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The StOpt Library

A C++ toolbox with python interface

Regression methods for conditional expectations :
Local with Linear, Constant per mesh approximation ,
Local adaptive to the distribution with Linear, Constant per mesh
approximation ,
Global polynomial (Hermite, Canonical, Tchebychev),
Sparse grids,

Interpolation methods (linear, Monotone Legendre, sparse grids )
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The StOpt Library

Provide a framework to solve complex optimization
problems

General HJB equations with deterministic Semi Lagrangian
methods,
Non linear Stochastic Optimization problems with stocks :

Regressions with Monte Carlo for non controlled processes,
Stochastic Monte Carlo quantization for controlled process,

Some Linear problems with stocks in high dimension : Stochastic
Dual Dynamic Programming Method.

Parallelization :
Message Passing (MPI),
Multi-threaded,
Using vectorized matrix/array library Eigen (INRIA):
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The StOpt Library

An open source library

Developed during the ANR Caesars.
Gitlab site :
https://gitlab.com/stochastic-control/StOpt,
Documentation :
https://hal.archives-ouvertes.fr/hal-01361291

Python installer (Windows, Linux available at Labo FiME web site :
https://www.fime-lab.org/

Try it and avoid to redevelop (most of the time less efficiently) even if
branching not currently available.
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Branching for KPP equations
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Branching for KPP equations

The KPP equation McKean’s formulation [1]

Equation to solve in Rd :

∂tu + Lu + βf (u) = 0,

Lu = µ · Du +
1
2
σσ> :D2u

u(T , .) = g

with µ ∈ Rd , σ ∈Md , the non linear term :

f (u) = u2 − u

and notation A : B := Trace(AB>).
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Branching for KPP equations

Using Ito..

Consider the process for Wt a d dimensional Brownian motion :

dX 0,x
t =µdt + σdWt

X 0,x
0 =x

Supposing regularity of the solution :

E
[
u(T ,X 0,x

T )e−βT
]

=u(0, x) + E

[∫ T

0
e−βs (∂t u + Lu − βu) (s,X 0,x

s )ds

]

u(0, x) =E
[
g(X 0,x

T )e−βT
]

+ E

[∫ T

0

(
βe−βsu(s,X 0,x

s )2
)

ds

]

if τ a R.V. following an exponential law with parameter β :

E [1τ>T ] =e−βT = 1− cdf(τ),

ρτ (s) =βe−βs
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Branching for KPP equations

Introducing a Poisson process τ (1) with intensity β

Considering the integral as an expectation

u(0, x) =E0,x

[
g(X 0,x

T )1τ (1)>T + 1τ (1)<T u(τ (1),X 0,x
τ (1))

2
]

=E0,x

[
ψ(τ (1),X 0,x

τ (1))
]

(1)

where

ψ(t , x) =g(x)1t>T + 1t<T u(t , x)2

Introduce the Poisson processes τ (1,1), τ (1,2) (2 particles) by
independence

u(t , x)2 =Et ,x

[
ψ(t + τ (1,1),X t ,x

t+τ (1,1)

]
Et ,x

[
ψ(t + τ (1,2),X t ,x

t+τ (1,2)

]
=Et ,x

[
ψ(t + τ (1,1),X t ,x

t+τ (1,1))ψ(t + τ (1,2),X t ,x
t+τ (1,2))

]
(2)
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Branching for KPP equations

By recursion

Plugging (2) in (1), introducing

T(1) =T ∧ τ (1),

T(1,j) =T ∧ (T(1) + τ (1,j)), j = 1,2

u(0, x) =E0,x

[
1T(1)=T g(X 0,x

T(1)
) + 1T(1)<T

2∏
j=1

(
1T(1,j)=T g(X 0,x

T(1,j)
) + 1T(1,j)<T u(T(1,j),X

0,x
T(1,j)

)2
)

Recursion till all particles arrive at date T .
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Branching for KPP equations

Kpp tree

Figure: Galton-Watson tree for KPP

At date T(1) (1) generates (1,1)
and (1,2),

At date T(1,1), (1,1) generates
(1,1,1) and (1,1,2),

At date T(1,1,1), (1,1,1)
generates (1,1,1,1) and
(1,1,1,2)

At date T(1,2), (1,2) generates
(1,2,1) and (1,2,2),

At date T(1,2,2), (1,2,2)
generates (1,2,2,1) and
(1,2,2,2),
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Branching for KPP equations

Notations

k = (k1, k2, ..., kn−1, kn) , ki ∈ {1,2} particle of generation n
k− = (k1, k2, ..., kn−1) its ancestor , (1)− = ∅
Kn

t set of all living particles of generation n at date t .
Kt := ∪n≥1Kn

t set of all living particles at date t .

