rate achieved with averaging for α ∈ [1/2, 1]

- Non-asymptotic analysis with explicit constants

- Robustness to the choice of C

Convergence rate for E[‖θn − θ?‖2] and E[‖θn − θ?‖2].

- without averaging: O(γn) +O(e−µnγn)‖θ0 − θ?‖2

- with averaging: O(n−1) +O(n−2α) + µ−2‖θ0 − θ?‖2O(n−2)
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Summary of new results (Bach and Moulines, 2011-2013)

Assumptions

Stochastic gradient descent with learning rate γn = Cn−α

Strongly convex smooth objective functions

Bounded variance (bounded data): w.p. 1,
E[‖∇fn+1(θ?)‖2|Fn] ≤ σ2.

Results

- Old: O(n−1) rate achieved without averaging for α = 1

- New: O(n−1) rate achieved with averaging for α ∈ [1/2, 1]

- Non-asymptotic analysis with explicit constants

- Robustness to the choice of C

Convergence rate for E[‖θn − θ?‖2] and E[‖θn − θ?‖2].

- without averaging: O(γn) +O(e−µnγn)‖θ0 − θ?‖2

- with averaging: O(n−1) +O(n−2α) + µ−2‖θ0 − θ?‖2O(n−2)
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Examples
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Sketch of proof - f strongly convex, fn smooth, bounded
variance

Consider δn = ‖θn − θ?‖2.

Then, we have almost surely

δn+1 = δn − γn+1〈∇fn+1(θn), θn − θ?〉+ γ2
n+1 ‖∇fn+1(θn)‖2 .

f is strongly convex:

E[δn+1|Fn] = δn − γn+1〈∇f(θn), θn − θ?〉+ γ2
n+1E[‖∇fn+1(θn)‖2 |Fn]

≤ (1− µγn+1)δn + γ2
n+1E[‖∇fn+1(θn)−∇f(θ?)‖2 |Fn] .
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Sketch of proof - f strongly convex, fn smooth, bounded
variance

Consider δn = ‖θn − θ?‖2.

Then, we have almost surely

δn+1 = δn − γn+1〈∇fn+1(θn), θn − θ?〉+ γ2
n+1 ‖∇fn+1(θn)‖2 .

Since ∇fn+1 is a.s. Lipschitz with bounded variance at θ?,

E
[
‖∇fn+1(θn)−∇f(θ?)‖2

∣∣∣Fn]
≤ E

[
‖∇fn+1(θn)−∇fn+1(θ∗) +∇fn+1(θ∗)−∇f(θ?)‖2

∣∣∣Fn]
≤ 2(L2δn + σ2) .

Francis Bach, Aymeric Dieuleveut, Alain Durmus, Eric Moulines CEMRACS 2021



Supervised Machine Learning
Smooth convex optimization

Non-smooth convex optimization
Stochastic approximation

Proximal methods
Applications

An introduction to stochastic approximation
Smooth strongly convex case
Stochastic subgradient descent/method

Sketch of proof - f strongly convex, fn smooth, bounded
variance

Consider δn = ‖θn − θ?‖2.

Then, we have almost surely

δn+1 = δn − γn+1〈∇fn+1(θn), θn − θ?〉+ γ2
n+1 ‖∇fn+1(θn)‖2 .

Conclusion:

E[δn+1|Fn] ≤ (1− µγn+1 + 2L2γ2
n+1)δn + 2σ2γ2

n+1 .
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Stochastic Approximation: take home message

Powerful algorithm:

Simple to implement
Cheap
No regularization needed
Convergence guarantees

Problems:

Initial conditions can be forgotten slowly: could we use even
larger/fixed step sizes?

For fixed step sizes, the previous bounds do not show that

E[‖θn − θ?‖2] 6→ 0 or E[
∥∥θ̄n − θ?∥∥2

] 6→ 0.

We only have E[‖θn − θ?‖2] = O(γ) and E[
∥∥θ̄n − θ?∥∥2

] = O(γ).

We illustrate these two facts using numerical simulations
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Motivation 1/ 2. Large step sizes!

lo
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−
f

(θ
?
))

1 2 3 4 5 6

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

1/2R2

1/2R2
√

n

log10(n)

Logistic regression. Final iterate (dashed), and averaged recursion (plain).
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Motivation 1/ 2. Large step sizes, real data

lo
g

1
0

( f(θ̄
n
)
−
f

(θ
?
))
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Decaying Steps

log10(n)
Logistic regression, Covertype dataset, n = 581012, d = 54. Comparison

between a constant learning rate and decaying learning rate as 1√
n

.
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Motivation 2/ 2. Difference between quadratic and logistic
loss

1 2 3 4 5 6
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1/2R2
√

n

Logistic Regression Least-Squares Regression

Ef(θ̄n)− f(θ?) = O(γ2) Ef(θ̄n)− f(θ?) = O

(
1

n

)
with γ = 1/(2R2) with γ = 1/(2R2)
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Constant learning rate SGD: convergence in the quadratic
case

Least-squares: f(θ) = 1
2E
[
(Y − 〈Φ(X), θ〉)2

]
with θ ∈ Rd

SGD = least-mean-square algorithm

With strong convexity assumption E
[
Φ(X)⊗ Φ(X)

]
= H < µ · Id

θ? = H−1E[Y Φ(X)]

θ̄n → θ? as n→ +∞ θ∗

θ0

θ1
θ2

θn

θn
θ1
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Constant learning rate SGD: convergence in the quadratic
case

Key identity:

θn+1− θ? = (Id−γH)(θn− θ?) +γηn+1(θn) , E[ηn+1(θn)|Fn] = 0 ,

ηn+1(θ) = Hθ−E[Y Φ(X)]−Φ(Xn+1)Φ(Xn+1)>θ+Yn+1Φ(Xn+1) .

Therefore,

θn+1 − θ? = (Id−γH)n+1(θ0 − θ?) + γ

n∑
k=0

(Id−γH)n−kηk+1(θk) ,

and

θ̄n − θ? = (n+ 1)−1
n∑
k=0

(θk − θ?) ≈ (n+ 1)−1
n∑
k=0

η(θk) .
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Constant learning rate SGD: convergence in the quadratic
case

Least-squares: f(θ) = 1
2E
[
(Y − 〈Φ(X), θ〉)2

]
with θ ∈ Rd

θn+1 − θ? = (Id−γH)(θn − θ?) + γηn+1(θn) ,

The sequence (θn)n≥0 is a homogeneous Markov chain
1 Converges to a stationary measure πγ
2 θ̄n converges to θ̄γ =

∫
Rd ϑdπγ(ϑ)

Identification of θ̄γ
If θ0 ∼ πγ , then θ1 ∼ πγ .
Taking expectation, and using E [η1(θ)] = 0 for any θ ∈ Rd,∫

Rd

H(ϑ− θ?)dπγ(ϑ) = 0⇒ θ̄γ = θ? .

