

Internal wave dynamics in the atmosphere take-home messages

Rupert Klein

Mathematik & Informatik, Freie Universität Berlin

Compressible flow equations $L \sim h_{\rm sc}$

$$\begin{split} \rho_t + \nabla \cdot (\rho \boldsymbol{v}) &= 0 \\ (\rho \boldsymbol{u})_t + \nabla \cdot (\rho \boldsymbol{v} \circ \boldsymbol{u}) + P \nabla_{\parallel} \pi &= 0 \\ (\rho \boldsymbol{w})_t + \nabla \cdot (\rho \boldsymbol{v} \boldsymbol{w}) + P \pi_z &= -\rho g \\ (\rho w)_t + \nabla \cdot (\rho \boldsymbol{v} \boldsymbol{w}) + P \pi_z &= -\rho g \\ P_t + \nabla \cdot (P \boldsymbol{v}) &= 0 \end{split}$$

$$P = p^{\frac{1}{\gamma}} = \rho \theta, \qquad \pi = p/\Gamma P, \qquad \Gamma = c_p/R, \qquad \boldsymbol{v} = \boldsymbol{u} + w \boldsymbol{k} \quad (\boldsymbol{u} \cdot \boldsymbol{k} \equiv 0)$$

Parameter range & length and time scales of asymptotic validity ?

[†] e.g. Lipps & Hemler, JAS, **29**, 2192–2210 (1982)

* Durran, JAS, 46, 1453–1461 (1989)

Characteristic inverse time scales

Realistic regime with three time scales

$$\overline{\theta} = 1 + \varepsilon^{\mu} \widehat{\theta}(z) + \dots \qquad \Rightarrow \qquad \frac{h_{\rm sc}}{\overline{\theta}} \frac{d\overline{\theta}}{dz} = O(\varepsilon^{\mu}) \qquad (\nu = 1 - \mu/2)$$

$$-\frac{d}{dz}\left(\underbrace{\frac{1}{1-e^{\mu}\frac{\omega^{2}/\lambda^{2}}{\overline{c}^{2}}}\frac{1}{\overline{\theta}\,\overline{P}}\,\frac{dW}{dz}}_{\overline{\theta}\,\overline{P}}W\right)+\frac{\lambda^{2}}{\overline{\theta}\,\overline{P}}W=\frac{1}{\omega^{2}}\,\frac{\lambda^{2}N^{2}}{\overline{\theta}\,\overline{P}}W$$

Internal wave modes $\left(\frac{\omega^2/\lambda^2}{\overline{c}^2} = O(1)\right)$

- pseudo-incompressible modes/EVals = compressible modes/EVals + $O(\epsilon^{\mu})$ **†**
- phase errors remain small *over advection time scales* for $\mu > \frac{2}{3}$

Anelastic and pseudo-incompressible models remain relevant for stratifications

$$\frac{1}{\overline{\theta}}\frac{d\theta}{dz} < O(\varepsilon^{2/3}) \qquad \Rightarrow \qquad \Delta\theta|_0^{h_{\rm sc}} \lesssim 40 \ {\rm K}$$

not merely up to $O(\boldsymbol{\varepsilon}^2)$ as in Ogura-Phillips (1962)

$$\varepsilon y'' + \delta y' + y = \cos(\tau)$$

$$mx'' + kx' + cx = F_0^* \cos(\Omega t), \text{Exact Solution}$$

$$mx'' + kx' + cx = F_0^* \cos(\Omega t), \text{Exact Solution}$$

$$mx'' + kx' + cx = F_0^* \cos(\Omega t), \text{Exact Solution}$$

$$mx'' + kx' + cx = F_0^* \cos(\Omega t), \text{Exact Solution}$$

$$\int_{0}^{0} \frac{1}{\sqrt{2}} \int_{0}^{0} \frac{1}{\sqrt{2}} \int_{0}^{1} \frac{1}{\sqrt{2}}$$

The limit is path-dependent!

Matched asymptotic expansions ?

Strongly tilted atmospheric Vortices

Rupert Klein

Mathematik & Informatik, Freie Universität Berlin

CEMRACS 2019 "Geophysical Fluids, Gravity Flows"

CIRM, Luminy, July 18, 2019

Thanks to ...