Kt (resp. Kn
t ) set of all particles (resp. of generation n) alive

before time t
τ k Poisson process associated to particle k = (k1, ..., kn),
Branching times per particle k

Tk :=
(
Tk− + τ k) ∧ T ,

T∅ =0
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Branching for KPP equations

Kpp tree

Figure: Galton-Watson tree
for KPP

(1,1,1,2) ancestor :

(1,1,1,2)− = (1,1,1),

K3
T = {(1,2,1), (1,1,2)}

K4
T ={(1,1,1,1), (1,1,1,2),

(1,2,2,1), (1,2,2,2)}

KT the 10 particles.
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Branching for KPP equations

PDE representation

d-dimensional Brownian motion (W k
t )k∈KT

,

for k ∈ KT \ KT , dynamic for Tk− ≤ t < Tk

X k
t = X k−

Tk−
+ µ(t − Tk−) + σW k

t−Tk−

Sample estimator:

û(0, x) =
∏

k∈KT

g(X k
T )

The number of particles in KT is finite a.s
if ||g||∞ < 1, u ∈ C1,2([0,T ]× Rd ) :

û(0, x) ∈ L1 ∩ L2,
u(0, x) = E

[
û(0, x)

]
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Generalization of KPP equations

First extension of KPP

Non linear PDE

∂tu + Lu + βf (u) = 0,
u(T , .) =g

with

f (u) =
N∑

i=0

pkuk − u

N∑
i=0

pk = 1, 0 ≤ pk ≤ 1
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Generalization of KPP equations

Feynman Kac :

Supposing regularity of the solution :

u(t , x) =E
[
g(X x

T )e−β(T−t)
]

+ E

[∫ T

t

(
βe−β(s−t)

N∑
i=1

piu(s,X x
s )i

)
ds

]

Introduce for particle k , (Ik )k∈KT \KT
random such that

P(Ik = l) = pl .

u(0, x) =E0,x

[
g(X (1)

T )1τ (1)>T + 1τ (1)<T u(τ (1),X (1)

τ (1))
I(k)
]

same estimator

u(0, x) = E[
∏

k∈KT

g(X k
T )]
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Generalization of KPP equations

Tree generalization : f (u) = p0 + p1u + p2u2 + p3u3

Figure: Galton-Watson tree
for generalized KPP

(1) , (1,3) generate 3 particles
(probability p3),

(1,1) dies without children (prob p0),

(1,2) generates one son (prob p1),

(1,2,1), and (1,3,3) generates 2 sons
(prob p2)
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General polynomial driver in u [2]
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General polynomial driver in u [2]

First extension of KPP

Non linear PDE

∂tu + Lu + f̂ (u) = 0, u(T , .) = g

with

f̂ (u) =
N∑

i=0

âkuk

Rewrite choosing β, (pi)
N
i=0 with positives values

∂tu + Lu + βf (u) = 0,

f (u) =
N∑

i=0

piaiui − u

where βpiai = âi , i 6= 1, a1 =
â1 + 1
βp1

.
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General polynomial driver in u [2]

Marked tree

Figure: Marked
Galton-Watson tree

(1) , (1,3) marked 3 generates 3
particles ,

(1,1) marked 0 dies without children,

(1,2) marked marked 1 generates one
son (prob p1),

(1,2,1) and (1,3,3) marked 2
generates 2 sons.
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General polynomial driver in u [2]

Feynman Kac :

u(0, x) =E0,x

[
g(X (1)

T )1τ (1)>T + 1τ (1)<T aI(1) u(τ (1),X (1)

τ (1) )I(1)
]

Same regularity on u, under sufficient condition
∑

i

âi

β
||g||∞ ≤ 1 (not depending on pk )

u(0, x) =E [φ]

φ =
∏

k∈KT

g(X k
T )

∏
k∈KT \KT

aI(k)

=
∏

k∈KT

g(X k
T )

N∏
i=0

awi
i

wi number of particles marked i (branching i particles)
pk chosen to minimize variance

pk =
ak ||g||k∞∑

i ai ||g||i∞
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General polynomial driver in u [2]

Example

Figure: Sample 0 for Marked
Galton-Watson tree

Sample 0

φ0 =a3 [a0]
[
a1a2g(X (1,1,2,1)

T )g(X (1,1,2,2)
T )

