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1. The goal of the project

Biological microswimmers in confined in vitro media tend to concentrate in the vicinity of surfaces [14]. There
are two main approaches in modeling the underlying boundary effects, namely a fluid model that describes the
interactions between microswimmers and their surrounding fluid [5] and a transport and collision model with
reorientation mediated by rotational brownian motion [10]. Each of the two approaches is able to reproduce
experimental data observed. However, they describe different mechanisms which occur simultaneously. The
relative contribution of these two types of mechanism is not clear, but microswimmer-to-wall contact seems
to play a crucial role according to recent 3D microscopy techniques [7].

Our goal of this project is to build a mathematical formalism that is able to describe contact phases by
considering the approach developed in [10, 9]. Techniques based on variational inequalities are applied to
give a fine description of boundary effects.

More precisely, the aims of the project are the following.

 Proposing a solid model in the framework of variational inequalities inspired in [3] to describe the
boundary effects. In particular, take into account the transport, the collision and translational and
rotational fluctuations due to white or coloured noise.

 Reproducing the experimental observations by numerical simulations [13, 6].
 Coupling the described motion with increasingly complex models of chemotaxis – from transport

following a constant concentration gradient to Keller-Segel [12].
 Deriving the associated backward and forward Kolmogorov equations, along the lines of [4, 2, 11].

Few words on the members of the project. The team members have a strong background on basic
methods, at the core of the proposal, in applied stochastic analysis and PDEs. They include: Álvaro Ma-
teos González (PhD Applied Mathematics, post-doctoral fellow at Montpellier University) with expertise
in asymptotic analysis, PDEs, structured and integro-differential equations, and biomathematics. Laurent
Mertz (PhD Applied Mathematics, Visiting Assistant Professor at Shanghai New York University) with
expertise in applied stochastic analysis, stochastic processes and PDEs, Min Tang (PhD Applied Mathe-
matics, Professor at Shanghai Jiaotong University) with expertise in mathematical models for chemotaxis
and tumor growth and numerical analysis. Laurent Mertz (LM) and Min Tang (MT) met at the time they

were PhD student and postdoc at the Laboratoire Jacques Louis Lions. LM and Álvaro Mateos González
(AMG) met during the CEMRACS 2017 and discussed research collaboration projects.

Funding. Laurent Mertz can support himself and one student using his University fund. Álvaro Mateos
González expects that the Labex CEMEB, NUMEV and AGRO, which fund his postdoctoral position, may
partially support his expenses.
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2. Model for biological microswimmers near surfaces suject to chemotaxis

In this section, we present the framework of stochastic variational inequalities used for the description of
boundary effects (see subsection 2.1) and its extension in order to include chemotactic motion (see subsec-
tion 2.2).

2.1. Boundary effects: a stochastic variational inequality approach. In [10], a dynamical model
for the position tyt, t ¥ 0u and a single orientation angle tθt, t ¥ 0u of a microswimmer was introduced. It
describes interaction with boundaries. We interpret this type of boundary interaction in terms of a variational
inequality that becomes stochastic when random fluctuations are taken into account. We believe that it is
helpful to accurately model the contact phases. The sum of (a) the variation of displacement along the
y-axis of the microswimmer, (b) the variation of momentum of the forces from the flow and the surrounding
random fluctuations applied to the microswimmer (c) the variation of momentum of the forces from the
boundary interaction is zero (inertia has been neglected), i.e. @t0   t1,

yt1 � yt0looomooon
paq:displacement

� �
» t1

t0

fpηs, θs, ysqdslooooooooooomooooooooooon
pbq:flow&fluctuations

�pkt1 � kt0q.loooooomoooooon
pcq:wall

Here fpη, θ, yq is a drift function depending on the random fluctuation η, the position y and the orientation
θ of the microswimmer. To better understand kp.q, consider the special case of a unilateral constraint in the
sense that the extremity at y � 0 of the microswimmer container would be removed to y � �8 while the
other one would remain at L. Then, there is an explicit expression for kt, that is

kt � max
0¤s¤t

�
y0 �

» s

0

fpηr, θr, yrqdr � L


�

, u� � maxp0, uq.