Conclusion θ̄n → θ? as n→ +∞ if ergodic

Question: What happens in the general case?
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SGD: an homogeneous Markov chain

Consider a L−smooth and µ−strongly convex function f .

SGD with a step-size γ > 0 is an homogeneous Markov chain:

θγk+1 = θγk − γ∇fk+1(θγk) = θγk − γ
[
∇f(θγk) + ηk+1(θγk)

]
,

ηk+1(θγk) = ∇fk+1(θγk)−∇f(θγk) , E[ηk+1(θγk)|Fn] = 0 .

Additional assumptions
∇fk = ∇f + ηk+1 is almost surely L-co-coercive: for any
θ1, θ2 ∈ Rd,

〈∇fk(θ1)−∇fk(θ2), θ1 − θ2〉 ≥ L−1 ‖∇fk(θ1)−∇fk(θ2)‖2 .

Bounded moments for p large enough,

E[‖εk(θ?)‖p] <∞ .
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Stochastic gradient descent as a Markov Chain: Analysis
framework2

Let Rγ be the Markov kernel associated with (θγn)n∈N.

Existence of a stationary distribution πγ for Rγ , and convergence to
this distribution.

Behavior under the limit distribution (γ → 0): θ̄γ=θ? + ?
# Provable convergence improvement with extrapolation tricks
used for numerical integration and applied probability.

Analysis of the convergence of θ̄γn to θ̄γ =
∫
Rd ϑdπγ(ϑ) through its

MSE.

2Dieuleveut, D., Bach.
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Existence and convergence to a stationary distribution

Definition

Wasserstein metric: ν and λ probability measures on Rd

W2(λ, ν) := inf
ξ∈Π(λ,ν)

(∫
‖θ − η‖2ξ(dθ · dη)

)1/2

Π(λ, ν) is the set of probability measure ξ s.t. A ∈ B(Rd),
ξ(A× Rd) = λ(A), ξ(Rd × A) = ν(A).

Theorem

For γ < L−1, the chain (θγk)k≥0 admits a unique stationary distribution
πγ and for all θ ∈ Rd, n ∈ N:

W 2
2 (δθR

n
γ , πγ) ≤ (1− 2µγ(1− γL))n

∫
Rd

‖θ − ϑ‖2 dπγ(ϑ) .
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Existence of a limit distribution: proof I /III

Coupling: θ1, θ2 be independent and distributed according to λ1, λ2

respectively, and (θ
(1)
k,γ)≥0,(θ

(2)
k,γ)k≥0 SGD iterates:{

θ
(1)
k+1,γ = θ

(1)
k,γ − γ

[
∇f(θ

(1)
k,γ) + ηk+1(θ

(1)
k,γ)
]

θ
(2)
k+1,γ = θ

(2)
k,γ − γ

[
∇f(θ

(2)
k,γ) + ηk+1(θ

(2)
k,γ)
]
.

for all k ≥ 0, the distribution of (θ
(1)
k,γ , θ

(2)
k,γ) is in Π(λ1R

k
γ , λ2R

k
γ)
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Existence of a limit distribution: proof II/III

E
[
‖θ(1)

1,γ − θ
(2)
1,γ‖(2)

]
≤ E

[
‖θ(1) − γ∇f1(θ(1))− (θ(2) − γ∇f1(θ(2))))‖2

]
≤ E

[∥∥∥θ(1) − θ(2)
∥∥∥2

− 2γ
〈
∇f1(θ(1))−∇f1(θ(2)), θ(1) − θ(2)

〉]
+ γ2E

[∥∥∥∇f1(θ(1))−∇f1(θ(2))
∥∥∥2
]

coco
≤ E

[∥∥∥θ(1) − θ(2)
∥∥∥2
]
− 2γ(1− γL)E

[〈
∇f1(θ(1))−∇f1(θ(2)), θ(1) − θ(2)

〉]
unbiased
≤ E

[∥∥∥θ(1) − θ(2)
∥∥∥2
]
− 2γ(1− γL)E

[〈
∇f(θ(1))−∇f(θ(2)), θ(1) − θ(2)

〉]
s.cvx.
≤ (1− 2µγ(1− γL))E

[∥∥∥θ(1) − θ(2)
∥∥∥2
]
.
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Existence of a limit distribution: proof III/III

By induction:

W 2
2 (λ1R

n
γ , λ2R

n
γ ) ≤ E

[
‖θ(1)
n,γ − θ(2)

n,γ‖2
]

≤ (1− 2µγ(1− γL))n
∫
x,y

‖θ1 − θ2‖2 dλ1(θ1)dλ2(θ2) .

Thus W2(δθ1R
n
γ , δθ2R

n
γ )≤(1− 2µγ(1− γL))n ‖θ1 − θ2‖2.

Uniqueness, invariance, and Theorem follow:

W 2
2 (δθR

n
γ , πγ) ≤ (1− 2µγ(1− γL))n

∫
Rd

‖θ − ϑ‖2 dπγ(ϑ) .
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Behavior under limit distribution.

Then we have E[θ̄n]→ θ̄γ . Where is θ̄γ? Close to θ??

In the quadratic case θ̄γ = θ?

In the general case, we show that

θ̄γ = θ? + γ∆(θ?) +O(γ2)

∆(θ?) = f ′′(θ?)−1f ′′′(θ?)
([
f ′′(θ?)⊗ I + I ⊗ f ′′(θ?)

]−1E[η(θ?)⊗2]
)
.

