

# Internal wave dynamics in the atmosphere

Rupert Klein

Mathematik & Informatik, Freie Universität Berlin

CEMRACS 2019 "Geophysical Fluids, Gravity Flows"

CIRM, Luminy, July 17, 2019

# Thanks to ...

Ulrich Achatz Didier Bresch Omar Knio Fabian Senf Piotr Smolarkiewicz Olivier Pauluis Martin Götze Dennis Jentsch (Goethe-Universität, Frankfurt) (Université de Savoie, Chambéry) (KAUST, Saudi Arabia) (IAP, Kühlungsborn) (ECMWF, Reading, UK) (Courant Institute, NYU, New York) (formerly FU-Berlin) (formerly FU-Berlin)

Deutsche Forschungsgemeinschaft

MetStröm **DFG** 





Scaling Cascades in Complex Systems

# **Scale-dependent models for atmospheric motions**

Background on sound-proof models

Formal asymptotic regime of validity

Steps towards a rigorous proof

Summary

# **Scale-Dependent Models**



# **Scale-Dependent Models**



| Earth's radius                        | a                | $\sim$ | $6 \cdot 10^6$   | m                                              |
|---------------------------------------|------------------|--------|------------------|------------------------------------------------|
| Earth's rotation rate                 | Ω                | $\sim$ | $10^{-4}$        | $s^{-1}$                                       |
| Acceleration of gravity               | g                | $\sim$ | 9.81             | $\mathrm{ms}^{-2}$                             |
| Sea level pressure                    | $p_{ m ref}$     | $\sim$ | $10^{5}$         | $\mathrm{kgm}^{-1}\mathrm{s}^{-2}$             |
| H <sub>2</sub> O freezing temperature | $T_{ m ref}$     | $\sim$ | 273              | К                                              |
| Latent heat of water vapor            | $L_{q_{\rm vs}}$ | $\sim$ | $4 \cdot 10^{4}$ | $\mathrm{Jkg^{-1}K^{-1}}$                      |
| Dry gas constant                      | R                | $\sim$ | 287              | $\mathrm{m}^{2}\mathrm{s}^{-2}\mathrm{K}^{-1}$ |
| Dry isentropic exponent               | $\gamma$         | $\sim$ | 1.4              |                                                |

#### **Distinguished limit:**

$$\Pi_{1} = \frac{h_{\rm sc}}{a} \sim 1.6 \cdot 10^{-3} \sim \epsilon^{3} \qquad h_{\rm sc} = \frac{RT_{\rm ref}}{g} = \frac{p_{\rm ref}}{\rho_{\rm ref}g} \sim 8.5 \,\rm km$$

$$\Pi_{2} = \frac{L_{q_{\rm vs}}}{c_{p}T_{\rm ref}} \sim 1.5 \cdot 10^{-1} \sim \epsilon \qquad \rm where \qquad c_{\rm ref} = \sqrt{RT_{\rm ref}} = \sqrt{gh_{\rm sc}} \sim 300 \,\rm m/s$$

$$\Pi_{3} = \frac{c_{\rm ref}}{\Omega a} \sim 4.7 \cdot 10^{-1} \sim \sqrt{\epsilon} \qquad c_{p} = \frac{\gamma R}{\gamma - 1}$$

# **Classical length scales and dimensionless numbers**

$$L_{\rm mes} = \varepsilon^{-1} h_{\rm sc} \qquad {\rm Fr}_{\rm int} \sim \varepsilon$$

$$L_{\rm syn} = \varepsilon^{-2} h_{\rm sc} \qquad {\rm Ro}_{h_{\rm sc}} \sim \varepsilon^{-1}$$

$$L_{\rm Ob} = \varepsilon^{-5/2} h_{\rm sc} \qquad {\rm Ro}_{L_{\rm Ro}} \sim \varepsilon$$

$$L_{\rm p} = \varepsilon^{-3} h_{\rm sc} \qquad {\rm Ma} \sim \varepsilon^{3/2}$$

#### **Remark:**

There aren't *the* low Mach number limit equations. Asymptotic results depend on the adopted distinguished limit and scalings of length, time and initial data !

