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Generally, the aim of solving an optimal decision problem, that is an op-
timal stopping or optimal control problem, is twofold. On the one hand, one
aims at bounding its “true” value from below and above, and on the other
hand one tries to find a “good” decision policy consistent with these bounds.
In fact, a “good” (primal) decision policy yields a lower bound, and a “good”
system of (dual) martingales yields an upper bound to the “true” value, re-
spectively. Thus, naturally, solution methods for optimal decision problems can
be classified in primal and dual approaches. For the standard optimal stop-
ping problem, [1] succeeded to avoid the time consuming sub-simulations in the
Andersen-Broadie algorithm by constructing the dual martingale via a discrete
Clark-Ocone derivative of some approximation to the Snell-envelope, obtained
by regression on a suitable set of basis functions. Later on in [3] a related re-
gression method was developed that also avoids sub-simulations and, even more,
does not require any input approximation to the solution of the problem (i.e.
the Snell envelope). Particularly the later approach looked promising for gen-
eralization to quite general control problems. As a first non-trivial application,
this method was successfully applied in the context of a hydro electricity stor-
age model [2]. One of the main goals in this project proposal is a systematic
numerical treatment of generic optimal decision problems in “real-life” applica-
tions by incorporating recent ideas of a relatively new concept of data analysis
and prediction: Deep Learning. Typical “real-life” applications have a high di-
mensional nature and an effective numerical treatment of optimal stopping or
control problems in this context, both from the primal and the dual side, is of
prime importance and is considered a challenge from a mathematical point of
view. In the recent work [2] a regression based framework was developed that,
in principle, allows for simulating an upper biased bound and a lower biased
bound to the solution to an optimal decision problem. As a main feature, the
approach in [2] does not require nested simulation. However, there are funda-
mental problems that need to be tackled. In particular, in the dual approach
the stochastic representation of the optimal solution requires in general a set
of martingales with a cardinality equal to the typically high number of possible
decisions. Further, recursive backward construction of a set of dual martingales
in terms of a suitable set of basis functions involves, in principle, an optimiza-
tion problem that is nonlinear at each step. In general, regression methods in
stochastic optimal control heavily rely on the choice of the set of basis functions
and in this respect backward construction of the set of dual martingales can
be naturally combined with the Deep Learning idea. In particular, the solution
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from one layer may be incorporated in the set of basis functions for all higher
layers. Summing up, the main goals in this proposal will be:

• Combination of regression methods with ideas of multilayer deep neural
networks for solving stochastic optimal control problems

• Development of new generic methods for solving nonlinear stochastic opti-
mization problems

• Development of a systematic way of estimating underlying price distribu-
tion processes

• Extension of the proposed methodology to optimal control problems for
BSDEs and McKean-Vlasov nonlinear diffusions.
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