
State estimation methods involving physical model
corrections. Application to neutronics.

1 Goal of the project

In the field of inverse problems, one often combines available observations com-
ing from sensors with physical PDE models in order to provide an approximation
of the state of the physical system under consideration or certain outputs of in-
terest. In general, even the best existing PDE models available to describe
many physical systems present a model error, which is difficult and costly to
estimate. This model error can however be large, and have a disastrous im-
pact on the final quality of the reconstruction if not taken into account. In this
projet, we propose to develop data-driven methods to learn how to introduce
corrections/improvements to the reconstructions when the physical model is not
perfect.

As a support for our tests, we propose to explore an example from the field of
neutronics, which describes the behavior of neutrons in reactor cores. This type
of system can be described via two models: the first, most accurate, is the so-
called multigroup transport equation. The second model is a diffusion equation,
less accurate by easier to implement and faster to compute. Assuming that the
true system is given by the accurate transport model, the goal is to do state
estimation using the diffusion model and incorporating data-driven corrections
accounting for the fact that the model is inexact.

2 Organization details

• Supervisors: François Madiot (CEA), Olga Mula (Paris Dauphine, In-
ria), Tommaso Taddei (Inria)

• Number of students: 2

3 Transport and diffusion models for neutronics

An accurate model to describe the behavior of neutrons is the multigroup trans-
port equation, which expresses the balance between the generation and disap-
pearance of neutrons [1].

Let R be the domain of the core reactor. We consider the stationary case
where the angular flux ψ := (ψg)g∈[1,G] depends on six variables, namely the
position r ∈ R, the direction ω ∈ S2 where S2 is the unit sphere and g ∈ [1, G]
the energy group.

The multigroup neutron transport equation writes

Find (ψ, λ) such that for all g ∈ [1, G],{
Lgψg(r, ω) = Hgψ(r, ω) + λF gψ(r, ω) in R× S2,
ψ = 0 on {r ∈ ∂R, n(r) · ω < 0},

(1)
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where

Lgψg(r, ω) = (ω · ∇+ σg
t (r))ψg(r, ω) is the advection operator,

Hgψ(r, ω) =

∫
S2

G∑
g′=1

σg′→g
s (r, ω′ · ω)ψg′

(r, ω′)dω′ is the scattering operator,

Fgψ(r, ω) =
χg(r)

4π

G∑
g′=1

(νσf )g
′
(r)φg

′
(r) is the fission operator,

φg(r) =

∫
S2
ψg(r, ω)dω is the scalar flux.

In the listed terms, σg
t (r) denotes the total cross-section and σg′→g

s (r, ω′ · ω)
is the scattering cross-section from energy group g′ and direction ω′ to energy
group g and direction ω, σg

f (r) is the fission cross-section, νg(r) is the average
number of neutrons emitted per fission and χg(r) is the spectrum.

The transport model is often approximated at the reactor core scale by a
diffusion model. The multigroup diffusion model writes

Find (φ, λ) such that for all g ∈ [1, G],− div(Dg(r)∇φg(r)) + σg
t (r)φg(r) = Hg

0φ(r) + λF gφ(r) in R,

Dg(r)∇φg(r) · n+
1

2
φg(r) = 0 on ∂R,

(2)

where

Dg(r) is the diffusion coefficient,

Hg
0φ(r) =

G∑
g′=1

σg′→g
s,0 (r)φg

′
(r) is the scattering operator,

F gφ(r) =
χg(r)

4π

G∑
g′=1

(νσf )g
′
(r)φg

′
(r) is the fission operator,

and σg′→g
s,0 is the isotropic scattering cross-section from energy group g′ to energy

group g.
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