Linearization of the proof for the least-square

θ∗

θ0
θ1

θ2

θn

θn

θ1

Francis Bach, Aymeric Dieuleveut, Alain Durmus, Eric Moulines CEMRACS 2021



Supervised Machine Learning
Smooth convex optimization

Non-smooth convex optimization
Stochastic approximation

Proximal methods
Applications

An introduction to stochastic approximation
Smooth strongly convex case
Stochastic subgradient descent/method

Richardson extrapolation

θ∗ + 2γ∆

θ∗

θ2γ

θ∗ + γ∆

2θγ − θ2γ

Recovering convergence closer to θ∗ by Richardson extrapolation
2θ̄γn − θ̄2γ

n
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Experiments
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Synthetic data, logistic regression, n = 8.106
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Experiments: Double Richardson
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Synthetic data, logistic regression, n = 8.106

“Richardson 3γ”: estimator built using Richardson on 3 different
sequences: θ̃3

n = 8
3 θ̄
γ
n − 2θ̄2γ
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3 θ̄

4γ
n
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Real data
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Figure: Logistic regression, Covertype dataset. n = 581012, d = 54.
Francis Bach, Aymeric Dieuleveut, Alain Durmus, Eric Moulines CEMRACS 2021



Supervised Machine Learning
Smooth convex optimization

Non-smooth convex optimization
Stochastic approximation

Proximal methods
Applications

An introduction to stochastic approximation
Smooth strongly convex case
Stochastic subgradient descent/method

1 Supervised Machine Learning
Set-up
Convex functions: basic ideas
Empirical risk minimization: convergence rates

2 Smooth convex optimization
Gradient descent
Accelerated gradient methods

3 Non-smooth convex optimization
4 Stochastic approximation

An introduction to stochastic approximation
Smooth strongly convex case
Stochastic subgradient descent/method

5 Proximal methods
Proximal operator
Proximal gradient algorithm
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Stochastic subgradient descent/method

Assumptions

fn convex and B-Lipschitz-continuous on {‖θ‖2 ≤ D}
(fn) i.i.d. functions such that E[fn(θ)] = f(θ)

θ∗ global optimum of f on {‖θ‖2 ≤ D}

Algorithm: θn = ΠD

(
θn−1 −

2D

B
√
n
∂fn(θn−1)

)
Risk Bound:

E

[
f

(
1

n

n−1∑
k=0

θk

)]
− f(θ∗) ≤

2DB√
n
.

Minimax convergence rate

Running-time complexity: O(dn) after n iterations
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Stochastic subgradient method - proof - I

θn = ΠD(θn−1 − γn∂fn(θn−1)) where Fn = σ((Yk, Xk), j ≤ n).

‖θn − θ∗‖22 ≤ ‖θn−1 − θ∗ − γn∂fn(θn−1)‖22 contractivity of projections

≤ ‖θn−1 − θ∗‖22 +B2γ2
n − 2γn〈θn−1 − θ∗, ∂fn(θn−1)〉 ‖∂fn(θn−1)‖2 ≤ B

Taking the conditional expectations of the both sides

E
[
‖θn − θ∗‖22|Fn−1

]
≤ ‖θn−1 − θ∗‖22 +B2γ2

n − 2γn〈(θn−1 − θ∗), ∂f(θn−1)〉

≤ ‖θn−1 − θ∗‖22 +B2γ2
n − 2γn

[
f(θn−1)− f(θ?)

]
(subgradient property)
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Stochastic subgradient method - proof - I

θn = ΠD(θn−1 − γn∂fn(θn−1)) where Fn = σ((Yk, Xk), j ≤ n).

From

E
[
‖θn − θ∗‖22|Fn−1

]
≤ ‖θn−1 − θ∗‖22 +B2γ2

n − 2γn
[
f(θn−1)− f(θ?)

]
the tower property of conditional expectation implies

E[‖θn − θ∗‖22] ≤ E[‖θn−1 − θ∗‖22] +B2γ2
n − 2γn

[
E[f(θn−1)]− f(θ?)

]
leading to

E[f(θn−1)]− f(θ?) ≤ B2γn
2

+
1

2γn

{
E[‖θn−1 − θ∗‖22]− E[‖θn − θ∗‖22]

}
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Stochastic subgradient

E[f(θn−1)]− f(θ?) ≤ B2γn
2

+
1

2γn

[
E‖θn−1 − θ∗‖22 − E‖θn − θ∗‖22

]
Constant step size

n∑
u=1

[E[f(θu−1)]− f(θ?)] ≤
n∑
u=1

B2γ

2
+

n∑
u=1

1

2γ

{
E
[
‖θu−1 − θ?‖22

]
− E

[
‖θu − θ?‖22

]}
≤ nB2γ

2
+

4D2

2γ
.

Optimum stepsize γ = 2D/(
√
nB) (depends on the horizon).
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Stochastic subgradient

E[f(θn−1)]− f(θ?) ≤ B2γn
2

+
1

2γn

[
E‖θn−1 − θ∗‖22 − E‖θn − θ∗‖22

]
Constant step size

n∑
u=1

[E[f(θu−1)]− f(θ?)] ≤
n∑
u=1

B2γ

2
+

n∑
u=1

1

2γ

{
E
[
‖θu−1 − θ?‖22

]
− E

[
‖θu − θ?‖22

]}
≤ nB2γ

2
+

4D2

2γ
.

Convexity [fixed horizon]:

E

[
f

(
1

n

n−1∑
k=0

θk

)]
− f(θ∗) ≤

2DB√
n
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Beyond convergence in expectation

Convergence in expectation: E
[
f
(
n−1

∑n−1
k=0 θk

)
− f(θ?)

]
≤ 2DB√

n

High-probability bounds

Markov inequality: P
(
f
(
n−1

∑n−1
k=0 θk

)
− f(θ?) ≥ ε

)
≤ 2DB√

nε

Concentration inequality (Nemirovski et al., 2009; Nesterov and
Vial, 2008)

P

(
f

(
1

n

n−1∑
k=0

θk

)
− f(θ?) ≥ 2DB√

n
(2 + 4t)

)
≤ 2 exp(−t2)
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Stochastic subgradient method - proof - I

θn = ΠD(θn−1 − γn∂fn(θn−1)) with Fn = σ((Yk, Xk), j ≤ n).

