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Introduction Modified equation

Introduction to modified equations

For instance, let us consider the scalar transport equation :

ou n C@u _0
ot x
where ¢ > 0, and let us consider the following numerical scheme, for example :
um™ oy u —u
' Lpet—=0 (1)
At Ax

where At and Ax are respectively the discrete time step and the mesh size.
After we use Taylor expansions in the vicinity of (x;, t")

ou!  At? 9?uf
a7 = (o, 17 = w7+ AL = o + AT+ ST O(AF)
ou?  Ax?92u”
U;’il = U(X,'f]_, tn) = U(Xi - AX’ t") = aié + TX 8X2’ + O(AX3)
and replace in the scheme (1) in order to get the scheme truncation error :
ou Ju At d%u Ax 0%u
o gL =2re A2 A 2
5t~ 2 o T3 g T O AX) @

Now, for physical interpretation, we would like to have only space derivatives in the right hand side.
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Introduction Modified equation

Introduction to modified equations

For instance, let us consider the scalar transport equation :

du ou

EJng—O

where ¢ > 0, and let us consider the following numerical scheme, for example :

utt —yr ul —ul
] I + c 1 I
At Ax

0 (1)

where At and Ax are respectively the discrete time step and the mesh size.
After we use Taylor expansions in the vicinity of (x;,t") and replace in the scheme (1) in order to get
the scheme truncation error :

= A R0 PO L oA, Ax?) (2)
X
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Introduction Modified equation

Introduction to modified equations

For instance, let us consider the scalar transport equation :

ou n C@u _0
ot x
where ¢ > 0, and let us consider the following numerical scheme, for example :
uttt—yn ul — uf
i i +c i i—1 — 0 (1)
At Ax

where At and Ax are respectively the discrete time step and the mesh size.
After we use Taylor expansions in the vicinity of (x;,t") and replace in the scheme (1) in order to get
the scheme truncation error :

% = —c% - %% + c%% + O(AF?, AX?) (2)
Replace 8;1-12,” by %(2) in (2), then :
% + c% = —CQ%% + c%% + O(At?, Ax?)
= c% (1 - cﬁi) % + O(At?, Ax?)
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Introduction Modified equation

Introduction to modified equations

For instance, let us consider the scalar transport equation :

ou n C@u _0
ot x
where ¢ > 0, and let us consider the following numerical scheme, for example :
uttt—yn ul — uf
i i +c i i—1 — 0 (1)
At Ax

where At and Ax are respectively the discrete time step and the mesh size.
After we use Taylor expansions in the vicinity of (x;,t") and replace in the scheme (1) in order to get
the scheme truncation error :

2 2
@:_C@_EQ+CE%+@(A&AX2) (2)

Then, the modified equation is :

b 0w Ax() Ae\o
ot C8X C2 CAX Ox?

The scheme is stable only if

+ O(At?, Ax?)

At
1—c—>
CAX_O
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Introduction Heuristic stability theory

Heuristic stability theory : heat equation

PDE X Scheme
@,Qaig_o’ Q>0 u’(H—l_ulp Qu;’+1—2u;’+U,{’_170
_ ot~ Ox N At A2 =
This scheme is stable under the condition :
At 1
< =
QAX2 -2
Modified equation
du Py Q u Q@ A%u
— =Q — 6QAt — Ax?) — + —(Ax* + 30QAt(—Ax* + 4QAL O(At?, Ax*
ot = Qo2 12 (0@ X°) g + 30 (A +30QAL(-AXT +4QA1) 75 + O(AL, AxY)
Project TOLOSA
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Heuristic stability theory : heat equation

PDE X Scheme
6 a n n n n
a—l;an—XLzl:O, Q>0 U,'+1_U,(7_Qui+172ui+ui—170
At Ax? o
This scheme is stable under the condition :
At 1
< Z
QAX2 -2
Modified equation
u u  Q lu Q 0%u
— = Q- — — (6QAt — Ax?) — + —(AX* At(—Ax? +4QAL))— At?, Ax*
ot anz 12(6Q X)8x4+360( X"+ 30QAt(—Ax" +4Q ))6X6+(9( , AxY)
We look at the sign of the even order coefficients
e Q>0
Q 5 At 1
- At — A < — >
° 12(6Q t X)_O<:>QAX2_6
° ...
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Introduction Heuristic stability theory

Heuristic stability theory : heat equation

PDE 5 o
u u
ot e =0 Q>0
This scheme is stable under the condition :
At 1
< =
QAX2 -2

Modified equation

8U:Q@70 lu Q

ot ox?2 12 ox* 360

We look at the sign of the even order coefficients

e Q>0
Q 5 At 1
——(6QAt — Ax") < — >
° 12(6Q t X)_O<:>QAX2_6
° ...

