CEMRACS 2019 Coupling model of underground flow and pollution transport using a Finite volume scheme

Ayoub CHARHABIL charhabil@math.univ-paris13.fr

F. Benkhaldoun Paris 13 University

August 8th, 2019

A.Charhabil

Paris 13

In Nature, It is more complex !

(日) (四) (E) (E) (E)

Figure: Porous media

Mathematical Model

The problem is fully descriebed by the following system of equations :

• Richards Equation :

$$\frac{\partial \theta(h, x, y)}{\partial t} = \nabla [K(h, x, y)\nabla h] + \nabla K(h, x, y) + Q_s$$

• Transport Equation :

$$\frac{\partial \theta C}{\partial t} + \nabla . (qC) = \nabla . (\theta D \nabla C)$$

,

IRSN 3 / 45

$$\frac{\partial \theta(h, x, y, z)}{\partial t} = \nabla [K(h, x, y, z) \nabla h] + \nabla K(h, x, y, z) + Q_s$$

With :

- h : head water
- θ : volumetric water content
- K : hydraulic conductivity
- Q_s :source term

3D Transport Equation :

$$\left\{ egin{aligned} &rac{\partial heta C}{\partial t} +
abla.(qC) =
abla.(heta D
abla C) \ & heta D = \lambda |q| + heta D_m au \end{aligned}
ight.$$

with :

- C : solute concentration
- |q| :Darcy velocity
- λ longitudinal lenth pore/solide
- θ : volumetric water content

The Richards equation takes 3 forms :

• The θ -Form :

$$\frac{\partial \theta(h)}{\partial t} = \frac{\partial}{\partial z} \left[D(\theta) \left(\frac{\partial \theta}{\partial z} + \frac{\partial K}{\partial z} \right) \right]$$

• The Mixed-Form :

$$\frac{\partial \theta(h)}{\partial t} = \frac{\partial}{\partial z} \left[\mathcal{K}(\theta) \left(\frac{\partial h}{\partial z} - 1 \right) \right]$$

• The h-Form :

$$C(h)\frac{\partial h}{\partial t} = \frac{\partial}{\partial z} \left[K(h) \left(\frac{\partial h}{\partial z} - 1 \right) \right]$$

・ロト ・四ト ・ヨト ・ヨト

The θ -Form :

$$\frac{\partial \theta(h)}{\partial t} = \frac{\partial}{\partial z} \left[D(\theta) \left(\frac{\partial \theta}{\partial z} + \frac{\partial K}{\partial z} \right) \right]$$

With :
$$D = K \frac{\partial h}{\partial \theta} [L^2 T^{-1}]$$

Advantages:

- Conservation form by construction
- Mass balance is improved significantly
- Rapid convergence

Inconvinients:

- limited to unsaturated conditions (In saturation D is infinite !)
- Limited to homogenous soil (θ can be not continuous across interfaces separating the layers !)

The Mixed-Form :

$$\frac{\partial \theta(h)}{\partial t} = \frac{\partial}{\partial z} \left[\mathcal{K}(\theta) \left(\frac{\partial h}{\partial z} - 1 \right) \right]$$

Advantages:

- Mass Conservation / Mass balance
- Applicable to both saturated and unsaturated soil
- Applicable to heterogenous soil

Inconvinients:

• Acceptable numerical solutions not always guarenteed

The h-Form :

$$C(h)\frac{\partial h}{\partial t} = \frac{\partial}{\partial z} \left[K(h) \left(\frac{\partial h}{\partial z} - 1 \right) \right]$$

With : $C(h) = \frac{\partial \theta}{\partial h}$ (C:capillary capacity) Advantages:

- Applicable to both saturated and unsaturated soil
- Applicable heterogenous soil
- Very close to the physical model
- Less complicated to implement

Inconvinients:

- Poor preservation of mass balance
- Relatively slow convergence

・ロト ・四ト ・ヨト ・ヨト

1D-Coupling : We choose the h-Form !