‖θn − θ∗‖22 ≤ ‖θn−1 − θ∗ − γn∂fn(θn−1)‖22 contractivity of projections

≤ ‖θn−1 − θ∗‖22 +B2γ2
n − 2γn〈θn−1 − θ∗, ∂fn(θn−1)〉 ‖∂fn(θn−1)‖2 ≤ B

Define by Zn the error (approximation of the ”true” subgradient by its noisy
version)

Zn = −2〈θn−1 − θ?, ∂fn(θn−1)− ∂f(θn−1)〉
and using the convexity we get

‖θn − θ?‖22 ≤ ‖θn−1 − θ?‖22 +B2γ2
n − 2γn[f(θn−1)− f(θ?)] + 2γnZn
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Stochastic subgradient method - proof - II

Zn = −〈θn−1 − θ?, ∂fn(θn−1)− ∂f(θn−1)〉

From the inequality

‖θn − θ?‖22 ≤ ‖θn−1 − θ?‖22 +B2γ2
n − 2γn[f(θn−1)− f(θ?)] + 2γnZn

we get

f(θn−1)− f(θ?) ≤ 1

2γn

{
‖θn−1 − θ?‖22 − ‖θn − θ?‖22

}
+
B2γn

2
+ Zn

Summing up this identity

n∑
u=1

[f(θu−1)−f(θ?)] ≤
n∑
u=1

B2γu
2

+
n∑
u=1

1

2γu
{‖θu−1−θ?‖22−‖θu−θ?‖22}+

n∑
u=1

Zu
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Stochastic subgradient method - proof - II

Zn = −〈θn−1 − θ?, ∂fn(θn−1)− ∂f(θn−1)〉

Setting γu = 2D/(B
√
n) [depending on the horizon n] in

n∑
u=1

[f(θu−1)−f(θ?)] ≤
n∑
u=1

B2γu
2

+

n∑
u=1

1

2γu
{‖θu−1−θ?‖22−‖θu−θ?‖22}+

n∑
u=1

Zu

we get

1

n

n∑
u=1

{f(θu−1)− f(θ?)} ≤ 2DB√
n

+
1

n

n∑
u=1

Zu
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Stochastic subgradient method - proof - II

Zn = −〈θn−1 − θ?, ∂fn(θn−1)− ∂f(θn−1)〉

Setting γu = 2D/(B
√
n) [depending on the horizon n] in

n∑
u=1

[f(θu−1)−f(θ?)] ≤
n∑
u=1

B2γu
2

+

n∑
u=1

1

2γu
{‖θu−1−θ?‖22−‖θu−θ?‖22}+

n∑
u=1

Zu

we get

1

n

n∑
u=1

{f(θu−1)− f(θ?)} ≤ 2DB√
n

+
1

n

n∑
u=1

Zu

Require to study n−1∑n
k=1 Zk where (Zk)k≥1 is a bounded martingale

increment sequence: |Zk| ≤ 4DB.
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Stochastic subgradient method - proof - II

Zn = −〈θn−1 − θ?, ∂fn(θn−1)− ∂f(θn−1)〉

Setting γu = 2D/(B
√
n) [depending on the horizon n] in

n∑
u=1

[f(θu−1)−f(θ?)] ≤
n∑
u=1

B2γu
2

+
n∑
u=1

1

2γu
{‖θu−1−θ?‖22−‖θu−θ?‖22}+

n∑
u=1

Zu

we get

1

n

n∑
u=1

{f(θu−1)− f(θ?)} ≤ 2DB√
n

+
1

n

n∑
u=1

Zu

Azuma-Hoeffding inequality for bounded martingale increments:

P

(
1

n

n∑
u=1

Zu ≥
4DBt√

n

)
≤ exp(−t2/2)
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Stochastic subgradient method - proof - II

Zn = −〈θn−1 − θ?, ∂fn(θn−1)− ∂f(θn−1)〉

Setting γu = 2D/(B
√
n) [depending on the horizon n] in

n∑
u=1

[f(θu−1)−f(θ?)] ≤
n∑
u=1

B2γu
2

+

n∑
u=1

1

2γu
{‖θu−1−θ?‖22−‖θu−θ?‖22}+

n∑
u=1

Zu

we get

1

n

n∑
u=1

{f(θu−1)− f(θ?)} ≤ 2DB√
n

+
1

n

n∑
u=1

Zu

Moment bounds can be deduced from Burkholder-Rosenthal-Pinelis
inequality (Pinelis, 1994)
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Definition

Definition (Proximal mapping)

g: closed convex function; γ: stepsize

proxγ,g(θ) = argmin
η∈Θ

(
g(η) + (2γ)−1‖η − θ‖22

)

The uniqueness of the minimizer stems from the strong convexity of
the function η 7→ g(η) + 1/(2γ)‖η − θ‖22
If g = IK, where K is a closed convex set, then proxγ,g is the
Euclidean projection on K

proxγ,g(θ) = argmin
η∈K

‖η − θ‖22 = PK(θ)

The proximal operator may be seen as a generalisation of the
projection on closed convex sets.
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Proximal operator

Lemma

If θ = (θ1, θ2, . . . , θp) and g(θ) =
∑p
i=1 gi(θi), then

proxγ,g(θ) = (proxγ,g1(θ1), proxγ,g2(θ2), . . . , proxγ,gp(θp))

argmin
(η1,...,ηp)

{
p∑
i=1

gi(ηi) + 2γ−1

p∑
i=1

‖ηi − θi‖2
}

=

p∑
i=1

argmin
ηi

{
gi(ηi) + (2γ)−1‖ηi − θi‖2

}
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Proximal operator

Lemma

If θ = (θ1, θ2, . . . , θp) and g(θ) =
∑p
i=1 gi(θi), then

proxγ,g(θ) = (proxγ,g1(θ1), proxγ,g2(θ2), . . . , proxγ,gp(θp))

argmin
(η1,...,ηp)

{
p∑
i=1

gi(ηi) + 2γ−1

p∑
i=1

‖ηi − θi‖2
}

=

p∑
i=1

argmin
ηi

{
gi(ηi) + (2γ)−1‖ηi − θi‖2

}
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A characterization of the proximal operator

Theorem

Let g be a convex function on Θ, (θ, p) ∈ Θ2,

p = proxγ,g(θ)⇐⇒ for all η ∈ Θ, g(p) + γ−1〈η − p, θ − p〉 ≤ g(η)

i.e. p is the unique element of Θ satisfying γ−1(θ − p) ∈ ∂g(p).

Follows also from the characterization of the subdifferential

p is the minimizer of η 7→ g(η) + (2γ)−1‖η − θ‖22
⇐⇒

0 ∈ ∂g(p) + γ−1(p− θ).
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Proximal operator: LASSO and Elastic net

If g(θ) =
∑p
i=1 λi|θi| then proxγ,g is shrinkage (soft threshold)

operation

[Sλ,γ(θ)]i =


θi − γλi θi ≥ γλi
0 |θi| ≤ γλi
θi + γλi θi ≤ −γλi

If g(θ) = λ
(
(1− α)/2‖θ‖22 + α‖θ‖1

)

(Proxγ,g(τ))i =
1

1 + γλ(1− α)


τi − γλα if τi ≥ γλα
τi + γλα if τi ≤ −γλα
0 otherwise
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Fixed points of the proximal operator

Theorem

Let g be a proper convex function on Θ. The set of fixed points

{θ ∈ Θ, proxγ,g(θ) = θ}

coincide with the set of global minimum of g.