# **Scale-Dependent Models**

**Compressible flow equations with general source terms** 

$$\begin{split} \left(\frac{\partial}{\partial t} + \| \boldsymbol{v} \cdot \| \nabla + w \frac{\partial}{\partial z}\right) \| \boldsymbol{v} + \boldsymbol{\varepsilon} \| (2\boldsymbol{\Omega} \times \boldsymbol{v}) + \frac{1}{\boldsymbol{\varepsilon}^{3} \rho} \nabla_{\boldsymbol{\parallel}} p \ = \ \boldsymbol{S}_{\boldsymbol{\parallel} \boldsymbol{v}}, \\ \left(\frac{\partial}{\partial t} + \| \boldsymbol{v} \cdot \| \nabla + w \frac{\partial}{\partial z}\right) w \ + \boldsymbol{\varepsilon} (2\boldsymbol{\Omega} \times \boldsymbol{v})_{\perp} + \frac{1}{\boldsymbol{\varepsilon}^{3} \rho} \frac{\partial p}{\partial z} \ = \ \boldsymbol{S}_{\boldsymbol{w}} - \frac{1}{\boldsymbol{\varepsilon}^{3}}, \\ \left(\frac{\partial}{\partial t} + \| \boldsymbol{v} \cdot \| \nabla + w \frac{\partial}{\partial z}\right) \rho \ + \rho \nabla \cdot \boldsymbol{v} \ = 0, \\ \left(\frac{\partial}{\partial t} + \| \boldsymbol{v} \cdot \| \nabla + w \frac{\partial}{\partial z}\right) \Theta \ = \ \boldsymbol{S}_{\Theta} \\ \Theta \ = \ \frac{p^{1/\gamma}}{\rho} \end{split}$$

Asymptotic single-scale ansatz

$$\mathbf{U}(t, \boldsymbol{x}, z; \boldsymbol{\varepsilon}) = \sum_{i=0}^{m} \phi_i(\boldsymbol{\varepsilon}) \, \mathbf{U}^{(i)}(t, \boldsymbol{x}, z; \boldsymbol{\varepsilon}) + \mathcal{O}\big(\phi_m(\boldsymbol{\varepsilon})\big)$$

# **Recovered classical single-scale models:**

| $\mathbf{U}^{(i)} = \mathbf{U}^{(i)}(rac{t}{oldsymbol{arepsilon}},oldsymbol{x},rac{z}{oldsymbol{arepsilon}})$                                                                 | Linear small scale internal gravity waves          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| $\mathbf{U}^{(i)} = \mathbf{U}^{(i)}(t, \boldsymbol{x}, z)$                                                                                                                     | Anelastic & pseudo-incompressible models           |
| $\mathbf{U}^{(i)} = \mathbf{U}^{(i)}(\boldsymbol{\varepsilon} t, \boldsymbol{\varepsilon}^2 \boldsymbol{x}, z)$                                                                 | Linear large scale internal gravity waves          |
| $\mathbf{U}^{(i)} = \mathbf{U}^{(i)}(\mathbf{\varepsilon}^2 t, \mathbf{\varepsilon}^2 \mathbf{x}, z)$                                                                           | Mid-latitude Quasi- <mark>G</mark> eostrophic Flow |
| $\mathbf{U}^{(i)} = \mathbf{U}^{(i)}(\boldsymbol{\varepsilon}^2 t, \boldsymbol{\varepsilon}^2 \boldsymbol{x}, z)$                                                               | Equatorial Weak Temperature Gradients              |
| $\mathbf{U}^{(i)} = \mathbf{U}^{(i)}(\boldsymbol{\varepsilon}^2 t, \boldsymbol{\varepsilon}^{-1}  \xi(\boldsymbol{\varepsilon}^2 \boldsymbol{x}), z)$                           | Semi-geostrophic flow                              |
| $\mathbf{U}^{(i)} = \mathbf{U}^{(i)}(\underline{\boldsymbol{\varepsilon}^{3/2}}t, \underline{\boldsymbol{\varepsilon}^{5/2}}x, \underline{\boldsymbol{\varepsilon}^{5/2}}y, z)$ | Kelvin, Yanai, Rossby, and gravity Waves           |

These all share one distinguished limit  $\Rightarrow$  Starting point for multiscale analyses!

# **Scale-Dependent Models**



R.K., Ann. Rev. Fluid Mech., 42, 2010

#### **Compressible flow equations**

# $$\begin{split} \frac{D_{||} \boldsymbol{v}}{Dt} &+ \boldsymbol{\varepsilon} \left( 2\boldsymbol{\Omega} \times \boldsymbol{v} \right)_{||} + \frac{1}{\boldsymbol{\varepsilon}^{3} \rho} \, \nabla_{||} p \,=\, 0 \,, \\ \frac{Dw}{Dt} &+ \boldsymbol{\varepsilon} \left( 2\boldsymbol{\Omega} \times \boldsymbol{v} \right)_{\perp} + \frac{1}{\boldsymbol{\varepsilon}^{3} \rho} \frac{\partial p}{\partial z} \,=\, -\frac{1}{\boldsymbol{\varepsilon}^{3}} \,, \end{split}$$

