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Introduction

Motivation

Mathematical motivation : a better understanding of the water waves problem

Real life applications : Coastal engineering and wave energy converters

(a) Wave Roller (b) Wave Carpet
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Setting of the problem The physical domain of the problem

The physical domain for the wave-structure interaction problem

Ωt =
{

(x , z) ∈ R2 : −H0 + b(x − XS(t)) < z < ζ(t, x)
}
.
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Setting of the problem The physical domain of the problem

References
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− F. Hiroyasu, andT. Iguchi, A shallow water approximation for water waves over a

moving bottom (2015),
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· Fluid - submerged solid interaction :
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Setting of the problem The governing equations

The governing equations

Fluid dynamics
The free surface Euler equations in Ωt∂tU + U · ∇U = −∇P

%
+ g,

∇ · U = 0,
∇× U = 0,

with boundary conditions

∂tζ −
√

1 + |∇xζ|2U · n = 0 on {z = ζ(t, x)},

∂tb −
√

1 + |∇xb|2U · n = 0 on {z = −H0 + b(t, x)},
P = Patm on {z = ζ(t, x)}.

Solid mechanics
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Setting of the problem The governing equations

The governing equations

Fluid dynamics
The free surface Bernoulli equations in Ωt{

∆Φ = 0 in Ωt

Φ|z=ζ = ψ,
√

1 + |∂xb|2∂nΦbott = ∂tb.

An evolution equation for ζ, the surface elevation.
An evolution equation for ψ, the velocity potential on the free surface.

Solid mechanics
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Setting of the problem The governing equations

The governing equations

Fluid dynamics
A formulation of the water waves problem{

∂tζ + ∂x (hV ) = ∂tb,

∂tψ + gζ +
1
2
|∂xψ|2 −

(−∂x (hV ) + ∂tb + ∂xζ · ∂xψ)2

2(1 + |∂xζ|2)
= 0,

where

V =
1
h

∫ ζ

−H0+b
∂xΦ(·, z) dz.

Solid mechanics
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Fluid dynamics
A formulation of the water waves problem{
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∂tψ + gζ +
1
2
|∂xψ|2 −

(−∂x (hV ) + ∂tb + ∂xζ · ∂xψ)2

2(1 + |∂xζ|2)
= 0,

where

V =
1
h

∫ ζ

−H0+b
∂xΦ(·, z) dz.

Solid mechanics
By Newton’s second law :

Ftotal = Fgravity + Fsolid−bottom interaction + Fsolid−fluid interaction.
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Setting of the problem The governing equations

The governing equations

Fluid dynamics
A formulation of the water waves problem{

∂tζ + ∂x (hV ) = ∂tb,

∂tψ + gζ +
1
2
|∂xψ|2 −

(−∂x (hV ) + ∂tb + ∂xζ · ∂xψ)2

2(1 + |∂xζ|2)
= 0,

where

V =
1
h

∫ ζ

−H0+b
∂xΦ(·, z) dz.

Solid mechanics
The equation of motion for the solid

MẌS(t) = −cfric

(
Mg +

∫
I(t)

Pbott dx
)

etan +
∫
I(t)

Pbott∂xb dx .
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Setting of the problem Nondimensionalisation

Characteristic scales of the problem

· L, the characteristic horizontal scale of the wave motion,
· H0, the base water depth,
· asurf , the order of the free surface amplitude,
· abott, the characteristic height of the solid.
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The Boussinesq regime The Boussinesq system and the approximate solid equations

The coupled Boussinesq system

With an order O(µ2) approximation, we are going to work in the so called weakly nonlinear
Boussinesq regime

0 6 µ 6 µmax � 1, ε = O(µ), β = O(µ). (BOUS)

The coupled Boussinesq system with an object moving at the bottom writes as
∂tζ + ∂x (hV ) = β

ε
∂tb,

∂tψ + ζ +
ε

2
|∂xψ|2 − εµ

(−∂x (hV ) + β
ε
∂tb + ∂x (εζ) · ∂xψ)2

2(1 + ε2µ|∂xζ|2)
= 0,

ẌS(t) = −
cfric√
µ

(
1 +

1
βM̃

∫
I(t) Pbott dx

)
etan +

1
M̃

∫
R Pbott∂xb dx .