Characterization of the proximal point

γ−1(θ − proxγ,g(θ)) ∈ ∂g(proxγ,g(θ)).

Sub-gradient: for all η ∈ Θ,

γ−1〈η − proxγ,g(θ), θ − proxγ,g(θ)〉+ g(proxγ,g(θ)) ≤ g(η)

Conclusion

θ = proxγ,g(θ)⇐⇒ for all η ∈ Θ, g(proxγ,g(θ)) ≤ g(η) .
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Firm non-expansiveness

Theorem

If g is a proper convex function, then proxγ,g and (Id−proxγ,g) are firmly
non-expansive (or co-coercive with constant 1), i.e. for all θ, η ∈ Θ,

‖p− q‖2 + ‖(θ − p)− (η − q)‖2 ≤ ‖θ − η‖2 ,
⇐⇒ 〈p− q, θ − η〉 ≥ ‖p− q‖2 .

where p = proxγ,g(θ) and q = proxγ,g(η).

γ−1〈q − p, θ − p〉+ g(p) ≤ g(q) γ−1〈p− q, η − q〉+ g(q) ≤ g(p)

Adding these two equations yield

〈p− q, (θ − p)− (η − q)〉 ≥ 0 .

Conclude by writing ‖θ − η‖2 = ‖p− q + (θ − p)− (η − q)‖2.
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Assumptions

(P) min
θ∈Rd

F (θ) F (θ) = f(θ) + g(θ),

Assumptions

g : Rd → (−∞,+∞] closed convex

f : Θ→ R is convex continuously differentiable and ∇f is gradient
Lipshitz: for all θ, θ′ ∈ Θ,

‖∇f(θ)−∇f(θ′)‖ ≤ L‖θ − θ′‖ ,
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Proximal gradient algorithm

θn+1 = Proxγn+1,g (θn − γn+1∇f(θn))

where

Proxγ,g(τ) = min
θ∈Θ

(
g(θ) +

1

2γ
‖θ − τ‖2

)
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Majorization-Minimization interpretation

Since f is gradient Lipshitz, for all γ ∈ (0, 1/L]

F (η) = f(η) + g(η) ≤ f(θ) + 〈∇f(θ), η − θ〉+
1

2γ
‖θ − η‖2 + g(η)

Consider the following surrogate function

Qγ(η|θ) = f(θ) + 〈∇f(θ), η − θ〉+
1

2γ
‖θ − η‖2 + g(η)

For all θ ∈ Θ, η 7→ Qγ(η|θ) is strongly convex and has a unique
minimum and

F (η) ≤ Qγ(η|θ) F (θ) = Qγ(θ|θ)
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Majorization-Minimization interpretation

Qγ(η|θ) def
= f(θ) + 〈∇f(θ), η − θ〉+

1

2γ
‖η − θ‖2 + g(η)

= f(θ) +
1

2γ
‖η − (θ − γ∇f(θ))‖2 − γ

2
‖∇f(θ)‖2 + g(η) ,

The iterates of the proximal gradient algorithms may be rewritten as
θn+1 = Tγn+1(θn) with the point-to-point map Tγ defined by

Tγ(θ)
def
= Proxγ,d (θ − γ∇f(θ))

= argminη∈Dom(g)Qγ(η|θ) .
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Proximal gradient

If g(θ) ≡ 0, ↪→ gradient proximal = classical stochastic gradient

θn = θn−1 − γn∇f(θn−1)

If g(θ) ≡ 0 if θ ∈ C and g(θ) = +∞ otherwise where C is a closed
convex set,

Proxγ,g(τ) = min
θ∈C
‖τ − θ‖2

↪→ gradient proximal = projected gradient

θn = ΠC (θn−1 − γn∇f(θn−1))
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Proximal gradient for the elastic net penalty

If g(θ) = λ
(

1−α
2 ‖θ‖

2
2 + α‖θ‖1

)

(Proxγ,g(τ))i =
1

1 + γλ(1− α)


τi − γλα if τi ≥ γλα
τi + γλα if τi ≤ −γλα
0 otherwise

↪→ Proximal gradient= soft-thresholded gradient

θn+1 = Sα,λ,γn+1
(θn − γn+1∇f(θn))
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Stationary points of the proximal gradient

θn+1 = Proxγ,g (θn − γ∇f(θn)) = Tγ(θn) ,

where Tγ is the proximal map,

Tγ(θ)
def
= Proxγ,g (θ − γ∇f(θ)) = argminη∈Dom(g)Qγ(η|θ) .

Theorem

The fixed points of the proximal map are the global minimizers of
F (θ) = f(θ) + g(θ):

L = {θ : θ = Proxγ,g(θ−γ∇f(θ))} = {θ ∈ Dom(g) : 0 ∈ ∇f(θ)+∂g(θ)}.

.
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Fixed points of the proximal map

Since
F (θ) = f(θ) + g(θ) ,

we get

0 ∈ ∂F (θ)⇐⇒ 0 ∈ ∂γF (θ)

⇐⇒ 0 ∈ γ∇f(θ) + ∂γg(θ)

⇐⇒ θ − γ∇f(θ) ∈ (θ + γ∂g(θ))

Recall that, for any η

p = proxγg(η)⇐⇒ (η − p) ∈ γ∂g(p)⇐⇒ η ∈ p+ γ∂g(p).

Hence, taking p← θ and η ← θ − γ∇f(θ)

0 ∈ ∂F (θ)⇐⇒ θ = Tγ(θ)
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Lyapunov function

Qγ(η|θ) = f(θ) + 〈∇f(θ), η − θ〉+
1

2γ
‖θ − η‖2 + g(η)

For all θ ∈ Θ, F ◦ Tγ(θ) ≤ F (θ):

F ◦ Tγ(θ) ≤ Qγ(Tγ(θ)|θ) ≤ Qγ(θ|θ) = F (θ)

Moreover, the inequality is strict unless θ is a fixed point of the
mapping Tγ .