Roughly speaking, dkt ”absorbs” the part of the flow forces that would lead the microswimmer beyond
the boundary. The bilateral constraint case belongs to the class of the so-called Skorokhod problem (SP),
see for instance [15] and references therein. Adapted to the present problem, it states that for wt �

� ³t
0
fpηs, θs, ysqds P Cpr0,8q;Rq with wp0q P r0, Ls there exists a unique solution pxt, ktq of the SP:

yt P Cpr0,8q; r0, Lsq, kt P Cpr0,8q;Rq, kt P BV p0, T q,@T   8, yt � kt � wt,@t ¥ 0.

and

yt �
» t

0

signpysqd|k|s and |k|t �
» t

0

1tysPt0,Luud|k|s.
where |k| is the total variation of k. The last condition means that kt is increasing, decreasing, constant
when yt � 0, yt   L, yt � L, respectively. Here,

kt �
» t

0

max p0,�fpηs, θs, ysqq1tys�Luds�
» t

0

min p0,�fpηs, θs, ysqqq1tys�0uds,

and thus dkt � �fpηt, θt, ytqdt when yt � 0, yt � L and dkt � 0 when yt P t0, Lu. In this problem, the
constraint is given by an interval (convex in R) and thus it can be recast in terms of a variational inequality
[1] as follows:

(SVI) p 9yt � fpηt, θt, ytqqpϕ� ytq ¥ 0, @ϕ P r0, Ls, @ϕ P r0, Ls, dθt � gpyt, θtq dW̃t,

subject to the reset condition θt � 0 whenever y P t0, Lu . The fluctuation ηt will be considered of two

forms: white noise η � 9W and coloured noise where η satisfies a stochastic differential equation of the form
dηt � �v1pηtq dt� σ dWt and v is a confining potential. Typically, vpηq � αη2, α ¡ 0.

2.2. Chemotaxis model. We intend to couple the stochastic model above, that describes boundary inter-
actions, with several models of chemotaxis. An underlying biological motivation is that of describing the
competition between boundary attraction and chemotactic motion that tend to separate swimmers from
the solid boundary. Two different types of bacteria movements can be considered: 1) bacteria move by
forward moving transport with some noises in their dynamics, while their forward moving directions may
exhibit some fluctuations; 2) alternating forward-moving runs and reorienting tumbles. If the flagella of
bacteria rotate counterclockwise (CCW), they form a bundle and push the cell to run forward with a speed
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of 10µm{s � 30µm{s; if the flagella rotate clockwise (CW) they fly apart and the cell tumbles in place.
Bacterium can bias its movement in response to external chemical signals, e.g. towards locations with higher
concentration of chemoattractant or lower concentration of repellent, and this process is called chemotaxis.
Both individual based models and continuous PDE models for chemotaxis behavior have been well studied
in the last decade. Classical models include

 Stochastic simulations that takes into account the noise in space and transportation in the direction
of the chemical gradient.

 The Keller-Segel equation that phenomenologically takes into account the space diffusion and ad-
vection along the direction of chemical gradient.

 Describing the run and tumble process by individual based stochastic model or kinetic descriptions.

But most of them are for unbounded domains or the boundary effects have been ignored.

3. Research Plan

Here, we describe analytical and numerical tools we will adopt for the study the aforementioned models.

3.1. Ultra weak variational formulation formulation of the density equation. When the noise η
is coloured, an approach similar that proposed in [3] is employed. Here, It is conjectured that there exists
a unique invariant probability measure ν for the triple pη, θ, yq which has a density m composed of three
positive L1 functions mpη, θ, yq, m0pη, θq and mLpη, θq where»

Ω

mpη, θ, yqdηdθdy �
»

Ω0

m0pη, θqdηdθ �
»

ΩL

mLpη, θqdηdθ � 1

where Ω � p�8,8q � p0, 2πs � p0, Lq, Ω0 � p�8,8q � p0, 2πs � t0u, ΩL � p�8,8q � p0, 2πs � tLu.
These three functions are characterized by the following ultra-weak formulation: for all functions ϕ smooth
such that$'&