This shows the limitations of the heuristic approach.
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Scheme
+1
u"t =l QUF+1 —2uf +uf —-0
At Ax?

0%u

= (6QAt — Ax®) —— + ——(Ax* + 30QAL(—Ax* + 4QAL))—— + O(At?, Ax*?)

Ox®
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Project goal and subject

Project goal

To establish a clear link between the stability condition of a numerical scheme for a given PDE system
and an associated modified equation.

Next step : Once this is completed, retrieve the stability conditions presented in (P. Noble and
J. P. Vila. “Stability theory for difference approximations of euler korteweg equations and application to
thin film flows". In: (2014), pp. 1-22. arXiv: arXiv:1304.3805v2)

F. Dhaouadi, E. Duval, S. Tkachenko (UPS, UGA, AMU) Project TOLOSA 22 August 2019 4 /23


http://arxiv.org/abs/arXiv:1304.3805v2

State of the art

@ Presented the heuristic stability theory and also tried for non linear pdes.
M. C. Hirt. "Heuristic Stability Theory for Finite-Difference Equations”. In: Journal of
Computational Physics 2 (1968), pp. 339-355

@ The connection between the modified equation and the von Neumann (Fourier) method is
established.
R. F. Warming and B. J. Hyett. “The Modified Equation Approach to the Stability and Accuracy
Analysis of Finite-Difference Methods”. In: Journal of Computational Physics 179 (1974),
pp. 159-179

@ An alternative approach on how to derive the modified equation for linear problems
Romuald Carpentier, Armel de la Bourdonnaye, and Larrouturou Bernard. “On the derivation of
the modified equation for the analysis of linear numerical methods”. In: 31.4 (1997), pp. 459-470
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Introduction EKCITHINE

@ Linear scalar case
@ Von Neumann analysis
@ Link with modified equations
@ Algorithm

@ Linear system case
@ Possible extensions
@ Entropy stability

© Conclusions
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[RLCETEEIETREEI  Von Neumann analysis

Von Neumann stability analysis

Given a linear PDE :

us + ;CX(U) =0

assume we have a consistent one-step linear scheme given in general as

§ : n+1 E :
Bqu Jjta — Apuj. jtp
q=—m p=—n;

We replace every u/' by v(k)"exp(ikjAx) and define the amplification factor as

v(k)rtt

ZZ’ o Apexp(ipk Ax)
v(k)

Z;n;_m, Bgexp(igk Ax)

g(k) =

A necessary and sufficient stability condition is

lg(k)l <1
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[RLCETEEIETREEI  Von Neumann analysis

Von Neumann stability analysis

In order to get a more practical formulation of this condition, we can show that the square of the
modulus can be given by :

5(2)

where :
0 z= sin2(kAx/2).

@ r > 1is an integer. It is the maximum power of z that can be put as a common factor in the
numerator.

e S5(2)= Zoz,-zi is a polynomial function of z such that S(0) # 0.
i=0
d .
e P(z) = Zﬁ,-z’ > 0 is a polynomial function of z such that P(0) =1
i=0
Therefore, the stability condition becomes :

gk?P<1 o S(z)>0 vzelo,1]
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Modified equations - Elementary wave solution

Consider the modified equation obtained after replacing all the time derivatives by space derivatives :

Z'u(p oPu

We split even and odd derivatives of this series as follows :

ou oL R~ 0%Pu
p=0 p=1
Assume an elementary solution of the modified equation (9) in the form : u = e**e™ then this solution
must verify :
(o)
o= Z i(—1)Pu(2p + 1)k + Z( 1)Pu(2p) k2P
p=0 p=1

If we further divide &« = a + ib where a and b are reals we get :

oo o0
— 2] 2p . — P 2p+1
a=> (—1)Pu(2p)k . b= (~1)Pu(2p+ 1)k
p=1 p=0
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Link to the Von Neumann stability analysis

The amplification factor g, (k) of the elementary solution u = e**e/* is :

u(X7(t +t)At) _ ea(t:tmiifikx — OBt _ altgbAL _ |0 ()| oibAL
u(x, ecte

lgm(k)| = €2 = exp (Atz u(2p k2p>

Since the numerical solution verifies the modified equation (9) then its amplification factor is the same
as the elementary solution :

Therefore :

1£00)] = lgn(K)| = lg(k) — |gm(K)2 =0
Which yields:

S(z 2p |
1—4rPE;—exp<2AtZ( 1)Pu(2p)k )0

Which we can express as :
H(9) = 0; 0 = kAx

Expanding the left hand side into power series of 6 permits to obtain coefficients of S(z).
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Determining the form of the amplification factor

If we note nex = The number of grid points around u}'. njm, = The number of grid points around uj’“

then :

@ The least even order appearing in the modified equation is 2r.
@ s = max(nex, nim) — r  (except very particular cases)
o d=nj,