F is a Lyapunov function for the proximal map Tγ .
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Convergence result

(P) (arg)minθ∈Θ {f(θ) + g(θ)} ,

the objective function always converge {F (θn), n ≥ 0}
f is convex: then {θn, n ∈ N} converges to θ?, where θ? is a
minimizer of F .

F (θn)− F (θ?) = O(1/n).

Results similar to smooth optimization (O(1/n) where n is the
number of iterations)

Acceleration methods: Nesterov, 2007; Beck and Teboulle, 2009.
(O(1/n2)) [algorithm FISTA]
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High-dimensional logistic regression with random effect

Francis Bach, Aymeric Dieuleveut, Alain Durmus, Eric Moulines CEMRACS 2021



Supervised Machine Learning
Smooth convex optimization

Non-smooth convex optimization
Stochastic approximation

Proximal methods
Applications

Proximal operator
Proximal gradient algorithm
Stochastic proximal gradient

Stochastic proximal gradient

Objective

Exact algorithm :

θn+1 = Proxγn+1,g (θn − γn+1∇f(θn))

Pertubed algorithm :

θn+1 = Proxγn+1,g (θn − γn+1Hn+1)

where Hn+1 is a noisy approximation of the true gradient ∇f(θn).

Problem find sufficient conditions on the stochastic error

ηn+1 = Hn+1 −∇f(θn)

to preserve convergence (closely related to SA).
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Convergence of the parameter

Theorem

Assume f is L-smooth and the set L = argminθ∈Θ F (θ) is non-empty.
Assume in addition that γn ∈ (0, 1/L] for any n ≥ 1 and

∑
n γn = +∞.

If the following series converge∑
n≥0

γn+1〈Tγn+1
(θn), ηn+1〉 ,

∑
n≥0

γn+1ηn+1 ,
∑
n≥0

γ2
n+1‖ηn+1‖2 ,

then there exists θ∞ ∈ L such that limn θn = θ∞.
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Convergence of the function

Theorem

Assume f is L-smooth and the set L = argminθ∈Θ F (θ) is non-empty.
Assume that γn ∈ (0, 1/L] and let {a0, · · · , an} be nonnegative weights.
Then, for any θ? ∈ L and n ≥ 1,

n∑
k=1

ak {F (θk)−minF} ≤ Un(θ?)

where

Un(θ?)
def
=

1

2

n∑
k=1

(
ak
γk
− ak−1

γk−1

)
‖θk−1 − θ?‖2 +

a0

2γ0
‖θ0 − θ?‖2

−
n∑
k=1

ak〈Tγk(θk−1)− θ?, ηk〉+

n∑
k=1

akγk‖ηk‖2 .
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Sanity check

Assume that the gradient is exact, i.e. ηn = 0. Set An =
∑n
k=1 ak

Then

F

(
A−1
n

n∑
j=1

θj

)
−minF ≤ A−1

n

n∑
j=1

ajF (θj)−minF

≤ 1

2

n∑
k=1

(
ak
γk
− ak−1

γk−1

)
‖θk−1 − θ?‖2 +

a0

2γ0
‖θ0 − θ?‖2

Setting ak ≡ 1 and γk ≡ 1/L

F

(
n−1

n∑
j=1

θj

)
−minF ≤ n−1

n∑
j=1

F (θj)−minF

≤ L

2
‖θ0 − θ?‖2

Up to constant, this is the same bound than the gradient algorithm for
smooth convex function.

Francis Bach, Aymeric Dieuleveut, Alain Durmus, Eric Moulines CEMRACS 2021



Supervised Machine Learning
Smooth convex optimization

Non-smooth convex optimization
Stochastic approximation

Proximal methods
Applications

Proximal operator
Proximal gradient algorithm
Stochastic proximal gradient

Perturbed gradient

Take ak = γk, for k ∈ {1, . . . , n}. Then, for any θ? ∈ L and n ≥ 1,

F

(
Γ−1
n

n∑
k=1

γkθk

)
−minF ≤ 1

2Γn
‖θ0 − θ?‖2

− Γ−1
n

n∑
k=1

γk〈Tγk(θk−1)− θ?, ηk〉+ Γ−1
n

n∑
k=1

γ2
k‖ηk‖2 .

Problem: Control the sequences
∑n
k=1 γk〈Tγk(θk−1)− θ?, ηk〉 and∑n

k=1 γ
2
k‖ηk‖2 in expectation or using high-probability bounds.
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Robbins-Monro setting

∇f(θ) =

∫
X

Hθ(x)π(dx)

Set

Hn+1 = m−1
n+1

mn+1∑
j=1

Hθn(X
(j)
n+1)

where mn+1 is the size of the batch and {X(j)
n+1, 1 ≤ j ≤ mn+1} is

a sample from π independent of σ(θ`, ` ≤ n).

In such case,

E [Hn+1 | Fn] = m−1
n+1

∑mn+1

j=1 E
[
Hθn(X

(j)
n+1)

∣∣∣Fn] = ∇f(θn) and

ηn+1 = Hn+1 −∇f(θn) is a martingale increment.
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Bounded case / Constant stepsizes - Risk Bounds

Assume that ‖Hθ(x)‖ ≤ B, then ‖ηn+1‖ ≤ 2B and the stepsizes are
constant γk ≡ 1/B

√
n for k ∈ {1, . . . , n}.

On one hand

Γ−1
n

n∑
k=1

γ2
k‖ηk+1‖2 ≤

4B√
n

Risk bound: since E [ 〈Tγk(θk−1)− θ?, ηk〉 | Fk−1] = 0 (since
E [ηk | Fk−1 = 0]=0), the risk bound is

E

[
F

(
n−1

n∑
k=1

θk

)]
−minF ≤ B

2
√
n
‖θ0 − θ?‖2 +

4B√
n
.

Same risk bound than the Stochastic subgradient method (minimax
rate)
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Bounded case / Constant stepsizes - Concentration

Azuma-Hoeffding inequality for bounded martingale increments
{Zk, k ∈ N∗}:

P

(
1

n

n∑
k=1

Zk ≥
Ct√
n

)
≤ exp(−t2/2)

Apply it to
Zk = 〈Tγk(θk−1)− θ?, ηk〉 .
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Network structure estimation

Problem fitting a discrete graphical models in a setting where the
number of nodes in the graph is large compared to the sample size.