Aim : Long time existence result
T0
ε

timescale for Boussinesq system over flat bottom :
C. Burtea, New long time existence results for a class of Boussinesq-type systems (2016),
T0 timescale for water waves over a moving bottom :
B. Melinand, A mathematical study of meteo and landslide tsunamis : the Proudman
resonance (2015).
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The Boussinesq regime Theoretical results

L2 estimates

EB(t) =
1
2

∫
R
ζ2 dx +

1
2

∫
R
hV 2 dx +

1
2

∫
R

µ

3
h(∂xV )2 dx +

M̃
2ε

∣∣ẊS(t)
∣∣2 ,

Proposition

Let µ� 1 sufficiently small and let us take s0 > 1. Any U ∈ C1([0,T ]× R) ∩ C1([0,T ];Hs0 (R)),
XS ∈ C2([0,T ]) solutions to the coupled system, with initial data U(0, ·) = Uin ∈ L2(R) and
(XS(0), ẊS(0)) = (0, vS0 ) ∈ R× R, verify

sup
t∈[0,T ]

{
e−
√
εc0tEB(t)

}
6 2EB(0) + µTc0‖b‖H3 ,

where
c0 = c(|||U|||T ,W 1,∞ , |||U|||T ,Hs0 , ‖b‖W 4,∞ ).
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The Boussinesq regime Theoretical results

Long time existence for the Boussinesq system

Theorem

Let µ sufficiently small and ε = O(µ). Let us suppose that the initial values ζin and b satisfy the
minimal water depth condition.
If ζin and V in belong to Hs+1(R) with s ∈ R, s > 3/2, and that XS0 , vS0 ∈ R, then there exists a
maximal time T > 0 independent of ε such that there exists a solution

(ζ,V ) ∈ C
([

0,
T
√
ε

]
;Hs+1(R)

)
∩ C1

([
0,

T
√
ε

]
;Hs(R)

)
,

XS ∈ C2
([

0,
T
√
ε

])
of the coupled system {

Dµ∂tU + A(U ,XS)∂xU + B(U ,XS) = 0,
ẌS(t) = F [U ]

(
t,XS(t), ẊS(t)

)
.

with initial data (ζin,V in) and (XS0 , vS0 ).
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Numerical simulations The numerical scheme

The numerical scheme

The discretization in space : Adapting a staggered grid finite difference scheme, based on the
work of P. Lin and Ch. Man (Appl. Math. Mod. 2007).

· finite difference scheme,
· surface elevation and bottom is defined on grid points, averaged velocity is defined on
mid-points,
· order 4 central difference scheme,
· third order Simpson method for calculating the integrals.

The discretization in time :
· Adams 4th order predictor-corrector algorithm for the fluid dynamics
· An explicit scheme for the solid equation : an adapted second order central scheme
· preserves the dissipative property due to the friction,
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Numerical simulations The numerical experiments

Amplitude variation for a passing wave

(a) Change in wave amplitude, µ = 0.25, β = 0.3 (b) Change in wave amplitude, µ = 0.25, β = 0.5

Noticeable attenuation for the moving solid.
Observe the wave-breaking for the relatively large solid.
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Numerical simulations The numerical experiments

The solid motion under the influence of the waves

Figure – Solid position for varying coefficient of friction (µ = ε = 0.25, β = 0.3)

Observable : hydrodynamic damping, frictional damping.
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Numerical simulations The numerical experiments

The solid motion under the influence of the waves

(a) Solid position, single wave, with and without
hydrodynamic effects

(b) Solid velocity, single wave, with and without
hydrodynamic effects

Highlight : hydrodynamic damping effect
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Numerical simulations The numerical experiments

The solid motion under the influence of the waves

(a) Solid position, single wave µ = 0.25, β = 0.3,
cfric = 0.001

(b) Solid position, wavetrain µ = 0.25, β = 0.3,
cfric = 0.001
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Numerical simulations The numerical experiments

Influence over a long time scale

wave trains
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Numerical simulations The numerical experiments

Conclusions

What we did :
· characterise mathematically the physical setting of an object on the bottom of an
”oceanographic fluid domain”,
· establish the coupled system,
· analyse the order 2 asymptotic system in µ (weakly nonlinear Boussinesq setting),
· create an accurate finite difference scheme for the coupled model,
· highlight the effects of a free solid motion on wave transformation as well as the effects of
friction on the system.

What we still have to do :
· treat the case of a non-horizontal bottom,
· generalize the notion of friction to a more realistic physical interpretation,
· ...
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Numerical simulations The numerical experiments
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