$$\left(\frac{\partial}{\partial t} + \boldsymbol{v}_{\scriptscriptstyle ||} \cdot \nabla_{\scriptscriptstyle ||} + w \frac{\partial}{\partial z}\right) \rho + \rho \,\nabla \cdot \boldsymbol{v} = 0,$$

$$\left(\frac{\partial}{\partial t} + \boldsymbol{v}_{\parallel} \cdot \nabla_{\parallel} + w \frac{\partial}{\partial z}\right) \Theta = 0$$

$$\Theta = \frac{p^{1/\gamma}}{\rho}$$

#### distinguished limit

Fr<sub>int</sub> ~ 
$$\varepsilon$$
  
Ro<sub>h<sub>sc</sub></sub> ~  $\varepsilon^{-1}$   
Ro<sub>L<sub>Ro</sub></sub> ~  $\varepsilon$   
Ma ~  $\varepsilon^{3/2}$ 

#### length / time scalings

$$egin{aligned} m{x} &= & rac{m{x}'}{h_{
m sc}} \ m{z} &= & rac{z'}{h_{
m sc}} \ m{t} &= & rac{t'}{h_{
m sc}} \end{aligned}$$

# **Leading orders**

$$\nabla_{\parallel} p = 0 \qquad (1)$$
$$\partial_z p = -\rho \qquad (2)$$
$$\rho_t + \nabla \cdot (\rho v) = 0 \qquad (3)$$
$$\frac{D\Theta}{Dt} = 0 \qquad (4)$$
$$\Theta = \frac{p^{1/\gamma}}{\rho} \qquad (5)$$
$$\frac{D}{Dt} = \left(\frac{\partial}{\partial t} + v_{\parallel} \cdot \nabla_{\parallel} + w \frac{\partial}{\partial z}\right)$$

(2), (5) 
$$\Rightarrow \quad \nabla_{\parallel} \rho = \nabla_{\parallel} \Theta = 0$$
 (6)

4) & 
$$\Theta = \text{const} \Rightarrow$$
 (4)  $\checkmark$  (7)

(3) 
$$\Rightarrow \quad \nabla \cdot (\rho \boldsymbol{v}) = 0 \quad (8)$$

# Anelastic & pseudo-incompressible\* models (key aspect: weak stratification)

 $\Downarrow$ 

Scale-dependent models for atmospheric motions

**Background on sound-proof models** 

Formal asymptotic regime of validity

Steps towards a rigorous proof

Summary

# **Motivation ... Numerics**

# Why not simply solve the full compressible flow equations?



#### **Dispersion relations for acoustic, Lamb, and internal waves**

From: Hundertmark & Reich, Q.J.R. Meteorol. Soc. 133, 1575–1587 (2007)

#### Why not simply solve the full compressible equations?

Linear Acoustics, simple wave initial data, periodic domain *(integration: implicit midpoint rule, staggered grid,* 512 *grid pts.,* CFL = 10)



**Central questions:** 

# How to characerize a fully compressible flow at sub-acoustic time scales?

# What should be the "required" limit behaviour of a numerical flow solver?

The answers depend on the scaling regimes considered!



# **Scaling regimes**



**Compressible flow equations**  $L \sim h_{\rm sc}$ 

$$(\rho \boldsymbol{u})_t + \nabla \cdot (\rho \boldsymbol{v} \circ \boldsymbol{u}) + P \nabla_{\parallel} \pi = 0$$

 $\mathbf{o} + \nabla \cdot (\mathbf{o} \mathbf{a} \mathbf{b}) = 0$ 

$$(\rho w)_t + \nabla \cdot (\rho v w) + P \pi_z = -\rho g$$

drop term for:

anelastic<sup>†</sup> (approx.)

pseudo-incompressible\*

 $\boldsymbol{P_t} + \nabla \cdot (P\boldsymbol{v}) = 0$ 

$$P = p^{\frac{1}{\gamma}} = 
ho heta \ , \qquad \pi = p/\Gamma P \ , \qquad \Gamma = c_p/R \ , \qquad \boldsymbol{v} = \boldsymbol{u} + w \boldsymbol{k} \quad (\boldsymbol{u} \cdot \boldsymbol{k} \equiv 0)$$

**Parameter range & length and time scales of asymptotic validity ?** 

\* Durran, JAS, 46, 1453–1461 (1989)