Eileen Päschke Ariane Papke Patrick Marschalik Antony Owinoh Tom Dörffel Sabine Hittmeir Piotr Smolarkiewicz Boualem Khouider Mike Montgomery Roger Smith (Deutscher Wetterdienst, Lindenberg)
(formely FU-Berlin)
(Fritz Haber Institute, Berlin)
(†)
(FU-Berlin)
(Univ. of Vienna)
(ECMWF, Reading)
(Univ. of Victoria)

(Naval Postgraduate School, Monterey)
(Ludwig-Maximilians Univ., München)

Deutsche Forschungsgemeinschaft

Scaling Cascades in Complex Systems

CRC 1114

Motivation

Structure of atmospheric vortices I: two scales (*Päschke et al., JFM, (2012*))

Structure of atmospheric vortices II: cascade of scales (*Dörffel et al., arXiv:1708.07674*)

Conclusions

Tropical easterly african waves

http://www.aoml.noaa.gov/hrd/tcfaq/A4.html

Developing tropical storm

(streamlines in co-moving frame and Okubo-Weiss-parameter (color))

Dunkerton et al., Atmos. Chem. Phys., 9, 5587–5646 (2009)

Developed hurricane

 $R_{\rm mw}^* \approx 50 \dots 200 \ {\rm km}$ $u_{\theta} \approx 30 \dots 60 \ {\rm m/s}$

 $R_{\rm mw}$: radius of max. wind

Hurricane "Rita"

$$\operatorname{Ro} = \frac{u_{\theta, \max}}{fR_{\max}} \sim 10$$

Photo: Hurricane Rita from https://commons.wikimedia.org/wiki/File:HurricaneRita21Sept05a.jpg

Ensemble of Simulations of "Joaquin"-like Storms

Gh. Alaka et al. (2019), WAF, submitted

Motivation

Structure of atmospheric vortices I: two scales (*Päschke et al., JFM, (2012*))

Structure of atmospheric vortices II: cascade of scales (*Dörffel et al., arXiv:1708.07674*)

Conclusions

Photo: Hurricane Rita from https://commons.wikimedia.org/wiki/ File:HurricaneRita21Sept05a.jpg

$$-\frac{1}{\rho}\frac{\partial p}{\partial r} + fu_{\theta} = \mathcal{O}(1) \quad \text{geostrophic} \qquad \text{Ro} \ll 1 \qquad \text{typical "weather"}$$
$$\frac{u_{\theta}^{2}}{r} - \frac{1}{\rho}\frac{\partial p}{\partial r} + fu_{\theta} = \mathcal{O}(1) \quad \text{gradient wind} \qquad \text{Ro} = \mathcal{O}(1) \qquad \text{tropical storm}$$
$$\frac{u_{\theta}^{2}}{r} - \frac{1}{\rho}\frac{\partial p}{\partial r} \qquad = \mathcal{O}(1) \quad \text{cyclostrophic} \qquad \text{Ro} \gg 1 \qquad \text{hurricane}$$

Päschke, Marschalik, Owinoh, K., JFM, **701**, 137–170 (2012)

Dörffel et al., preprint, arXiv:1708.07674 (2017)

Tropical easterly african waves

http://www.aoml.noaa.gov/hrd/tcfaq/A4.html

Vortex tilt in the incipient hurricane stage

(Velocity potential)

Dunkerton et al., Atmos. Chem. Phys., 9, 5587-5646 (2009)

Scaling regime for matched asymptotic expansions

Photo: Hurricane Rita from https://commons.wikimedia.org/wiki/File:HurricaneRita21Sept05a.jpg

Centerline evolution

(from the matching condition)

 $\chi = fct(total circulation, centerline geometry)$

 $\Psi = \text{fct}(\text{core structure}, \text{centerline geometry, diabatic sources})$

Vortex motion \Rightarrow **precessing quasi-modes**^{*}

Adiabatic lifting and WTG

(0th & 1st circumferential Fourier modes: $w = w_0 + w_{11} \cos \theta + w_{12} \sin \theta + ...$)

gradient wind balance (0th) and hydrostatics (1st) in the tilted vortex

$$\frac{1}{\overline{\rho}}\frac{\partial p}{\partial r} = \frac{u_{\theta}^2}{r} + f u_{\theta}, \qquad \Theta_{1\boldsymbol{k}} = -\frac{1}{\overline{\rho}}\frac{\partial p}{\partial r} \left(\boldsymbol{e}_r \cdot \frac{\partial \widehat{\boldsymbol{X}}}{\partial z}\right)_{1\boldsymbol{k}},$$

$$\left(\boldsymbol{e}_{r}\cdot\widehat{\boldsymbol{X}}=\widehat{X}\cos\theta+\widehat{Y}\sin\theta\right)$$

potential temperature transport (1st)

$$-(-1)^k \frac{u_{\theta}}{r} \Theta_{1\mathbf{k}^*} + w_{1k} \frac{d\overline{\Theta}}{dz} = Q_{\Theta,1\mathbf{k}} \qquad (\mathbf{k}^* = 3 - k)$$