Coupling of h-Form of Richards and Transport equations in 1D :

$$\begin{cases} C(h)\frac{\partial h}{\partial t} = \frac{\partial}{\partial z} \left[K(h) \left(\frac{\partial h}{\partial z} - 1 \right) \right] \\ q = -\frac{\partial}{\partial z} \left[K(h) \left(\frac{\partial h}{\partial z} - 1 \right) \right] \\ \frac{\partial \theta C}{\partial t} = \frac{\partial}{\partial z} \left(\theta D \frac{\partial C}{\partial z} \right) - \frac{\partial q C}{\partial z} \end{cases}$$

K? C? θ?

・ロト ・四ト ・ヨト ・ヨト

The Brooks-Corey model:

The Hydraulic conductivity is :

$$\begin{cases} K(h) = K_s [\frac{\theta h - \theta r}{\theta s - \theta r}]^{3+2/n} & \text{If } h < h_d \\ K(h) = K_s & \text{If } h \ge h_d \end{cases}$$

With :

- K_s Hydraulic conductivity in saturation
- h_d is the bubbling or air entry pressure head (L) and is equal to the pressure head to desaturate the largest pores in the medium
- n = 1 1/m,m parameters linked to the soil structure

The Brooks-Corey model:

The Capillary capacity is taken as followed :

$$\begin{cases} C(h) = n \frac{\theta s - \theta r}{|h_d|} (\frac{h_d}{h})^{n+1} & \text{ If } h < h_d \\ C(h) = 0 & \text{ If } h \ge h_d \end{cases}$$

NB : The Capillary capacity is always positive !

- θs water content in saturation
- θr residual water content
- n et m parameters linked to the soil structure

The Brooks-Corey model:

the volumetric water content is taken as followed :

$$\begin{cases} \theta = \theta_r + (\theta_s - \theta_r) \frac{h_d}{h} & \text{If } h < h_d \\ \theta = \theta_s & \text{If } h \geqslant h_d \end{cases}$$

With :

- θs water content in saturation
- θr residual water content
- n et m parameters linked to the soil structure

・ロト ・四ト ・ヨト ・ヨト

The van Genuchten Model:

Capillary capacity is taken as followed :

$$\begin{cases} C(h) = \frac{n * m * a |h| d\theta}{(1 + (a * |h|))^{n}^{1 + m}} & \text{ If } h < 0 \\ C(h) = 0 & \text{ If } h \ge 0 \end{cases}$$

NB : The Capillary capacity is always positive ! With:

- $d\theta = \theta s \theta r$
- S^* The specific volumetric storativity
- a,n et m parameters linked to the soil structure

The van Genuchten Model:

We introduice the saturation S_e as followed :

$$S_e = \frac{1}{\left(1 + a^n \, |h|^n\right)^m}$$

The Hydraulic conductivity is :

$$\begin{cases} K(h) = K_s \sqrt{S_e} (1 - \sqrt{1 - S_e^{\frac{1}{m}}})^m & \text{ If } h < 0\\ K(h) = K_s & \text{ If } h \ge 0 \end{cases}$$

With:

- K_s Hydraulic conductivity in saturation
- a,n et m parameters linked to the soil structure

NB : Hydraulic conductivity is always positive !

The van Genuchten Model:

There is a "relationship" between θ and S_e , and it's formulated this way :

In saturation case :

$$S_e = rac{ heta - heta r}{ heta s - heta r}$$

In non saturation case :

$$S_e = 1$$

Finite Volumes Scheme : General form

we use the following FV-schemes :

• Explicite :

$$h_j^{n+1} = h_j^n - r[\phi(h_j^n, h_{j+1}^n) - \phi(h_j^n, h_{j-1}^n)]$$

• Implicite :

$$h_j^{n+1} = h_j^n - r[\phi(h_j^{n+1}, h_{j+1}^{n+1}) - \phi(h_j^{n+1}, h_{j-1}^{n+1})]$$

with ϕ the numerical flux (In our case, we consider 2 numerical flux adequate to our study :flux of ROE or Lax-Frederick)

