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The goal of this project is to design methods that allow to compute sensitivities
(a.k.a. Greeks) for some structured products in a high dimensional setting. Our main
motivation is the management of risks on a balance sheet. This requires the construction
of hedging portfolios which leads itself to the (re-)computation of various greeks (delta
and gamma with respect to several underlying assets, various durations for rho and rho
convexity,. . . ), as necessary tools to evaluate the risk and the possible mitigation e�ect
of the addition of new positions.

The typical method to solve this question uses a simulation approach that rapidly be-
comes intractable as the number of inputs (factors, parameters) increases. Alternatives
to reduce the time complexity issue, such as Algorithmic Di�erentiation [6], frequently
imply the need to (pre-)compute the sensitivities on the whole space (or at least the
support of the various risk scenarii), leading to memory management issues. However,
when some regularity is known a priori on the function that has to be pre-computed, one
can try to use a sparse grid representation of the function to avoid (at least partially)
this problem.

Sparse grids are now a quite well-known tool [1] and have been applied already in
�nance [5] mainly in relation with PDE methods. In this project we will study a di�erent
approach that relies on a probabilistic representation of the price and sensitivities of the
structured product, deduced respectively from the classical Feynman-Kac formula and
the Malliavin calculus approach as introduced in [3].

Applying these probabilistic representations for numerical calculations leads obvi-
ously to the computation of expectations and then to the question of the discretisation
of the various probability laws involved. We will study mainly cubature methods (pos-
sibly on the Wiener space) for this part [8, 7].

Our starting point will be to compute the Delta and Gamma on sparse grids using
the aforementioned probabilistic approach adapting the backward algorithm introduced
in [2]. Once this is achieved, we will investigate the following points both numerically
and theoretically

• How to parallelise the method? [4]

• How to take into account irregularities in the value functions?

• How to compute other greeks?
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