Scale-dependent models for atmospheric motions

Background on sound-proof models

Formal asymptotic regime of validity

Steps towards a rigorous proof

Summary

# From here on: $\varepsilon$ is the Mach number





**Ogura & Phillips' regime\* with two time scales** 

$$\overline{\theta} = 1 + \varepsilon^2 \widehat{\theta}(z) + \dots \qquad \Rightarrow \qquad \frac{h_{\rm sc}}{\overline{\theta}} \frac{d\overline{\theta}}{dz} = O(\varepsilon^2)$$



**Ogura & Phillips' regime\* with two time scales** 

$$\overline{\theta} = 1 + \varepsilon^2 \widehat{\theta}(z) + \dots \qquad \Rightarrow \qquad \frac{h_{\rm sc}}{\overline{\theta}} \frac{d\overline{\theta}}{dz} = O(\varepsilon^2) \qquad \Rightarrow \qquad \Delta \overline{\theta} \mid_{z=0}^{h_{\rm sc}} < 1 \text{ K}$$

\* Ogura & Phillips (1962)



**Realistic regime with three time scales** 

$$\overline{\theta} = 1 + \varepsilon^{\mu} \widehat{\theta}(z) + \dots \qquad \Rightarrow \qquad \frac{h_{\rm sc}}{\overline{\theta}} \frac{d\overline{\theta}}{dz} = O(\varepsilon^{\mu}) \qquad (\nu = 1 - \mu/2)$$

Full compressible flow equations in perturbation variables

$$\begin{split} \tilde{\theta}_{t} &+ \frac{1}{\boldsymbol{\varepsilon}^{\boldsymbol{\nu}}} \tilde{w} \frac{d\hat{\theta}}{dz} &= -\tilde{\boldsymbol{v}} \cdot \nabla \tilde{\theta} \\ \tilde{\boldsymbol{v}}_{t} &- \frac{1}{\boldsymbol{\varepsilon}^{\boldsymbol{\nu}}} \frac{\tilde{\theta}}{\bar{\theta}} \boldsymbol{k} &+ \frac{1}{\boldsymbol{\varepsilon}} \overline{\theta} \nabla \tilde{\pi} &= -\tilde{\boldsymbol{v}} \cdot \nabla \tilde{\boldsymbol{v}} - \boldsymbol{\varepsilon}^{1-\boldsymbol{\nu}} \tilde{\theta} \nabla \tilde{\pi} &\cdot \\ \tilde{\pi}_{t} &+ \frac{1}{\boldsymbol{\varepsilon}} \left( \gamma \Gamma \overline{\pi} \nabla \cdot \tilde{\boldsymbol{v}} + \tilde{w} \frac{d\overline{\pi}}{dz} \right) &= \tilde{\boldsymbol{v}} \cdot \nabla \tilde{\pi} - \gamma \Gamma \tilde{\pi} \nabla \cdot \tilde{\boldsymbol{v}} \end{split}$$

#### **Issues to be clarified:**

Comparison of the internal wave modes (time scale  $\varepsilon^{\nu}$ ) Acoustic-internal wave interactions / resonances Control of nonlinearities for non-acoustic data

Internal wave scalings for  $t = O(\varepsilon^{\nu})$ :  $\tau = \frac{t}{\varepsilon^{\nu}}, \quad \pi^* = \varepsilon^{\nu-1} \tilde{\pi}$ 

Fast linear compressible / pseudo-incompressible modes

$$\tilde{\theta}_{\tau} + \tilde{w} \frac{d\hat{\theta}}{dz} = 0$$
$$\tilde{\boldsymbol{v}}_{\tau} - \frac{\tilde{\theta}}{\overline{\theta}} \boldsymbol{k} + \overline{\theta} \nabla \pi^{*} = 0$$
$$\boldsymbol{\varepsilon}^{\boldsymbol{\mu}} \pi_{\tau}^{*} + \left( \gamma \Gamma \overline{\pi} \nabla \cdot \tilde{\boldsymbol{v}} + \tilde{w} \frac{d\overline{\pi}}{dz} \right) = 0$$

Vertical mode expansion (separation of variables)

$$\begin{pmatrix} \tilde{\theta} \\ \tilde{\boldsymbol{u}} \\ \tilde{\boldsymbol{w}} \\ \pi^* \end{pmatrix} (\vartheta, \boldsymbol{x}, z) = \begin{pmatrix} \Theta^* \\ \boldsymbol{U}^* \\ W^* \\ \Pi^* \end{pmatrix} (z) \ \exp\left(i\left[\boldsymbol{\omega}\vartheta - \boldsymbol{\lambda}\cdot\boldsymbol{x}\right]\right)$$