Richards Equation :Numerical scheme

The Explicite Finite volume scheme :

$$h_j^{n+1} = h_j^n + \frac{r}{C(h_j^n)}(\phi_{j+1/2}^n - \phi_{j-1/2}^n)$$

with :

- $r = \frac{\Delta t}{\Delta z}$
- ϕ : numerical flux for h

$$\phi_{j+1/2}^n = -rac{\mathcal{K}(h_{j+1/2}^n)}{ heta(h_{j+1/2}^n)}(rac{h_{j+1}^n-h_j^n}{\Delta z}-1)$$

For the explicit version of our model The stability condition is :

$$\Delta t \leq CFL \frac{lnfC * \Delta z^2}{2Maxk}$$

Richards Equation :Numerical scheme

The implicite Finite volume scheme :

$$h_j^{n+1} = h_j^n + \frac{r}{C(h_j^{n+1})} (\phi_{j+1/2}^{n+1} - \phi_{j-1/2}^{n+1})$$

with :

•
$$r = \frac{\Delta t}{\Delta z}$$

• ϕ : numerical flux for h

$$\phi_{j+1/2}^{n+1} = -\frac{K(h_{j+1/2}^{n+1})}{\theta(h_{j+1/2}^{n+1})} (\frac{h_{j+1}^{n+1} - h_j^{n+1}}{\Delta z} - 1)$$

・ロト ・四ト ・ヨト ・ヨト

Transport Equation :Numerical scheme

We use an upwind scheme (1st order) :

$$C_{j}^{n+1} = C_{j}^{n+1} - r * V * (fluxS_{j}^{n} - fluxS_{j-1}^{n}) + r * \frac{2}{\theta_{j}^{n} + \theta_{j+1}^{n}} * (DiffS_{j}^{n} - DiffS_{j-1}^{n})$$

With :

•
$$V = \frac{qS_{j}^{n} + qS_{j+1}^{n}}{2}$$

• $qS_{j}^{n} = \frac{q_{j}^{n}}{\theta_{j}^{n}}$
• $\begin{cases} fluxS_{j}^{n} = C_{j}^{n} & If \quad q \ge 0\\ fluxS_{j}^{n} = C_{j+1}^{n} & If \quad q < 0 \end{cases}$
• $DiffS_{j}^{n} = \frac{dz*|q_{j}^{n}|}{Pe} * (C_{j+1}^{n} - C_{j}^{n})/dz$

Numerical resultats

Soil parameters for our test case :

Figure: The soil

	\sim			
- A -		har	22	511
	-		n ai	

イロン イロン イヨン イヨン

Numerical resultats

Soil parameters for our test case :

case Sand	Infiltration through homogenous		
Domaine lenth	L=100 cm		
Parameters	$K_s = 0.00922 cm/s$, $\theta_s = 0.368$, $\theta_r = 0.102$, $a = 0.0335 cm^{-1}$		
case 1	$\Delta z = 0.2 cm, Pe = 0.2$		
case 2	$\Delta z = 2$ cm, Pe = 20		
case 3	$\Delta z = 2cm, Pe = 200$		
case 2	Infiltration Through hetergenous soil		
Domaine lenth	L=100 cm		
Parameters (Cla	y) $ K_s = 0.000151 cm/s, \theta_s = 0.4686, \theta_r = 0.106, a = 0.03104 cm$		

イロン イロン イヨン イヨン

Numerical resultats

Head water in 5 and 10 days :

Numerical resultats : Solute concentration

Solute concentration in 5 and 10 days :

Numerical resultats :Hydraulic conductivity

Hydraulic conductivity in 5 and 10 days:

Numerical resultats :Water content

Volumetric Water content in 5 and 10 days:

Darcy Non-Linear – Cas test1 :