Formalization Let A be a nonempty finite set, and p ≥ 1 an integer.
Consider a graphical model on X = Ap with p.m.f.

fθ(x1, . . . , xp) =
1

Zθ
exp


p∑
k=1

θkkB0(xk) +
∑

1≤j<k≤p

θkjB(xk, xj)

 ,

for a non-zero function B0 : A→ R and a symmetric non-zero
function B : A× A→ R.

The term Zθ is the normalizing constant of the distribution (the
partition function), which cannot (in general) be computed explicitly.
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Network structure estimation

Problem fitting a discrete graphical models in a setting where the
number of nodes in the graph is large compared to the sample size.

Formalization Let A be a nonempty finite set, and p ≥ 1 an integer.
Consider a graphical model on X = Ap with p.m.f.

fθ(x1, . . . , xp) =
1

Zθ
exp


p∑
k=1

θkkB0(xk) +
∑

1≤j<k≤p

θkjB(xk, xj)

 ,

for a non-zero function B0 : A→ R and a symmetric non-zero
function B : A× A→ R.

The real-valued symmetric matrix θ defines the graph structure and
is the parameter of interest. Same interpretation as the precision
matrix in a multivariate Gaussian distribution.
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Network structure estimation

Problem: Estimate θ from N realizations {x(i), 1 ≤ i ≤ N} where

x(i) = (x
(i)
1 , . . . , x

(i)
p ) ∈ Ap under sparsity constraint.

Applications biology, social sciences,

Main difficulty: the log-partition function logZθ is intractable in
general.

- Most of the existing results use a pseudo-likelihood function.
- One exception is [hoefling09], using an active set strategy (to

preserve sparsity), and the junction tree algorithm for computing the
partial derivatives of the log-partition function. However, this
algorithm does not scale
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Model

Penalized likelihood F (θ) = −`(θ) + g(θ) where

`(θ) =
1

N

N∑
i=1

〈θ, B̄(x(i))〉 − logZθ and g(θ) = λ
∑

1≤k≤j≤p

|θjk| ;

the matrix-valued function B̄ : X→ Rp×p is defined by

B̄kk(x) = B0(xk) B̄kj(x) = B(xk, xj) , k 6= j .

Intractable canonical exponential model.
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Model

Penalized likelihood F (θ) = −`(θ) + g(θ) where

`(θ) =
1

N

N∑
i=1

〈θ, B̄(x(i))〉 − logZθ and g(θ) = λ
∑

1≤k≤j≤p

|θjk| ;

the matrix-valued function B̄ : X→ Rp×p is defined by

B̄kk(x) = B0(xk) B̄kj(x) = B(xk, xj) , k 6= j .

θ 7→ −`(θ) is convex and

∇`(θ) =
1

N

N∑
i=1

B̄(x(i))−
∫
X

B̄(z)fθ(z)µ(dz) ,
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Implementation

Direct simulation from the distribution fθ is not feasible.

If X is not too large, then a Gibbs sampler that samples from the full
conditional distributions of fθ can be easily implemented.

Gibbs sampler is a generic algorithm that in some cases is known to
mix poorly. Whenever possible we recommend the use of specialized
problem-specific MCMC algorithms with better mixing properties...
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Set up

X = {1, . . . ,M}, B0(x) = 0, and B(x, y) = 1{x=y}, which
corresponds to the Potts model.

We use M = 20, B0(x) = x, N = 250 and for p ∈ {50, 100, 200}.
We generate the ‘true’ matrix θtrue such that it has on average p
non-zero elements off-diagonal which are simulated from a uniform
distribution on (−4,−1) ∪ (1, 4).

All the diagonal elements are set to 0.
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Algorithms

Two versions of the stochastic proximal gradient are considered

1 Solver 1: A version with a fixed Monte Carlo batch size mn = 500,
and decreasing step size γn = 25

p
1

n0.7 .
2 Solver 2: A version with increasing Monte Carlo batch size
mn = 500 + n1.2, and fixed step size γn = 25

p
1√
50

.

The set-up is such that both solvers draw approximately the same
number of Monte Carlo samples.
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Algorithms

Two versions of the stochastic proximal gradient are considered

1 Solver 1: A version with a fixed Monte Carlo batch size mn = 500,
and decreasing step size γn = 25

p
1

n0.7 .
2 Solver 2: A version with increasing Monte Carlo batch size
mn = 500 + n1.2, and fixed step size γn = 25

p
1√
50

.

We evaluate the convergence of each solver by computing the
relative error ‖θn − θ∞‖/‖θ∞‖, along the iterations, where θ∞
denotes the value returned by the solver on its last iteration.
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Algorithms

Two versions of the stochastic proximal gradient are considered

1 Solver 1: A version with a fixed Monte Carlo batch size mn = 500,
and decreasing step size γn = 25

p
1

n0.7 .
2 Solver 2: A version with increasing Monte Carlo batch size
mn = 500 + n1.2, and fixed step size γn = 25

p
1√
50

.

We compare the optimizer output to θ∞, not θtrue. Ideally, we would
like to compare the iterates to the solution of the optimization
problem. However in the present setting a solution is not available in
closed form (and there could be more than one solution).
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Figure: Relative errors plotted as function of computing time
for Solver 1 and Solver 2.

When
measured as
function of
resource used,
Solver 1 and
Solver 2 have
roughly the
same
convergence
rate.
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Sensitivity and Precision

We also compute the statistic Fn
def
= 2SennPrecn

Senn+Precn
which measures the

recovery of the sparsity structure of θ∞ along the iteration.

In this definition Senn is the sensitivity, and Precn is the precision
defined as

Senn =

∑
j<i 1{|θn,ij |>0}1{|θ∞,ij |>0}∑

j<i 1{|θ∞,ij |>0}

Precn =

∑
j<i 1{|θn,ij |>0}1{|θ∞,ij |>0}∑

j<i 1{|θ∞,ij |>0}
.
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Sensitivity and Precision
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Figure: Statistic Fn plotted as function of computing time for Solver 1 and
Solver 2.