**Compressible and pseudo-incompressible vertical modes**  $(W = \overline{P}W^*)$ 

$$-\frac{d}{dz}\left(\frac{1}{1-\epsilon^{\mu}\frac{\omega^{2}/\lambda^{2}}{\overline{c}^{2}}}\frac{1}{\overline{\theta}\,\overline{P}}\,\frac{dW}{dz}\right)+\frac{\lambda^{2}}{\overline{\theta}\,\overline{P}}\,W\,=\,\frac{1}{\omega^{2}}\,\frac{\lambda^{2}N^{2}}{\overline{\theta}\,\overline{P}}\,W$$

 $\boldsymbol{\varepsilon}^{\boldsymbol{\mu}} = 0$ : pseudo-incompressible case

regular Sturm-Liouville problem for internal wave modes (*rigid lid*)

#### $\varepsilon^{\mu} > 0$ : compressible case

nonlinear Sturm-Liouville problem\* ...

$$\frac{\omega^2/\lambda^2}{\overline{c}^2} = O(1)$$
 : perturbations of pseudo-incompressible modes & EVals

$$-\frac{d}{dz}\left(\frac{1}{1-\varepsilon^{\mu}\frac{\omega^{2}/\lambda^{2}}{\overline{c^{2}}}}\frac{1}{\overline{\theta}}\frac{dW}{\overline{P}}\frac{1}{dz}\right)+\frac{\lambda^{2}}{\overline{\theta}}\frac{W}{\overline{P}}W = \frac{1}{\omega^{2}}\frac{\lambda^{2}N^{2}}{\overline{\theta}}\frac{W}{\overline{P}}W$$

Internal wave modes  $\left(\frac{\omega^2/\lambda^2}{\overline{c}^2} = O(1)\right)$ 

- pseudo-incompressible modes/EVals = compressible modes/EVals +  $O(\epsilon^{\mu})$  **†**
- phase errors remain small *over advection time scales* for  $\mu > \frac{2}{3}$

Anelastic and pseudo-incompressible models remain relevant for stratifications

$$\frac{1}{\overline{\theta}}\frac{d\theta}{dz} < O(\varepsilon^{2/3}) \qquad \Rightarrow \qquad \Delta\theta|_0^{h_{\rm sc}} \lesssim 40 \ {\rm K}$$

not merely up to  $O(\varepsilon^2)$  as in Ogura-Phillips (1962)

A typical vertical structure function  $(L \sim \pi h_{sc} \sim 30 \text{ km}; \epsilon^{\mu} = 0.1)$ 



Klein et al., J. Atmos. Sci., 67, 3226-3237 (2010)

thanks to Dr. V. LeDoux, Ghent, for the SL-solver MATSLISE!

Breaking wave-test for anelastic models (Smolarkiewicz & Margolin (1997))

60 km







Benacchio et al., Mon. Wea. Rev., 142, 4416-4438 (2014)

Scale-dependent models for atmospheric motions

Background on sound-proof models

Formal asymptotic regime of validity

**Steps towards a rigorous proof** 

Summary

$$\begin{split} \tilde{\theta}_{\tau} &+ \frac{1}{\boldsymbol{\varepsilon}^{\boldsymbol{\nu}}} \,\tilde{w} \,\frac{d\widehat{\theta}}{dz} &= -\tilde{\boldsymbol{v}} \cdot \nabla \tilde{\theta} \\ \tilde{\boldsymbol{v}}_{\tau} &+ \frac{1}{\boldsymbol{\varepsilon}^{\boldsymbol{\nu}}} \,\frac{\tilde{\theta}}{\bar{\theta}} \,\boldsymbol{k} &+ \frac{1}{\boldsymbol{\varepsilon}} \,\overline{\theta} \nabla \tilde{\pi} &= -\tilde{\boldsymbol{v}} \cdot \nabla \tilde{\boldsymbol{v}} - \boldsymbol{\varepsilon}^{1-\boldsymbol{\nu}} \tilde{\theta} \nabla \tilde{\pi} \\ \tilde{\pi}_{\tau} &+ \frac{1}{\boldsymbol{\varepsilon}} \left( \gamma \Gamma \overline{\pi} \nabla \cdot \tilde{\boldsymbol{v}} + \tilde{w} \frac{d\overline{\pi}}{dz} \right) = -\tilde{\boldsymbol{v}} \cdot \nabla \tilde{\pi} - \gamma \Gamma \tilde{\pi} \nabla \cdot \tilde{\boldsymbol{v}} \end{split}$$

Existence & uniqueness of solutions for  $t \leq T$  with T independent of  $\varepsilon$ 