'%
reset condition at y � 0 : ϕpη, θ, 0q � ϕpη, 0, 0q, @pη, θq P p�8,8q � p0, 2πs
reset condition at y � L : ϕpη, θ, Lq � ϕpη, 0, Lq, @pη, θq P p�8,8q � p0, 2πs
periodic condition at θ � t0, 2πu: ϕpη, 0, yq � ϕpη, 2π, yq, @pη, yq P p�8,8q � r0, Ls

and »
Ω

mpη, θ, yqAϕpη, θ, yqdηdθdy �
»

Ω

m0pη, θqB0ϕpη, θqdηdθ �
»

Ω

mLpη, θqBLϕpη, θqdηdθ � 0,

where

A �
gpy, θq2

2

B2

Bθ2
� fpy, θ, ηq BBy �

σ2

2

B2

Bη2
� v1pηq BBη ,

B0 �
gpy, θq2

2

B2

Bθ2
� minp0, fpy, θ, ηqq BBy �

σ2

2

B2

Bη2
� v1pηq BBη ,

BL �
gpy, θq2

2

B2

Bθ2
� maxp0, fpy, θ, ηqq BBy �

σ2

2

B2

Bη2
� v1pηq BBη .

A similar derivation can be done in the case including chemotaxis.

3.2. Preliminary simulations. We rely on [6] to discretize (SVI). Fix T ¡ 0, N P N and ∆t � T
N . We fix

py0, θ0q P r0, Lys � r0, 2πq and we define in an inductive manner tpyn, θnquNn�1 as follows:

(1)

$'&
'%
yn�1 � projr0,Lys pyn � V sin θn∆t � ηnq

θn�1 �

#
θn �

?
∆tGn if yn�1 P p0, Lyq

0, otherwise.

Here tGnuNn�1 is a sequence of i.i.d. standard gaussian variables and the function projr0,Lys, defined on R,

is the nearest neighbor projection on the interval r0, Lys. The noise ηn (independant of tGnuNn�1) can take
two different forms

 ηn �
?

∆tG̃n where tG̃nuNn�1 is a sequence of i.i.d. standard gaussian variables,
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stant Dr and translational diffusion constant Dt. Since
A11 � A22, we ignore the angle dependence of Dt.

The change in distance of the rotation center to the
surface, y, is determined by the translational Brownian
motion and the swimming direction, which is constantly
altered by the rotational Brownian motion. Over a time

interval �t, �y ¼ V sin��tþ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dt�t

p
, and �� ¼

&
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dr�t

p
, where � and & are random numbers with zero

mean and unit variance. The translational Brownian mo-
tion contributes much less than swimming to the displace-
ment for microorganisms swimming at tens of �m=s.
When near the surface, the changes in distance and angle
are also restricted by the solid surface to satisfy y �
L1 sinð��Þ when the head is closer to the surface and y �
L2 sin� when the tail is closer. Similar restrictions hold
when a cell is near the top surface. KnowingDt andDr, we
can track the distance y and angle � over time. The
distance of the head from the surface h, which is what
was measured in the experiment, is determined by h ¼
yþ L1 sin�. The probability distribution of a cell at dis-
tance h is obtained by tracking a cell swimming between
the two surfaces over 106–107 sec .

We simulated the distance and angle of swimming
C. crescentus between two glass surfaces separated by
200 �m. The cell was treated as a L ¼ L1 þ L2 ¼ 6 �m
rod, with a typical Dt of 0:1 �m2=s and the measured Dr

of 0:12 rad2=s. The rotation center was approximated
at a position where L1 ¼ 0:3L. Figure 3(b) shows ex-
amples of distance [red (gray)] and angle [blue (black)]
varying over time. The cell hits the top and bottom sur-
faces repeatedly as it swims between them. The simulated
distance from the bottom surface was recorded every 0.1 s
and a histogram of distances was made using a bin size of
10 �m. The simulated distribution is plotted in Fig. 4 [blue
(black)] and compared with the measured one for C. cres-
centus (up triangle). The simulation clearly shows higher
densities near the surfaces, with the entire profile in ex-
cellent agreement with the measurements.

