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Introduction: Oscillating water column (OWC)

Closed chamber submerged with an
opening below the free surface towards
the incident wave

Due to the waves motion, the
water column acts as a piston
compressing the air trapped inside
the chamber.

Pressurized air activates a turbine
that is attached to the energy
generator.

Some Advantages

Easy maintenance

There are no machine components
in the water

Efficient use of the marine space
and is environment friendly

Taken from Falcao, Henriques, Renewable Energy, 2015.
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Motivation: some experiences

Offshore OWC installed in Ireland, about 2008.

All these pictures are taken from

Falcao, Henriques, Renewable

Energy, 2015.

Onshore OWC installed in 1990 at Trivandrum, India.
Offshore OWC installed in Australia, about 2005.
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Wave energy converter: configuration

Figure: Configuration.

Notations

ζ is the surface elevation around the rest state,

h is the fluid height,

q is the horizontal discharge,

P is the surface pressure.
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Wave energy converter: constrains

Exterior domain E ,

Pe = Patm and ζe is unknown.

Interior domain I,

P i is unknown and ζi = ζw .

where Jf K denotes the difference of f on the two side-walls of the solid,
namely

Jf K = f (l0 + r)− f (l0 − r).
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General Settings

The motion of the fluid is governed by the following nonlinear shallow
water equations (NSW):

∂tζ + ∂xq = 0

∂tq + ∂x

(
q2

h

)
+ gh∂xζ = 0

x ∈ (−∞, l0 − r) ∪ (l0 + r , l1)

The wave-structure interaction is described by the following two
transmission conditions :

JqK = 0,
s
q2

2h2
+ gζ

{
= − 2r

hw

dqi
dt
.

Initial conditions :

q(t = 0, x) = q0(x); ζ(t = 0, x) = ζ0(x).
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Derivation of the Model
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Derivation of the Model

Step 1 : Reduce the problem
The motion of wave is described by the 1D shallow water equations :

In the exterior domain E :


∂tζ + ∂xq = 0

∂tq + ∂x

(
q2

h

)
+ gh∂xζ = −1

ρ
h∂xPatm= 0

In the interior domain I :


∂tζi + ∂xqi = 0

∂tqi + ∂x

(
q2
i

hi

)
+ ghi∂xζi = −1

ρ
hi∂xP i

Coupling conditions :

q(t, l0 ± r) = qi (t, l0 ± r)

∂tζi = 0 ; qi (t, x) = qi (t)
;

first transmission condition :

JqK = 0
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Step 1 : Reduce the problem

In the exterior domain E :


∂tζ + ∂xq = 0

∂tq + ∂x

(
q2

h

)
+ gh∂xζ = 0

In the interior domain I : ∂tqi = −1

ρ
hi∂xP i

; −2rρ

hw
∂tqi = JPiK

Remark :

Free surface, constrained pressure in the exterior domain : ζ, Patm

Constrained surface, free pressure in the interior domain : ζw = ζi , P i

Goal : find the evolution equation for qi !
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Step 2: Derive the transmission condition
∂tζ + ∂xq = 0

∂tq + ∂x

(
q2

h

)
+ gh∂xζ = −1

ρ
h∂xP

Local energy conservation in the exterior region.

∂teext + ∂x fext = 0.

with

eext =
q2

2h
+ g

ζ2

2
and fext =

q3

2h2
+ gζq,

Total energy : Etot =

∫
E
eext +

∫
I

ρ

2

( q2
i

hw
+ gζ2

w

)
Energy conservation :

0 = JfextK +
2rρ

hw
qi

d

dt
qi ;

s
q2

2h2
+ gζ

{
= −2rρ

hw

d

dt
qi
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Wave-structure interaction

The original problem can be reduced to a transmission problem :
∂tζ + ∂xq = 0

∂tq + ∂x

(
q2

h

)
+ gh∂xζ = 0

x ∈ E (1)

with transmission conditions provided at the contact points x = l0 ± r :

JqK = 0, (2)

s
q2

2h2
+ gζ

{
= −2rρ

hw

dqi
dt

= −αdqi
dt
. (3)
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Discretization
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Riemann invariants

For a pair of system of hyperbolic conservation laws[
ζ
q

]
t

+

[
q

q2

h + g
2h

2

]
x

=

[
0
0

]
it is known that a pair of Riemann invariants exist so that the system can
be rewritten as

∂tR + λ+(ζ, q)∂xR = 0; ∂tL− λ−(ζ, q)∂xL = 0

where (R, L) are the Riemann invariants and λ+ and −λ− are the two
eigenvalues

R = 2(
√

gh −
√
gh0) +

q

h
, L = 2(

√
gh −

√
gh0)− q

h
;

λ+(U) =
√
gh +

q

h
, −λ−(U) = −

√
gh +

q

h
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Discretization of the Model

Let us first rewrite the shallow water equations in a more compact form by
introducing U = (ζ, q)T :

∂tU + ∂x(F (U)) = 0, (4)

with

F (U) = (q,
1

2
g(h2 − h2

0) +
q2

h
)T ,

Then the Lax-Friedrichs scheme for solving the above partial differential
equation is given by:

Un+1
i − 1

2 (Un
i+1 + Un

i−1)

∆t
+

F (Un
i+1)− F (Un

i−1)

2 ∆x
= 0

which implies

Un+1
i =

1

2
(Un

i+1 + Un
i−1)− ∆t

2 ∆x
(F (Un

i+1)− F (Un
i−1))
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Discretization of entry condition

Entry condition at x = −l :
Surface elevation ζ is given by ζ(tn, x = −l) = f (tn);

Horizontal discharge q can be derived by Left Riemann invariant L :

q = h(2(
√

gh −
√

gh0)− L)

After discretization, we have

qn|x=−l = (h0 + f (tn))(2(
√
g(h0 + f (tn))−

√
gh0)−

?︷ ︸︸ ︷
Ln|x=−l).