- 1. via energy estimates\*
  - L<sup>2</sup> control of derivatives in the fast linear system
  - nonlinear terms: Picard iteration exploiting Sobolev embedding
- 2. via spectral expansions (on bounded domains)\*
  - "non-resonance" through non-linear terms or
  - effective eqs. for resonant subsets of modes

# **Control of derivatives**

$$\begin{split} \tilde{\theta}_{t} &+ \frac{1}{\boldsymbol{\varepsilon}^{\boldsymbol{\nu}}} \,\tilde{w} \,\frac{d\widehat{\theta}}{dz} &= -\tilde{\boldsymbol{v}} \cdot \nabla \tilde{\theta} \\ \tilde{\boldsymbol{v}}_{t} &+ \frac{1}{\boldsymbol{\varepsilon}^{\boldsymbol{\nu}}} \,\frac{\tilde{\theta}}{\overline{\theta}} \,\boldsymbol{k} &+ \frac{1}{\boldsymbol{\varepsilon}} \,\overline{\theta} \nabla \tilde{\pi} &= -\tilde{\boldsymbol{v}} \cdot \nabla \tilde{\boldsymbol{v}} - \varepsilon^{1-\nu} \tilde{\theta} \nabla \tilde{\pi} \\ \tilde{\pi}_{t} &+ \frac{1}{\boldsymbol{\varepsilon}} \left( \gamma \Gamma \overline{\pi} \nabla \cdot \tilde{\boldsymbol{v}} + \tilde{w} \frac{d\overline{\pi}}{dz} \right) = -\tilde{\boldsymbol{v}} \cdot \nabla \tilde{\pi} - \gamma \Gamma \tilde{\pi} \nabla \cdot \tilde{\boldsymbol{v}} \end{split}$$

#### For the linear variable coefficient system:

- ✓ Control of weighted quadratic energy
- Control of horizontal derivatives
- Control of time derivatives
- **??** Control of **vertical** derivatives

Fast linear compressible / pseudo-incompressible modes

$$\tilde{\theta}_{\vartheta} + \tilde{w} \frac{d\widehat{\theta}}{dz} = 0$$
$$\tilde{\boldsymbol{v}}_{\vartheta} + \frac{\tilde{\theta}}{\overline{\theta}} \boldsymbol{k} + \overline{\theta} \nabla \pi^{*} = 0$$
$$\boldsymbol{\varepsilon}^{\boldsymbol{\mu}} \pi_{\vartheta}^{*} + \left(\gamma \Gamma \overline{\pi} \nabla \cdot \tilde{\boldsymbol{v}} + \tilde{w} \frac{d\overline{\pi}}{dz}\right) = 0$$

Vertical mode expansion (separation of variables)

$$\begin{pmatrix} \tilde{\theta} \\ \tilde{\boldsymbol{u}} \\ \tilde{\boldsymbol{w}} \\ \pi^* \end{pmatrix} (\vartheta, \boldsymbol{x}, z) = \begin{pmatrix} \Theta^* \\ \boldsymbol{U}^* \\ W^* \\ \Pi^* \end{pmatrix} (z) \exp\left(i\left[\boldsymbol{\omega}\vartheta - \boldsymbol{\lambda}\cdot\boldsymbol{x}\right]\right)$$

**Pseudo-incompressible case**  $(W = \overline{P}W^*)$ 

$$-\frac{d}{dz}\left(\phi \,\frac{dW}{dz}\right) + \lambda^2 \phi \,W \,=\, \frac{\lambda^2}{\omega^2} \,\phi N^2 \,W \,, \qquad W(0) = W(H) = 0$$

**Orthogonalities for eigenmodes/eigenvalues**  $(W_k^i; \boldsymbol{\omega}_k^i)$  for  $\lambda \equiv \lambda^i$ 

$$\begin{split} \left\langle W_k^i, W_l^i \right\rangle_{L^2, \phi N^2} &= \int_H^0 W_k^i W_l^i \,\phi N^2 \,dz = \delta_{kl} \\ \left\langle W_k^i, W_l^i \right\rangle_{H^1, \phi} &= \int_H^0 \left[ \frac{dW_k^i \,dW_l^i}{dz} + (\lambda^i)^2 W_k^i W_l^i \right] \phi \,dz = \left( \frac{\lambda^i}{\omega_k^i} \right)^2 \,\delta_{kl} \end{split}$$