In the first test case, we consider the following equation :

$$-\nabla .(|\nabla u|^{p-2}\nabla u)=f$$

Taking :

- $\Omega := (0,1) * (0,1).$
- f(x, y) = 2.
- Boundries conditions and exact solution : $u(x, y) = -\frac{p-1}{p} |(x, y) - (0.5, 0.5)|^{\frac{p-1}{p}} + \frac{p-1}{p} (\frac{1}{2})^{\frac{p-1}{p}}$

Résultats numériques - Cas test1 :

Maillage 10*10

・ロト ・四ト ・ヨト ・ヨト

Figure: Numerical (left) and Exact solution (right)

· ^ ·	~	 	-		
- A -				• 1 1	

IRSN 28 / 45

Numerical results - Cas test1 :

Maillage 100*100

・ロト ・四ト ・ヨト ・ヨト

Figure: Numerical (left) and Exact solution (right)

	-			
Δ I		har	hal	511
· · · ·	~			-

IRSN 29 / 45

Darcy Non linear:

Table: Comparaison of the different meshes . CPU time in seconds

	Cas test2						
Mesh	Min	Max	ϵ_1	ϵ_2	€infinity	CPU	
10*10	-0.1607	0.2229	3.2634e-04	5.5239e-04	0.0019	0.750136	
20*20	-0.1607	0.2317	7.5575e-05	1.3516e-04	7.3847e-04	7.261438	
30*30	-0.1607	0.2336	3.2654e-05	5.9558e-05	4.1908e-04	18.881606	
50*50	-0.1607	0.2347	1.1482e-05	2.1288e-05	2.0302e-04	106.678507	
100*100	-0.1607	0.2354	2.8183e-06	5.2933e-06	7.4894e-05	1722.546010	

~

Numerical results -test case 2

In the seconde case, we consider the following equation :

 $-\nabla .(u\nabla u)=f$

With :

- $\Omega := (0,1) * (0,1)$.
- $f(x,y) = -8(x^2 + y^2)$.
- Boundary conditions and exact solution : $u(x, y) = x^2 + y^2$

・ロト ・四ト ・ヨト ・ヨト

Darcy Non linear

Maillage 100*100

イロン イロン イヨン イヨン

Figure: Numerical (left) and Exact solution (right)

	-			
- A		har	hal	511
<u> </u>	~			-

IRSN 32 / 45

Darcy Non linear

Table: Comparaison of the different meshes . CPU time in seconds

Mesh	Min	Max	ϵ_1	ϵ_2	$\epsilon_{infinity}$	CPU
10*10	0.2389	2	0.1772	0.1426	0.2142	0.77791
20*20	0.1140	2	0.0538	0.0502	0.1085	5.136513
30*30	0.0748	2	0.0266	0.0274	0.0724	19.165506
50*20	-0.1607	0.2331	0.0062	0.0024	0.0030	24.463862
50*50	0.0443	2	0.0109	0.0128	0.0435	113.689984
100*100	0.0219	2	0.0032	0.0046	0.0217	848.066829

test Cas 2

Richards 2D : FV Diamant

The 2-D model :

We consider this simplified version of Richards equation :

$$\frac{\partial h}{\partial t} = \nabla \cdot [K \nabla h] + \nabla \cdot K$$

We use a Diamant finite volumes scheme in a structred mesh and we obtain the following sytem :

$$\frac{\frac{h_{k}^{n+1} - h_{k}^{n}}{dt}}{-\frac{K_{12}^{k,k+1} + K_{21}^{k,k+n}}{4\Delta x \Delta y}} h_{k+n+1}$$

$$-(\frac{K_{12}^{k,k+1}-K_{12}^{k,k-1}}{4\Delta x \Delta y}+\frac{K_{22}^{k,k+1}}{\Delta y^2})h_{k+n}$$