]
[
a3g(X (1,3,1)

T )g(X (1,3,2)
T )(

a2g(X (1,3,3,1)
T )g(X (1,3,3,2)

T )
)]
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General polynomial driver in u [2]

Alternative

No probability to choose the power of u

u(0, x) =E0,x

[
g(X 0,x

T )E0,x (1τ (1)>T )] + 1τ (1)<T

∑
i

piaiu(τ (1),X 0,x
τ (1))

i

]
At each branching :

treat each term u(τ (1),X 0,x
τ (1))

i generating i particles

summation :
∑

i

piaiu(τ (1),X 0,x
τ (1))

i

Disadvantage
Explosion of the computer time if many terms on the polynomial or
too long maturities

Advantage :
Reduce the variance,
As easy to program as for the initial algorithm.
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General driver f (u) [3]
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General driver f (u) [3]

Framework for small maturities

Approximation of the driver by a local polynomial expansion

f (x , y) =

j◦∑
j=1

`◦∑
`=0

aj,`(x)y `ϕj(y), (3)

where (aj,`, ϕj)`≤`◦,j≤j◦ is continuous and bounded maps satisfying

|aj,`| ≤ C`◦ , |ϕj(y ′1)− ϕj(y ′2)| ≤ Lϕ|y ′1 − y ′2| and |ϕj | ≤ 1,

Figure: Example of φ functions
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General driver f (u) [3]

Feynman Kac

Feynman Kac, ρ density exponential law with β intensity, F CDF,
F̄ = 1− F , τ (1) with density ρ

u(0, x) =E

g(X 0,x
T )

F̄ (T )
F̄ (T ) +

∫ T

0

j◦∑
j=1

`◦∑
`=0

(
aj,`u`ϕj (u)

)
(s,X 0,x

s )

ρ(s)
ρ(s)ds


=E

g(X (1)
T )

F̄ (T )
1τ (1)>T + 1τ (1)<T

j◦∑
j=1

`◦∑
`=0

(
aj,`u`ϕj (u)

)
(τ (1),X 0,x

T(1)
)

ρ(τ (1))


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General driver f (u) [3]

Idea

Impossible to use (29) directly in forward : u unknown so relevant
ϕj unknown,

Rewrite as f (x , y) = f̂ (x , y , y), choosing probability p` with
`◦∑
`=0

p` = 1

f̂ (x , y , y ′) =

j◦∑
j=1

`◦∑
`=0

p`
aj,`(x)

p`
y `ϕj(y ′),
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General driver f (u) [3]

Theoretical algorithm

Use Picard iterations starting with u0

Using Feynman Kac

ûn+1(0, x) =E0,x

[
g(X (1)

T )

F̄ (T )
1τ (1)>T +

1τ (1)<T

j◦∑
j=1

aj,I(1) (τ (1),X (1)
T(1)

)ϕj (un(τ (1),X 0,x
τ (1) ))

ρ(τ (1))pI(1)

ûn+1(τ (1),X 0,x
τ (1) )

I(1)


ûn+1(0, x) =E0,x

 ∏
k∈KT

g(X k
T )

F̄ (T − Tk−)

∏
k∈KT\KT

(aI(k)ϕj (un))(T(k),X k
Tk

)

pI(k)ρ(τ (k))


(4)

Use a priory bound

un+1 = (ûn+1 ∧M) ∨ −M

Convergence proved in [3].
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General driver f (u) [3]

Effective algorithm for general driver f (u)

Choose a grid yi = ymin + i
ymax − ymin

N
, i = 0,N , ϕj indicator

function (not regular)

ϕj(y) = 1y∈[yj ,yj+1[

Use quadratic or cubic expansion on each mesh for f , with C1 or
C2 regularity defining f expansion,

Time discretization ti = i
T
M

such that (4) has a bounded variance
on [t,ti+1]

Figure: Resolution with
interpolation

Use interpolator Îi at date ti on a
grid Gi

Use backward resolution : solve
with branching on interval
[tM−1,T ],..., [t0, t1]Xavier Warin Branching for PDEs CEMRACS July  31 / 94



General driver f (u) [3]

Effective algorithm for general driver f (u)

1: for x ∈ GM−1 do
2: T∅ = tM−1

3: u(tM−1, x) = EM−1,x

 ∏
k∈KT

g(X k
T )

F̄ (T − Tk−)

∏
k∈KT \KT

(aI(k)ϕj (g))(T(k),X
(k)
Tk

)

pI(k)ρ(τ (k))