#### Spectral expansion of the (weighted) vertical velocity

$$W(\vartheta, x, z) = \sum_{k,i} w_k^i W_k^i(z) \exp\left(\imath [\omega_k^i \vartheta - \lambda^i x]\right)$$

weighted *L*<sup>2</sup>-norm of the vertical velocity:

$$\int_{-L}^{L} \int_{0}^{H} W \overline{W} \phi N^{2} dz dx = 2L \sum_{k,i} w_{k}^{i} \overline{w_{l}^{i}} \left\langle W_{k}^{i}, W_{l}^{i} \right\rangle_{L^{2}, \phi N^{2}} \exp(i[\omega_{k}^{i} - \omega_{l}^{i}]\vartheta)$$
$$= 2L \sum_{k,i} |w_{k}^{i}|^{2}$$
$$= \text{const.}$$

**1st constraint on**  $|w_k^i|$  for i, k large

Spectral expansion of the (weighted) vertical velocity

$$W(\vartheta, x, z) = \sum_{k,i} w_k^i W_k^i(z) \exp\left(i[\omega_k^i \vartheta - \lambda^i x]\right)$$

weighted *H*<sup>1</sup>-norm of the vertical velocity:

$$\int_{-L}^{L} \int_{0}^{H} \nabla W \cdot \nabla \overline{W} \phi \, dz dx = 2L \sum_{k,i} w_{k}^{i} \overline{w_{l}^{i}} \left\langle W_{k}^{i}, W_{l}^{i} \right\rangle_{H^{1}, \phi} \exp(i[\omega_{k}^{i} - \omega_{l}^{i}]\vartheta)$$
$$= 2L \sum_{k,i} |w_{k}^{i}|^{2} \frac{\left(\lambda^{i}\right)^{2}}{\left(\omega_{k}^{i}\right)^{2}}$$
$$= \text{const.}$$

**2nd stronger constraint on**  $|w_k^i|$  for i, k large  $(\omega_k^i = O(1/k) \ as \ (k \to \infty))$ 

Higher derivatives via recursion: using Taylor-Goldstein (or SL) eqn.

replace  $W_{zz}$  by W and  $W_z$ replace  $W_{zzz}$  by  $W_z$  and  $W_{zz}$  etc.  $\downarrow \downarrow$ 

control of  $W_{zz}, W_{zzz}, ...$  in suitable weighted  $L^2$  norms under increasingly stringent decay conditions for amplitudes  $w_k^i$  What about  $u, \theta, \pi$ ?

#### Linear system

$$\begin{split} \tilde{\theta}_{\vartheta} + \tilde{w} \frac{d\hat{\theta}}{dz} &= 0\\ \tilde{u}_{\vartheta} + \overline{\theta} \nabla \pi^* &= 0\\ \tilde{w}_{\vartheta} - \frac{\tilde{\theta}}{\overline{\theta}} + \overline{\theta} \frac{\partial \pi^*}{\partial z} &= 0\\ \overline{P} \nabla \cdot \tilde{v} + \tilde{w} \frac{d\overline{P}}{dz} &= 0 \end{split}$$

#### polarization conditions

$$\Theta^* = \frac{\imath}{\omega} \frac{d\widehat{\theta}}{dz} W^*$$
$$U^* = -\frac{\lambda}{\omega} \Pi^*$$
$$\frac{d\Pi^*}{dz} = \frac{1}{\overline{\theta}^2} \Theta^* - \frac{\imath\omega}{\overline{\theta}} W^*$$
$$\lambda \cdot U^* = \frac{\imath}{\overline{P}} \frac{d\overline{P}}{dz} W^*$$

#### polarization conditions

$$\Theta^* = \frac{i}{\omega} \frac{d\widehat{\theta}}{dz} W^*$$
$$U^* = -\frac{\lambda \overline{\theta}}{\omega} \Pi^*$$
$$\frac{d\Pi^*}{dz} = \frac{1}{\overline{\theta}^2} \Theta^* - \frac{i\omega}{\overline{\theta}} W^*$$
$$\lambda \cdot U^* = \frac{i}{\overline{P}} \frac{d\overline{P}}{dz} W^*$$

components in terms of  $W^*$ 

$$\frac{\Theta^*}{d\hat{\theta}/dz} = \frac{i}{\omega}W^*$$

$$\frac{dU^*}{dz} = -\frac{i\lambda N^2}{\overline{\theta}\omega^2} \left(1 - \frac{\omega^2}{N^2}\right)W^*$$

$$\frac{d\Pi^*}{dz} = \frac{iN^2}{\overline{\theta}\omega} \left(1 - \frac{\omega^2}{N^2}\right)W^*$$

$$\lambda \cdot U^* = \frac{i}{\overline{P}}\frac{d\overline{P}}{dz}W^*$$

$$N^2 = \frac{1}{\overline{\theta}}\frac{d\widehat{\theta}}{dz}$$

#### Spectral expansion of the (weighted) potential temperature

$$\frac{\Theta(\vartheta, x, z)}{d\widehat{\theta}/dz} = \imath \sum_{k,i} \frac{w_k^i}{\omega_k^i} W_k^i(z) \exp\left(\imath [\omega_k^i \vartheta - \lambda^i x]\right)$$