Richards 2D : FV Diamant

$$+(\frac{K_{11}^{k,k+1}+K_{11}^{k,k-1}}{\Delta x^2}+\frac{K_{22}^{k,k+n}+K_{22}^{k,k-n}}{\Delta y^2})h_k$$

$$+(\frac{K_{21}^{k,k+n}-K_{21}^{k,k-n}}{4\Delta x\Delta y}-\frac{K_{11}^{k,k-1}}{\Delta x^2})h_{k-1}$$

$$+rac{K_{12}^{k,k+1}+K_{21}^{k,k-n}}{4\Delta x\Delta y}h_{k-n+1}$$

$$+(rac{K_{12}^{k,k+1}-K_{12}^{k,k-1}}{4\Delta x\Delta y}+rac{K_{22}^{k,k-n}}{\Delta y^2})h_{k-n}$$

$$-\frac{K_{12}^{k,k-1} + K_{21}^{k,k-n}}{4\Delta x \Delta y} h_{k-n-1}$$

IRSN 35 / 45

Richards Linear: test case 1

For the 2D model we take : **The boundaries conditions:** h = Hex everywhere. **The exact solution** :

$$\textit{Hex}(x,z,t) = exp(-B*t)sin(p2\pi xx/a)sin(q2\pi z/b)$$

with B,p,q,a and b are parameters to be defined. **The initial solution** is

$$Hex(x, z, 0) = sin(p2\pi xx/a)sin(q2\pi z/b)$$

・ロト ・四ト ・ヨト ・ヨト

Model 2D

Linear Richards: test case 1 (Explicite/Implicite)

IRSN 37/45

. . 1

Linear Richards: test case 2

For the 2D model we take : The boundaries conditions: h = Hex everywhere. The exact solution :

$$Hex(x, z, t) = \Sigma\Sigma \frac{200}{\pi^2} * (1 + (-1)^{k+l} * \frac{1 - \cos(l * \pi/2)}{k * l} * \sin(t * \pi/2 * x) * \sin(l * \pi/2 * z) \\ * exp((-\pi^2 * (l^2 + k^2) * t/36))$$

The initial solution is

$$Hex(x, z, 0) = \Sigma \Sigma \frac{200}{\pi^2} * (1 + (-1)^{k+l} * \frac{1 - \cos(l * \pi/2)}{k * l} * \sin(t * \pi/2 * x) * \sin(l * \pi/2 * z))$$

Model 2D

Richards Lineair:test case 2 (Explicite/Implicite)

Linear Non-Richards: test case 3

For the 2D model we take :

$$\frac{\partial h}{\partial t} = \nabla [h\nabla h] + Q_s$$

The source term :

$$Q_s = -lpha * (x + y) * exp(-lpha * t)$$

The boundaries conditions: h = Hex everywhere The exact solution :

$$Hex(x, z, t) = (x + z) * \exp(-\alpha * t)$$

The initial solution is

$$Hex(x,z,0) = x + z$$

A.Charhabil

RichardsNon-Linear : test case 3

The Numerical and exact solution for n * m = 100 * 100

Richards Non-Linear :test case 3

the error for n * m = 20 * 20

イロン イロン イヨン イヨン

Conclusion and Outlooks

Goinh on :

• Full Richards non lineair using Picard and Newton method

Next steps :

• Coupling of Richards, Transport and Saint-Venant Equations in 2D

If I am to be optimist :)

- Irregular mesh
- The MULTPHASE model

・ロト ・四ト ・ヨト ・ヨト

References

- van Genuchten M. TH. (1980). A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil SCi. Am. J., 44, pp. 892-898.
- Mohamed Hayek . An exact explicit solution for one-dimensional, transient, nonlinear Richards' equation for modeling infiltration with special hydraulic functions
- Mohammad Sayful Islam.IMPLEMENTATION AND TESTING OF TECHNIQUES FOR IMPROVING THE PERFORMANCE OF RICHARDS EQUATION SOLVERS AND THE HANDLING OF HETEROGENEOUS SOILS

THANK you for your Attention !