This model is also applicable to the distribution of
E. coli and bull spermatozoa between two surfaces. We
took the cell number distribution of E. coli from Ref. [3]

and that of bull spermatozoa from Ref. [4], converted
them to probability density, and plotted them in com-
parison with that of C. crescentus in Fig. 4. E. coli is
similar to C. crescentus in size and it is reasonable that
they have similar distributions. Bull spermatozoa are 10
times larger, yet surprisingly the distribution is similar to
that of bacteria. Nevertheless, this similarity is actually
predicted by our model. To simulate for bull spermatozoa
for comparison, we treated it as a 60 �m long rod swim-
ming at 45 �m=s, the same speed as C. crescentus, with a
Dt of 0:01 �m2=s and a Dr of 10�4 rad2=s, which is
�1000 times smaller than that of C. crescentus. The simu-
lation results show only a small difference in density
distribution between the bull spermatozoa [red (gray)]
and the C. crescentus [blue (black)], despite the large
difference in Dr.
We estimate the density distribution analytically by

treating swimming trajectories as semiflexible polymers.
A swimming trajectory in bulk fluid can be described
equivalently as the contour of a semiflexible polymer
with a persistence length Lp ¼ V=Dr [15]. Our simulation

shows that microswimmers with different V and Dr values
but the same persistence length of swimming trajectories
have the same near-surface distribution (data not shown).
In the simulation we obtained the histogram of distance
using a bin size of 10 �m, which is equivalent to dividing
the fluid between the two glass surfaces into layers of
thickness �h ¼ 10 �m and acquiring the probability of
finding a microswimmer in each layer. The probability of

FIG. 4 (color online). Comparison between simulated density
distributions at rotational diffusion constants 0.12 [blue (black)]
and 0.0001 [red (gray)] rad2=s and the measured distributions of
C. crescentus (up triangles), E. coli (down triangles, Ref. [3]),
and bull spermatozoa (squares, Ref. [4]). Inset compares simu-
lated distribution at rotational diffusion constants of 10 (dia-
monds), 1 (circle), 0.1 (triangles), and 0.0001 (squares) rad2=s at
a swimming speed of 50 �m=s, corresponding to rod lengths of
�1:3, �2:8, �6, and �60 �m, respectively. The dotted lines
indicate the probability density if there is no surface accumu-
lation.
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FIG. 3 (color online). (a) Rod model of a microswimmer near
surface. The black end represents that of the cell body and the
gray end the flagellar filament. (b) An example of simulated
distance h [red (gray)] and angle � [blue (black)] as functions of
time for the microswimmer, using the parameters of C. cres-
centus. The two surfaces are separated by 200 �m.
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Figure 1. Figure taken from [10].
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Figure 2. Family of probability density distribution profiles computed each by binning
into 2-µm bins the successive simulated positions of microswimmer subjected to the trans-
lational noises described in the legend. The family of density profiles provides a promising
ressemblance to the experimental profiles of Figure 1, while being different from the family
of profiles resulting from a varying rotational diffusion coefficient also depicted in Figure 1.

 or tηnuNn�1 is also defined in an inductive manner as follows

ηn�1 � ηn � v1pηnq∆t� σ
?

∆tG̃n.

Such simulations produce y and θ evolution curves, a detail of which is depicted in Figure 3, that resemble
those presented in [10, 9]. Binning the recorded positions for one swimmer trajectory produces density
profiles that seem to approach reasonably the experimental density profiles appearing in [5, 10] – shown in
Figure 1. Figure 2 depicts a family of such computed density curves for a set of parameters α of the noise
involved.
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Figure 3. Detail of two boundary sticking phases, where the position y (red) and the
angle θ (blue) of a microswimmer are depicted. The top subfigures represent time intervals
of 20s, the bottom ones represent a zoom on subintervals of the above, lasting 1.2s. The left
subfigures corresponds to a swimmer subjected to white translational noise, which, despite
staying close to the boundary, often becomes unstuck from it. The right curves depict the
behaviour of a swimmer subjected to coloured translational noise, with a coefficient α � 5
corresponding to that defined in subsection 3.1. Due to the persistence of the coloured noise,
the coloured noise microswimmer experiences sticking phases of positive duration. This is
clearly seen on the θ curve, since the simulation enforces θ � 0 when y � 0.

