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Aim

The goal of this research project is to study and simulate large networks of
interacting neurons with several forms of synaptic weights, like

1. Models with random synaptic weights

2. Models with singular synaptic weights.

In all cases, we are interested in the macroscopic behavior of the model, which
includes short and long-run analysis.
Several extensions may be addressed during the project, say for instance models
with a spatial structure or models with different sources of noise.

Applicants with a strong background in one of the following field will be
strongly appreciated:

1. Stochastic analysis and numerical probabilities;

2. Numerical methods and programming;

3. Biology, neurosciences and computational neurosciences.

Introduction

Mathematical models of interacting neurons have known a surge of interest
for the past ten years, see for instance the list of references below. Generally
speaking, models in hand are based on the following twofold structure:

• First, the state of a neuron is characterized by its membrane potential.
The dynamics of the neuron potential may be described by several forms
of stochastic processes, which include diffusion or point processes, see for
instance [7, 6] or [5] and [10].
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• Second, the model exhibits some specific times as a remarkable feature: A
fast variation of the membrane potential is observable from time to time
(biologically, a large number of ion channels are open simultaneously). We
say that the neuron spikes (or emits an action potential) at these times.
Then, the effect of the spike is transmitted to the other neurons connected
with the spiking neuron. The intensity of the interaction is given by the
synaptic weights.

As explained below, several models have been addressed in the literature for the
synaptic weights.

Mean-field effect

From the modeling point of view, there are several issues. The first one is
to exhibit a tractable but relevant form of interaction between the neurons.
Generally speaking, the huge number of neurons involved in many areas of the
brain makes the global system difficult to study and simulate. However, in some
cases, one may provide a quite explicit description of the whole behavior of the
network as the number of neurons tends to the infinity. In this regard, the
most popular framework is the so-called “mean field regime”, in which neurons
are assumed to interact with the others through their collective state. The
“mean field effect” is a mathematical paradigm that permits to describe the
asymptomatic behavior quite simply.

Choice of the synaptic weights

Another issue is that there is no precise knowledge of the nature of the connec-
tions in the brain and that it is very difficult to appreciate it and to measure
it accurately. Several strategies are conceivable. The first one is to choose
some deterministic rules, which is precisely what has been done in [6] and [7];
therein, the interaction is somewhat singular and may exhibit, as a noticeable
feature, blow-ups –i.e. times at which the system features a massive proportion
of spikes–. Another classical approach is to choose the synaptic weights as the
realizations of random variables. In this regard, it is of a peculiar interest to un-
derstand which global quantities should be fixed so that the model makes sense
from the biological point of view. For instance, one may play with the propor-
tion of active connections or one may require a balance between excitatory and
inhibitory synapses.

Goal of the project

The goal is to study the effect of the model for the synaptic weights onto the
mean field limit. For instance, one may play with the intensity of the interaction
or with the law of the synaptic weights when they are chosen randomly. In this
regard, we are especially interested in the persistence of well-known macroscopic
behaviors such that the spontaneous oscillations, the stability of the activity,
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etc. In case when the synaptic weights are drawn at random, we are especially
interested in obtaining quenched results, i.e. results that are satisfied for any
realization of a given law, and not only annealed results i.e. results that are
satisfied for averages over all the realizations of the synaptic weights.

Several extensions will be conceivable :

1) the influence of the nature of the noise (diffusive noise versus point processes)
is a natural question;

2) the correlation structure of the noise is another interesting question;

3) models with delay may be addressed;

4) extension to models featuring a spatial structure is certainly meaningful from
the biological point of view.
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[4] M. a. J. Cáceres, J. A. Carrillo, and B. Perthame. Analysis of nonlinear
noisy integrate & fire neuron models: blow-up and steady states. J. Math.
Neurosci., 1:Art. 7, 33, 2011.

[5] J. Chevallier. Mean-field limit of generalized hawkes processes, 2015.

[6] F. Delarue, J. Inglis, S. Rubenthaler, and E. Tanré. Global solvability of
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