4: end for
5: for i = M − 2, 0 do
6: for x ∈ Gi do
7: T∅ = ti

8: u(ti , x) = Ei,x

 ∏
k∈Kti+1

Îi+1(u(ti+1,X k
ti+1

)

F̄ (ti+1 − Tk−)

∏
k∈Kti+1

\Kti+1

(aI(k)ϕj (̂Ii+1(u(ti+1, .)))(T(k),X
(k)
Tk

)

pI(k)ρ(τ (k))


9: end for

10: end for
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General driver f (u) [3]

Remark on the algorithm

No Picard iteration : pure explicit scheme,
Interpolation is needed:

To compare with general semi-Lagrangian methods [4] where
interpolation is used and CFL stability condition (connecting time
and spacial discretization)
Here CFL replace by variance condition

Possible to use some general “most of the time high order”
monotone interpolator [5] on regular grids
Subject to the “curse” of dimension.
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General driver f (u) [3]

Does it work ?

∂tu + Lu + f (u) = 0,

Domain X := [0,2]d

SDE coefficient V = 0.2, U = 0.1

µ(x) = U × (1− x) and σ(x) := V
d∏

i=1

(2− xi )xi Id .

Solution not bounded by 1, with C =
1
2

u(t , x) = e
C
d
∑d

i=1 xi +
T−t

2 ,

Use monotone interpolator [5]
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General driver f (u) [3]

First 1D case

f (t , y) =y(
1
2
− V 2

2C2 [φ(t ,T , y)(2C − φ(t ,T , y))]2 − U(C − φ(t ,T , y))),

φ(t ,T , y) = log(y)− T − t
2

.

Figure: Cubic spline method.
Figure: Quadratic spline
method.
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General driver f (u) [3]

Second 1D case

f (x, y) =f1(y) + f2(x),

f1(y) =
2

10
(y + sin(

π

2
y)),

f2(x) =
1

2
− (

2

10
+ Cµ(x))−

σ(x)2c2

2
eCx+ T−t

2 −
2

10
sin(

π

2
ecx+ T−t

2 )

Figure: Cubic spline method. Figure: Quadratic spline method.
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General driver f (u) [3]

Remarks

A small number of splines gives a “large error” :
approximation of the driver leads to an error (controlled)
large time steps means error on ϕj term : error on the cell meaning
large error

a large number of spline :
very small error on the driver
larger statistical error on the ϕj term : but an error on the cell
number means only use of a polynomial close to the good one.

high number of time step necessary :
limit the variance problem : less Monte Carlo simulation needed
meaning less computational time
limits the error on ϕj
Interpolation error has to be of “second order”
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General driver f (u) [3]

Multidimensional results

f2(x) =
1

2
− (

2

10
+

C

d

d∑
i=1

xi )−
σ1,1(x)2c2

2d
e

C
d
∑d

i=1 xi + T−t
2 −

2

10
sin(

π

2
e

C
d
∑d

i=1 xi + T−t
2 )

40 splines, 80 time steps. 80 splines, 160 time steps

Figure: Error in dimension 3 for different time steps and spline numbers with
cubic spline.
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General driver f (u) [3]

Interpolation with sparse grids

4D, 80 splines, 160 time steps. 5D , 80 splines, 160 time steps.
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General driver f (u) [3]

Modified version

For g function bounded by 1 , not to long maturities, small driver
coefficients :

1: for x ∈ GM−1 do
2: T∅ = tM−1

3: u(tM−1, x) = EM−1,x

 ∏
k∈KT

g(X k
T )

F̄ (T − Tk−)

∏
k∈KT \KT

(aI(k)ϕj (g))(T(k),X
(k)
Tk

)

pI(k)ρ(τ (k))


4: end for
5: for i = M − 2, 0 do
6: for x ∈ Gi do
7: T∅ = ti

8: u(ti , x) = Ei,x

 ∏
k∈KT

g(X k
Tk

)

F̄ (ti+1 − Tk−)

∏
k∈KT \KT

(aI(k)ϕj (̂I
E [

T(k)M

T ]+1
(u(ti+1, .)))(T(k),X

(k)
Tk

)

pI(k)ρ(τ (k))


9: end for

10: end for
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Recall on Malliavin weights
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Recall on Malliavin weights

General case for first derivative

dX t,x
s = µ(s,X t,x

s )ds + σ(s,X t,x
s )dWs

Suppose µ, σ continuous, with bounded continuous gradients Dµ,
Dσ and σ uniformly elliptic,
φ : Rd → R bounded measurable function
The tangent process is well defined

