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The Vlasov equation models the evolution of a plasma in its self-consistent
electro-magnetic fields. Simulations typically depend for instance on the
intitial distribution and the guide field configuration. In this project, we are
interested in quantifying how uncertainties in the configurations propagate
over time. As a test problem, we will consider the 1d1v Vlasov–Poisson
equation with an uncertainty in the initial value. More precisely, the width
or position of a Maxwellian equilibrium could be uncertain. We will use
a Karhunen–Loève expansion for the uncertain parameter and a discrete
projection method to study the uncertainty following [6].

To sample the parameter space we will compare various methods including
high-order quasi Monte Carlo [2], sparse grids, and possibly also generalized
cross algorithms (cf. [1, 7]) and compare their efficiency based on the di-
mensionality of the parameter space. Our simulation of the Vlasov–Poisson
equation will be based on solutions computed with the forward-backward
Lagrangian method described in [5]. Compared to classical particle in cell
techniques, FBL offers interesting improvements in accuracy but presents cer-
tain drawbacks regarding its practical implementation and we will explore
ways to mitigate them.

After testing the discrete projection method with the various sampling
techniques in the case of the 1d1v Vlasov–Poisson equation, we also plan to
extend the study to more advanced 2d2v examples.

If time permits, we will apply the reduced modelling techniques developed
in [4, 3] for the state estimation of a plasma by coupling Vlasov models with
noisy measurement observations.
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