There are two main features of the simulation results that we find interesting. The first relates the nature
of the boundary residence periods to the nature of the translational noise (see ηn above) implemented. A
microswimmer subject to translational white noise seems to experience phases in which it is very close
to the boundary and touches it many times, but does not stick to it, as depicted on the left subfigure of
Figure 3. This was expected: indeed, in continuous time, the duration of a phase in which the microswimmer
would remain at y � 0 (or y � Ly) would be 0. However, coloured noise does lead to sticking phases of
a positive duration as we can see on the right subfigure of Figure 3, and as was expected. The second
interesting feature corresponds to the qualitatively different response of translational white and coloured
noise simulations to the introduction of a chemotactic transport following a constant in space and time
substrate gradient. This simply corresponds to changing the way y is updated at each time step by adding
Vc dt. Figure 4 depicts four time-averaged density profiles corresponding to white (black) or coloured noise
(red), coupled with slow (full line) or fast (dashed line) chemotactic transport. The time-averages have been
taken for a single microswimmer. An ergodic property is expected in the sense that we believe that

@f, lim
TÑ8

» T

0

fpyt, θt, ηtqdt � νpfq.

We observe that fast chemotactic transport induces full concentration on the upper boundary in the white
noise scenario, but not in the coloured noise scenario, where a positive density exists over r0, Lys. This
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Figure 4. Qualitative difference of white and coloured noise effects on the concentration
of a swimmer subject to chemotactic transport. The depicted curves connect dots that plot,
at the centre of each of 100 bins of size 2µm, the proportion of measured positions of the
microswimmer that fall in that bin.
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Figure 5. Fast chemotactic transport at Vc � 10µm{s – swimmer velocity is still 45µm{s.
The left subfigure corresponds to a swimmer subjected to white translational noise, which,
after a certain time, sticks to the Ly boundary and seems to be unable to swim further than
a small threshold. The right curve depicts the behaviour of a swimmer subjected to coloured
translational noise, with a coefficient α � 5 corresponding to that defined in subsection 3.1.
Due to the persistence of the coloured noise, the microswimmer can become unstuck from
the Ly boundary and swim in the interior of the domain and visit both boundaries.

is consistent with the behaviours of the microswimmers whose coordinates are depicted in Figure 5: the
coloured noise miroswimmer tends to be closer to the Ly boundary but can wander off and visit and even
stick to the 0 boundary, whereas the white-noise microswimmer sticks to the Ly boundary and remains
stuck. The effects that already appear in our preliminary simulations – namely, stick phase duration and
competition between chemotactic transport and boundary attraction – seem promising enough and could be
refined in more complex simulations and thanks to analytical studies on Kolmogorov equations related to ν.
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4. Management Plan

The analytical framework we have defined above, as well as the results of our preliminary simulations, have
allowed us to identifiy several interesting axes of research, which we sketch hereafter.

 Study the duration of boundary residence periods and its dependency on the parameters of the
coloured translational noise.

– Obtain statistical results from the simulations and analytical results in the framework of pdes.
 Study the competition of boundary attraction and chemotaxis in the context of both white and

coloured noise.
– Obtain statistical results.
– Prove those are the expected statistical results.
– Identify potential critical points thanks to simulations.
– Prove analytically that the identified critical points are indeed critical.

 Implement more complex models of chemotaxis.
– In the simulations, consider Keller-Segel equations with substrate consumption and production

of a chemoattractant.
– Implement a simulation of a Run and Tumble model. Compare to [8].
– Write the kinetic stochastic system and the associated Kolmogorov equations. (difficult)

 Implement a non-punctual model of surface contact following [10, 9, 7] and compare its predictions
to that of our stochastic variational equations framework.
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