**new** weighted *H*<sup>1</sup>-norm of the potential temperature:

$$\int_{-L}^{L} \int_{0}^{H} \left( \nabla \frac{\Theta(\vartheta, x, z)}{d\overline{\theta}/dz} \right)^{2} \phi \, dz \, dx = 2L \sum_{k,i} \frac{w_{k}^{i} \overline{w_{l}^{i}}}{\omega_{k}^{i} \omega_{l}^{i}} \left\langle W_{k}^{i}, W_{l}^{i} \right\rangle_{H^{1}, \phi} \exp(i[\omega_{k}^{i} - \omega_{l}^{i}]\vartheta)$$
$$= 2L \sum_{k,i} |w_{k}^{i}|^{2} \frac{(\lambda^{i})^{2}}{(\omega_{k}^{i})^{4}}$$
$$= \text{const.}$$

**3rd strongest constraint on**  $|w_k^i|$  for i, k large  $(\omega_k^i = O(1/k) \ as \ (k \to \infty))$ 

#### Estimate for $\partial \tilde{u} / \partial z$ :

recall

$$\frac{d\boldsymbol{U}^{*}}{d\boldsymbol{z}} = -\frac{i\boldsymbol{\lambda}N^{2}}{\overline{\theta}\omega^{2}}\left(1 - \frac{\omega^{2}}{N^{2}}\right)W^{*}$$
$$\int_{-L}^{L}\int_{0}^{H}\left(\frac{\overline{\theta}}{N}\frac{\partial\tilde{\boldsymbol{u}}}{\partial\boldsymbol{z}}\right)^{2}\phi\,d\boldsymbol{z}d\boldsymbol{x} \leq \sum_{i}\sum_{k,l}w_{k}^{i}\overline{w_{l}^{i}}\frac{(\lambda^{i})^{2}}{(\omega_{k}^{i})^{2}(\omega_{l}^{i})^{2}}\left(A_{k,l}^{i} + B_{k,l}^{i} + C_{k,l}^{i}\right)$$

where

$$\begin{split} A_k^i &= \left\langle W_k^i, W_l^i \right\rangle_{\phi N^2} = \delta_{kl} & \text{OK} \\ \mathbf{B}_k^i &= \left( (\omega_k^i)^2 + (\omega_l^i)^2 \right) \left\langle W_k^i, W_l^i \right\rangle_{\phi} & \text{double sums !!} \\ \mathbf{C}_k^i &= (\omega_k^i)^2 (\omega_l^i)^2 \left\langle W_k^i, W_l^i \right\rangle_{\phi/N^2} \end{split}$$

The double-sums converge if, for smooth enough positive  $\psi$ :

 $\langle W_k^i, W_l^i \rangle_{\psi} = O\left((k-l)^{-2}\right) \Rightarrow \mathsf{WKB}$ -asymptotics for  $W_k^i \ (k \to \infty) \checkmark$ 

(**Idea 1**)

# Estimate for $\partial \tilde{u}/\partial z$ : (Idea 2) recall $\frac{dU^*}{dz} = -\frac{i\lambda N^2}{\overline{\partial}\omega^2} \left(1 - \frac{\omega^2}{N^2}\right) W^* = \frac{dU_1^*}{dz} + \frac{dU_2^*}{dz}$ Control $\frac{dU_1^*}{dz}, \ \frac{dU_2^*}{dz}$

in two different weighted norms using same strategy as applied for  $\Theta$ . Since the weights are bounded, this yields control of standard  $L^2$ ,  $H^1$ , ... norms.

No WKB-estimates for near-orthogonality at high wavenumbers needed.

# $H^s$ control for the pseudo-incompressible fast system $\checkmark$

#### Outlook

- Resonant sets and related evolution equations (pseudo-incompressible)
- Control of derivatives for the compressible system
- Decoupling of acoustic & internal waves
- Resonant sets and related evolution equations (compressible)
- Arakawa & Conor's "Unified Model" for large horizontal scales
- Further "translations" into numerical methods



Scale-dependent models for atmospheric motions

Background on sound-proof models

Formal asymptotic regime of validity

Steps towards a rigorous proof

**Summary**