By using characteristic equation of L, we have

Ln0 − Ln−1
0

δt
− λ−

Ln−1
1 − Ln−1

0

δx
= 0.

Thus, Ln|x=−l can be determined by

Ln0 = (1− λ−
δt
δx

)Ln−1
0 + λ−

δt
δx

Ln−1
1 .
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Discretization of discontinuous topography

Coupling conditions near the discontinuous topography at x = 0 :

Continuity of the surface elevation ζ : ζ l |x=0 = ζr |x=0;

Continuity of the horizontal discharge q : ql |x=0 = qr |x=0

Using Riemann invariants, we find two expressions of q describing ql |x=0

and qr |x=0, respectively,
ql |x=0 = (hs + ζ l |x=0)

(
R l |x=0 − 2

(√
g(hs + ζ l |x=0)−

√
ghs
))

qr |x=0 = (h0 + ζr |x=0)
(

2
(√

g(h0 + ζr |x=0)−
√

gh0

)
− Lr |x=0

) (5)

Here, R l |x=0 and Lr |x=0 can be determined by their characteristic
equations :

(R l)n0 =

(
1− λl+

δt
δx

)
(R l)n−1

0 + λl+
δt
δx

(R l)n−1
−1 ,

(Lr )n0 =

(
1− λr−

δt
δx

)
(Lr )n−1

0 + λr−
δt
δx

(Lr )n−1
+1
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Discretization on the sector of the fixed submerged object

Transmission conditions in the interior domain I = (l0 − r , l0 + r) :

JqK = 0 ; ql |l0−r = qi = qr |l0+r .

Using Riemann invariants, we find
ql |l0−r = (h0 + ζ l |l0−r )

(
R l |l0−r − 2

(√
g(h0 + ζ l |l0−r )−

√
gh0

))
;

qr |l0+r = (h0 + ζr |l0+r )
(

2
(√

g(h0 + ζr |l0+r )−
√
gh0

)
− Lr |l0+r

)
.

(6)

Here, R l |l0−r and Lr |l0−r can be determined by their characteristic
equations as before.

The transmission condition near the object
s
q2

2h2
+ gζ

{
= −αdqi

dt

;
(qr |l0+r )2

2(h0 + ζr |l0+r )2
+ gζr |l0+r −

(ql |l0−r )2

2(h0 + ζ l |l0−r )2
− gζ l |l0−r = −αdqi

dt
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JqK = 0 ; ql |l0−r = qi = qr |l0+r .

Using Riemann invariants, we find
ql |l0−r = (h0 + ζ l |l0−r )

(
R l |l0−r − 2

(√
g(h0 + ζ l |l0−r )−

√
gh0

))
;

qr |l0+r = (h0 + ζr |l0+r )
(

2
(√

g(h0 + ζr |l0+r )−
√
gh0

)
− Lr |l0+r

)
.

(6)

Here, R l |l0−r and Lr |l0−r can be determined by their characteristic
equations as before.

The transmission condition near the object
s
q2

2h2
+ gζ

{
= −αdqi

dt

;
(qr |l0+r )2

2(h0 + ζr |l0+r )2
+ gζr |l0+r −

(ql |l0−r )2

2(h0 + ζ l |l0−r )2
− gζ l |l0−r = −αdqi

dt
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Discretization on the wall

There is a physical boundary at x = l0 + l given by the wall and the
corresponding boundary condition is :

v̄(t, l0 + l) = 0

which implies q(t, l0 + l) = 0 at the wall, so that

0 = h(R − 2(
√

gh −
√
gh0)) ; ζ =

1

g
(
R

2
+
√
gh0)2 − h0, at x = l0 + l

After discretization, we have

ζ(tn, l0 + l) =
1

g
(
R(tn, l0 + l)

2
+
√

gh0)2 − h0

Bocchi, He, Vergara-Hermosilla Modelling and simulation of a WEC Luminy, 21 August, 2019 19 / 25



Numerical Results
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Numerical Results

Figure: Amplitude = 1 and period = 3.

Bocchi, He, Vergara-Hermosilla Modelling and simulation of a WEC Luminy, 21 August, 2019 21 / 25



Numerical Results: Differences

Figure: Amplitude = 1 and period = 3.
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Absorbed power of the OWC-WEC device

The incident wave power Pinc is defined as the product of the incoming
wave energy and the group velocity cg :

Pinc = Ecg

with

Einc =
1

2
ρgLA2 and cg =

√
gh0

The absorbed power is defined as

Pa =
1

T

∫ T

0

∆PQdt

where ∆P is the instantaneous differential pressure between the chamber
and the exterior domain, and Q the airflow rate through the turbine, which
simply can be presented by

bl
dζaverage

dt
.
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Absorbed power
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Figure: Amplitude = 1 and period = 3.
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Thanks for your attention!
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