1st-mode phase relation: vertical velocity – diabatic sources & vortex tilt

$$\underline{w_{1\boldsymbol{k}}} = \frac{1}{d\overline{\Theta}/dz} \left[\underline{Q_{\Theta,1\boldsymbol{k}}} + \left(\boldsymbol{e}_r \cdot \frac{\partial \widehat{\boldsymbol{X}}^{\perp}}{\underline{\partial z}} \right)_{\boldsymbol{k}} \frac{u_{\theta}}{r} \left(\frac{u_{\theta}^2}{r} + f \, u_{\theta} \right) \right]$$

Spin-up by asynchronous heating

$$\underbrace{\frac{\partial u_{\theta,0}}{\partial \tau} + w_0 \frac{\partial u_{\theta,0}}{\partial z} + u_{r,00} \left(\frac{\partial u_{\theta}}{\partial r} + \frac{u_{\theta}}{r} + f\right)}_{\text{standard axisymmetric balance}} = - \boldsymbol{u_{r,*}} \left(\frac{u_{\theta}}{r} + f\right)$$

$$\boldsymbol{u_{r,*}} = \left\langle w \, \frac{\partial}{\partial z} \left(\boldsymbol{e_r} \cdot \widehat{\boldsymbol{X}} \right) \right\rangle_{\theta}$$

$$\boldsymbol{e}_{r} \cdot \widehat{\boldsymbol{X}} = \widehat{X} \cos \theta + \widehat{Y} \sin \theta$$
$$w_{1\boldsymbol{k}} = \frac{1}{d\overline{\Theta}/dz} \left[Q_{\Theta,1\boldsymbol{k}} + \frac{\partial}{\partial z} \left(\boldsymbol{e}_{r} \cdot \widehat{\boldsymbol{X}}^{\perp} \right)_{\boldsymbol{k}} \frac{u_{\theta}}{r} \left(\frac{u_{\theta}^{2}}{r} + f u_{\theta} \right) \right]$$

Spin-up by asynchronous heating

$$\underbrace{\frac{\partial u_{\theta,0}}{\partial \tau} + w_0 \frac{\partial u_{\theta,0}}{\partial z} + u_{r,00} \left(\frac{\partial u_{\theta}}{\partial r} + \frac{u_{\theta}}{r} + f\right)}_{\text{standard axisymmetric balance}} = -\boldsymbol{u_{r,*}} \left(\frac{u_{\theta}}{r} + f\right)$$

$$\boldsymbol{u_{r,*}} = \left\langle w \frac{\partial}{\partial z} \left(\boldsymbol{e_r} \cdot \widehat{\boldsymbol{X}} \right) \right\rangle_{\theta} = \frac{1}{d\overline{\Theta}/dz} \left(Q_{\Theta,11} \frac{\partial \widehat{X}}{\partial z} + Q_{\Theta,12} \frac{\partial \widehat{Y}}{\partial z} \right) \qquad \boldsymbol{!}$$

$$\boldsymbol{e}_{r} \cdot \widehat{\boldsymbol{X}} = \widehat{X} \cos \theta + \widehat{Y} \sin \theta$$

$$w_{1\boldsymbol{k}} = \frac{1}{d\overline{\Theta}/dz} \left[\begin{array}{c} Q_{\Theta,1\boldsymbol{k}} + \frac{\partial}{\partial z} \left(\boldsymbol{e}_{r} \cdot \widehat{\boldsymbol{X}}^{\perp} \right)_{\boldsymbol{k}} \frac{u_{\theta}}{r} \left(\frac{u_{\theta}^{2}}{r} + f \, u_{\theta} \right) \\ \underbrace{\mathbf{W}\mathsf{TG}} \end{array} \right]$$
adiabatic lifting

* Jones, Q.J.R. Met. Soc., 121, 821-851 (1995)

* Frank & Ritchie, Mon. Wea. Rev., 127, 2044–2061 (1999)

Heating pattern for max intensification (APE-theory)*

figures adapted from: Jones (1995), Q.J.R. Met. Soc., 121, 821-851

Lorenz, E. N., Generation of available potential energy and the intensity of the general circulation, Tech. Rep., UCLA, (1955)

Compatibility with Lorenz' APE theory*

$$\left(re_{\mathbf{k}} \right)_{t} + \left(ru_{r,0}[e_{\mathbf{k}} + p'] \right)_{r} + \left(rw_{0}[e_{\mathbf{k}} + p'] \right)_{z} = \frac{r\overline{\rho}}{N^{2}\overline{\Theta}^{2}} \left(\Theta_{0}'Q_{\Theta,0} + \Theta_{1}' \cdot Q_{\Theta,1} \right)$$
$$e_{k} = \frac{\overline{\rho}u_{\theta}^{2}}{2}$$

Symmetric & asymmetric are equally important

*Thanks to Olivier Pauluis! "Available Potential Energy"

Dörffel et al., preprint, arXiv:1708.07674 (2017)