Francis Bach, Aymeric Dieuleveut, Alain Durmus, Eric Moulines CEMRACS 2021



Supervised Machine Learning
Smooth convex optimization

Non-smooth convex optimization
Stochastic approximation

Proximal methods
Applications

Network structure estimation
High-dimensional logistic regression with random effect

1 Supervised Machine Learning
Set-up
Convex functions: basic ideas
Empirical risk minimization: convergence rates

2 Smooth convex optimization
Gradient descent
Accelerated gradient methods

3 Non-smooth convex optimization
4 Stochastic approximation

An introduction to stochastic approximation
Smooth strongly convex case
Stochastic subgradient descent/method

5 Proximal methods
Proximal operator
Proximal gradient algorithm
Stochastic proximal gradient

6 Applications
Network structure estimation
High-dimensional logistic regression with random effect

Francis Bach, Aymeric Dieuleveut, Alain Durmus, Eric Moulines CEMRACS 2021



Supervised Machine Learning
Smooth convex optimization

Non-smooth convex optimization
Stochastic approximation

Proximal methods
Applications

Network structure estimation
High-dimensional logistic regression with random effect

High-dimensional logistic regression with random effects

Observations : N observations Y ∈ {0, 1}N

Random effect : Conditionally to U, for all i = 1, · · · , N ,

Yi
ind.∼ B

(
exp(ηi)

1 + exp(ηi)

)
where  η1

...
ηN

 = Xβ∗ + σ∗ZU

The regressors X ∈ RN×p and the factor loadings Z ∈ RN×q,
known.

Objective: estimate β∗ ∈ Rp, σ∗ > 0.
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Penalized likelihood

log-likelihood : Taking U ∼ Nq(0, I), setting

θ = (β, σ) F (η) =
exp(η)

1 + exp(η)

the log-likelihood of the observations Y (with respect to θ) is

`(θ) = log

∫ N∏
i=1

{F (Xi·β + σ(ZU)i)}Yi {1− F (Xi·β + σ(ZU)i)}1−Yi φ(u)du

Elastic net penalty

gλ,θ(θ) = λ

(
1− α

2
‖β‖22 + α‖β‖1

)
g̃C(θ) =

{
0 si θ ∈ C
+∞ otherwise
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Penalized likelihood

minθ∈Θ (f(θ) + g(θ)) , f(θ) = −`(θ) ,
with

`(θ) = log

∫
exp (`c(θ|u)) φ(u)du

`c(θ|u) =

N∑
i=1

{Yi (Xi·β + σ(ZU)i)− ln (1 + exp (Xi·β + σ(ZU)i))}

Gradient :

∇`(θ) =

∫
∇`c(θ|u)πθ(u)du

where πθ(u) is the posterior distribution of the random effect given the
observations

πθ(u) = exp (`c(θ|u)− `(θ)) φ(u)
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Penalized likelihood

minθ∈Θ (f(θ) + g(θ)) , f(θ) = −`(θ)

where

gλ,θ(θ) = λ

(
1− α

2
‖β‖22 + α‖β‖1

)
+ IC(θ)

IC(θ) =

{
0 if θ ∈ C
+∞ otherwise

C compact convex set

↪→ proper convex,
lower-semi continuous, not differentiable.
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MCMC algorithm

The distribution πθ is sampled using the MCMC sampler proposed in
(Polson et al, 2012) based on data-augmentation.

We write −∇`(θ) =
∫
Rq×RN Hθ(u)π̃θ(u,w) dudw where π̃θ(u,w)

is defined for u ∈ Rq and w = (w1, · · · , wN ) ∈ RN by

π̃θ(u,w) =

(
N∏
i=1

π̄PG (wi;x
′
iβ + σz′iu)

)
πθ(u) ;

in this expression, π̄PG(·; c) is the density of the Polya-Gamma
distribution on the positive real line with parameter c given by

π̄PG(w; c) = cosh(c/2) exp
(
−wc2/2

)
ρ(w)1R+(w) ,

where ρ(w) ∝
∑
k≥0(−1)k(2k + 1) exp(−(2k + 1)2/(8w))w−3/2
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MCMC algorithm

The distribution πθ is sampled using the MCMC sampler proposed in
(Polson et al, 2012) based on data-augmentation.

We write −∇`(θ) =
∫
Rq×RN Hθ(u)π̃θ(u,w) dudw where π̃θ(u,w)

is defined for u ∈ Rq and w = (w1, · · · , wN ) ∈ RN by

π̃θ(u,w) =

(
N∏
i=1

π̄PG (wi;x
′
iβ + σz′iu)

)
πθ(u) ;

Thus, we have

π̃θ(u,w) = Cθφ(u)

N∏
i=1

exp
(
σ(Yi − 1/2)z′iu− wi(x′iβ + σz′iu)2/2

)
ρ(wi)1R+(wi) ,

where lnCθ = −N ln 2− `(θ) +
∑N
i=1(Yi − 1/2)x′iβ.
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MCMC algorithm

The distribution πθ is sampled using the MCMC sampler proposed in
(Polson et al, 2012) based on data-augmentation.

We write −∇`(θ) =
∫
Rq×RN Hθ(u)π̃θ(u,w) dudw where π̃θ(u,w)

is defined for u ∈ Rq and w = (w1, · · · , wN ) ∈ RN by

π̃θ(u,w) =

(
N∏
i=1

π̄PG (wi;x
′
iβ + σz′iu)

)
πθ(u) ;

This target distribution can be sampled using a Gibbs algorithm
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Numerics

We test the algorithms with N = 500, p = 1, 000 and q = 5.

We generate the N × p covariates matrix X columnwise, by
sampling a stationary RN -valued autoregressive model with
parameter ρ = 0.8 and Gaussian noise

√
1− ρ2NN (0, I).

We generate the vector of regressors βtrue from the uniform
distribution on [1, 5] and randomly set 98% of the coefficients to
zero.

The variance of the random effect is set to σ2 = 0.1.
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Numerics

We first illustrate the ability of Monte Carlo Proximal Gradient
algorithms to find a minimizer of F . We compare the Monte Carlo
proximal gradient algorithm

1 with fixed batch size: γn = 0.01/
√
n and mn = 275 (Algo 1);

γn = 0.5/n and mn = 275 (Algo 2).

2 with increasing batch size: γn = γ = 0.005, mn = 200 + n (Algo 3);
γn = γ = 0.001, mn = 200 + n (Algo 4); and γn = 0.05/

√
n and

mn = 270 + d
√
ne (Algo 5).
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Figure: [left] The support of the sparse vector β∞ obtained by Algo 1 to
Algo 5; for comparison, the support of βtrue is on the bottom row. [right]
Relative error along one path of each algorithm as a function of the total
number of Monte Carlo samples.
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Figure: The sensitivity Senn [left] and the precision Precn [right] along a path,
versus the total number of Monte Carlo samples up to time n
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