This gives a precise form of the amplification factor :

|14y 2z ®iZ
1+ 37, 87

= The unknowns in the amplification factor are (ayg...cs, B1...84) = s+ d + 1 unknowns.

lg(k)
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Optimizing the procedure

@ Instead of developing H(6) as a function of 6§, it is better to develop the following function :

H(0)
92r

= F(6%) = F(9)

o It is sufficient to develop F in a power series to the order s + d :

s+d

F(9) =Y c(pli), ao--cxs, Bi1..-Ba) 0" + R(0)

k=0

and set then set all the coefficients equal to zero :

ck(p(i),ao...as,ﬂl...ﬂd) =0 Vk e {0,...,S+d}
Which permits to obtain |g(k)[°.
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(R CETQEIETREEN  Algorithm

Example : §—scheme for the heat equation

We consider the heat equation (Q > 0):

Ou 0%u
77 Qi2
ot Ox
n n n n n n+1 n+1 n+1
“;+1 —ur eQuifl =2u + ujly4 (1 9)0“;71 —2u]" 4 Ul
At Ax? Ax?

The grid points used in the scheme besides u/ and u/™* are uf’; and u’}! therefore :

nex:nim:2:>

The modified equation up to 4th order is given by :

ou 0%y QAX? O*u
ot~ 92 o (F1H020-1) 55

least non-zero even order derivative : 2r =2 = and s = max(Nex, Nim) — r = [s = 1]

4 oo+ 12
"
14+ Biz + Boz2
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Linear system case

@ Linear system case
@ Possible extensions
@ Entropy stability

F. Dhaouadi, E. Duval, S. Tkachenko (UPS, UGA, AMU) Project TOLOSA

22 August 2019

14 /23



[RLEEIEEVS RSl Possible extensions

Possible extensions

Linear scalar equations

- nice code

- gives stability condition for a large class of schemes
- based on a combination of Von Neumann

analysis and modified equations

Nonlinear scalar equations Linear systems
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[RLEEIEEVS RSl Possible extensions

Possible extensions: difficulties

Nonlinear scalar equations
@ Von Neumann analysis requires Fourier transformation which demands linearization.

@ If one finally decides to linearize, it will kill the nonlinear nature of the equation.

Burgers equation:
ug + uu, =0 = us + ugu, = 0.

Linear systems

@ It is not obvious how to get the same S-form of the amplification factor of the scheme.

@ Operators do not commute = the same code can not be used to derive the modified equations.
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Linear system case Possible extensions

What next?

Linear scalar equations

- nice code

- gives stability condition for a large class of schemes
- based on a combination of Von Neumann

analysis and modified equations

Nonlinear sc Linear systems

Problems:

Warming Entropy stability

Problems:

+ modified equations

analysis is more difficult to obtai

?
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Entropy stability of linear systems

Linear hyperbolic system:
u; + Aux - Oa

Entropy conservation law:
n(u)s + H(u)x = 0.
Entropy stability condition:

d
n(u)dx < 0.
dt Jq
The numerical analog:
N n+1 n
(™" —ni)Ax
—— <0
At
i=1
Project TOLOSA 22 August 2019
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Entropy stability + modified equations

Question: how can we use modified equations for the entropy stability study?

@ Write a numerical scheme for a hyperbolic system which admits an entropy conservation law,

_ . 0
@ Multiply it by the vector of entropy variables a—n
u
@ Derive a numerical analog of the entropy equation,
@ Apply Warming's approach for the obtained equation.
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Example: linearized shallow water equations

Shallow water system linearized around the steady state u = 0, h = hg:

Ct + hO Vx = 07
Vi + ng =0.
The entropy equation:
8CCe + ghoCvx =0 2 + hov?
¢ — &C° + hov® + (ghoCv)x = 0.
hovvy + ghov(x =0 2 .
The entropy couple of the system:
g¢% + hov?
()= L0 () = ghocv.
Associated entropy variables:
In on
20 0y
a€ Ca v oV
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Example: linearized shallow water equations

Backward Euler scheme:

T S e A N T (R L

6 n
Multiplying it by (;) = (gCP, hov™")T, we get the numerical entropy equation:
ujsi
ho

ntt—mp  HP—HP, gho
+ ( 2At

At Ax o

(Vin+1 - Vin)2-

C: _CI 1)( —Vi— l)+2At(CH+1 CI)

It is possible to derive the modified equation, but a more complex algorithm is needed. However, the
obtained modified equation will be non-linear.
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Conclusions

Conclusions and perspectives

Done: Developed the code which
@ Computes the modified equation for a given linear scalar PDE

@ Automatically derives the stability condition, based on Warming’s approach.
In progress:

@ Study of the entropy stability coupled with modified equations (dealing with non-linearities)

@ Development of the code to derive modified equations for linear PDE systems
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