Radial transport & tilting by asymmetric heating

Circumferential Fouriermodes of vertical velocity

$$w_{1\boldsymbol{k}} = \frac{1}{d\overline{\Theta}/dz} \left[Q_{\Theta,1\boldsymbol{k}} + \frac{\partial}{\partial z} \left(\boldsymbol{e}_{r} \cdot \widehat{\boldsymbol{X}}^{\perp} \right)_{\boldsymbol{k}} \frac{u_{\theta}}{r} \left(\frac{u_{\theta}^{2}}{r} + f \, u_{\theta} \right) \right]$$
$$u_{r,*}$$
$$w_{1}\boldsymbol{k}$$
$$w_{1}\boldsymbol{k}$$
$$u_{r,*} = \left\langle w \frac{\partial}{\partial z} \left(\boldsymbol{e}_{r} \cdot \widehat{\boldsymbol{X}} \right) \right\rangle_{\theta} = \frac{1}{d\overline{\Theta}/dz} \left(Q_{\Theta,11} \frac{\partial \widehat{X}}{\partial z} + Q_{\Theta,12} \frac{\partial \widehat{Y}}{\partial z} \right)$$

 $(w = w_0 + w_{11}\cos\theta + w_{12}\sin\theta + \dots)$

Recent results

Qualitative corroboration through 3D-numerics

Artificial heating pattern:

$$w_{1\boldsymbol{k}} = \frac{1}{d\overline{\Theta}/dz} \left[-\frac{\partial}{\partial z} \left(\boldsymbol{e}_r \cdot \widehat{\boldsymbol{X}} \right)_{\boldsymbol{k}} \frac{u_{\theta}}{r} \left(\frac{u_{\theta}^2}{r} + f \, u_{\theta} \right) + \frac{\partial}{\partial z} \left(\boldsymbol{e}_r \cdot \widehat{\boldsymbol{X}}^{\perp} \right)_{\boldsymbol{k}} \frac{u_{\theta}}{r} \left(\frac{u_{\theta}^2}{r} + f \, u_{\theta} \right) \right]$$

* Ultimately leaves asymptotic regime!

Motivation

Structure of atmospheric vortices I: two scales (*Päschke et al., JFM, (2012*))

Structure of atmospheric vortices II: cascade of scales (Dörffel et al., arXiv:1708.07674)

Conclusions

Convective updrafts

Convection concentrates in narrow towers (area fraction $\sigma \ll 1$) Essentially dry dynamics between towers Comparable average vertical mass fluxes

Calls for non-standard multiscale analysis

Spin-up by asymmetric convection

$$\underbrace{\frac{\partial u_{\theta,0}}{\partial \tau} + w_0 \frac{\partial u_{\theta,0}}{\partial z} + u_{r,00} \left(\frac{\partial u_{\theta}}{\partial r} + \frac{u_{\theta}}{r} + f\right)}_{\text{standard axisymmetric balance}} = - \boldsymbol{u_{r,*}} \left(\frac{u_{\theta}}{r} + f\right)$$

$$\boldsymbol{u_{r,*}} = \left\langle \boldsymbol{w} \frac{\partial}{\partial z} \left(\boldsymbol{e_r} \cdot \widehat{\boldsymbol{X}} \right) \right\rangle_{\theta} = \underline{\boldsymbol{w}_{\text{upd},11}} \frac{\partial \widehat{X}}{\partial z} + \overline{\boldsymbol{w}_{\text{upd},12}} \frac{\partial \widehat{Y}}{\partial z} \qquad \boldsymbol{!}$$

Area averaged updraft fluxes take role of heating-induced vertical velocities

Intensification & tilt destabilization

Attenuation / tilt stabilization

Motivation

Structure of atmospheric vortices I: two scales

(Päschke et al., JFM, (2012))

Structure of atmospheric vortices II: cascade of scales (*Dörffel et al., arXiv:1708.07674*)

Conclusions

Spin-up by asymmetric heating

$$\underbrace{\frac{\partial u_{\theta,0}}{\partial \tau} + w_0 \frac{\partial u_{\theta,0}}{\partial z} + u_{r,00} \left(\frac{\partial u_{\theta}}{\partial r} + \frac{u_{\theta}}{r} + f\right)}_{\text{standard axisymmetric balance}} = - \boldsymbol{u_{r,*}} \left(\frac{u_{\theta}}{r} + f\right)$$

$$\boldsymbol{u_{r,*}} = \left\langle w \frac{\partial}{\partial z} \left(\boldsymbol{e_r} \cdot \widehat{\boldsymbol{X}} \right) \right\rangle_{\theta} = \frac{1}{d\overline{\Theta}/dz} \left(Q_{\Theta,11} \frac{\partial \widehat{X}}{\partial z} + Q_{\Theta,12} \frac{\partial \widehat{Y}}{\partial z} \right)$$

Radial transport in a tilted vortex induced by asymmetric heating