Yt := Id , dYs = Dµ(s,X t,x
s )Ysds +

d∑
i=1

Dσi (s,X
t,x
s )YsdW i

s, for s ∈ [t ,T ], P-a.s.,

We have the automatic differentiation rule :

∂xE
[
φ
(
X t,x

s
)]

= E
[
φ
(
X t,x

s
) 1

s − t

∫ s

t

[
σ−1(r ,X t,x

r )Yr
]ᵀdWr

]
.
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Recall on Malliavin weights

Case φ regular, µ, σ constant, 1D

∂xE
[
φ
(
X t ,x

s
)]

=E
[
φ′
(
X t ,x

s
)]

=
1√
2π

∫ ∞
−∞

φ′(x + µ(s − t) + σ
√

s − tu)e−
u2
2 du

=
1√
2π

∫ ∞
−∞

φ(x + µ(s − t) + σ
√

s − tu)
u

σ
√

s − t
e−

u2
2 du

=E
[
φ
(
X t ,x

s
)Ws −Wt

σ(s − t)
]

If (s − t) small, high variance (≈ C
s − t

)
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Recall on Malliavin weights

When s − t small

Variance reduction 1:

∂xE
[
φ
(
X t ,x

s
)]

= E
[ (
φ
(
X t ,x

s
)
− φ(x)

) Ws −Wt

σ(s − t)
]

Variance reduction 2 : Define Antithetic :

dX̄ t ,x
s = µds − σdWs

∂xE
[
φ
(
X t ,x

s
)]

=
1
2
E
[ (
φ
(
X t ,x

s
)
− φ

(
X̄ t ,x

s
)) Ws −Wt

σ(s − t)
]

Variance bounded by ||φ′||∞ using taylor expansion variance.
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Recall on Malliavin weights

Second order derivative

Suppose µ , σ constant, φ regular enough

∂2
xE
[
φ
(
X t ,x

s
)]

= E
[
φ
(
X t ,x

s
)
W
]

W =(σ−1)>
(Ws −Wt )(Ws −Wt )

> − (s − t)I
(s − t)2 σ−1

Proof : double integration by part.

If (s − t) small , high variance ≈ 1
(s − t)2 ,

Variance reduction :

∂2
xE
[
φ
(
X t ,x

s
)]

= E
[ (
φ
(
X t ,x

s
)

+ φ
(
X̄ t ,x

s
)
− 2φ

(
x)
)W

2
]

Because

φ
(
X t ,x

s
)

+ φ
(
X̄ t ,x

s
)
− 2φ

(
x) ≈ φ′′(ξ)(s − t)W
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Recall on Malliavin weights

First alternative second ordrer scheme

Apply 2 first order derivatives on [t ,
t + s

2
], and [

t + s
2

, s] with variance
reduction

∂2
xE
[
φ
(
X t,x

s
)]

= E
[
ψ
(
(σ>)−1

(W t+s
2
−Wt )(Ws −W t+s

2
)>

(s − t)2 σ−1)]
ψ =φ

(
X t,x

s

)
+ φ (x + µ(t − s))− φ

(
x + µ(t − s) + σ(W t+s

2
−Wt )

)
−

φ
(

x + µ(t − s) + σ(Ws −W t+s
2

)
)

Often more effective [6].
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Recall on Malliavin weights

Second alternative second order scheme

Same as before but with Antithetic :

∂2
xE
[
φ
(
X t,x

s
)]

= E
[
ψ
(
(σ>)−1

(W t+s
2
−Wt )(Ws −W t+s

2
)>

(s − t)2 σ−1)]
ψ =

1
2
[
φ
(

X t,x
s

)
+ 2φ (x + µ(t − s))− φ

(
x + µ(t − s) + σ(W t+s

2
−Wt )

)
−

φ
(

x + µ(t − s) + σ(Ws −W t+s
2

)
)

+ φ
(

X̄ t,x
s

)
−

φ
(

x + µ(t − s)− σ(W t+s
2
−Wt )

)
− φ

(
x + µ(t − s)− σ(Ws −W t+s

2
)
) ]
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Unbiased simulation of SDE for linear PDE [7] [8]
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Unbiased simulation of SDE for linear PDE [7] [8]

Linear problem

Linear problem :

∂tu + Lu = 0
u(T , x) = g(x) ,{

dX 0,x
t = µ(t ,X 0,x

t )dt + σ(t ,X 0,x
t )dWt ,

X 0,x
0 = x ,

(Lϕ)(t , x) =µ(t , x).Dϕ(t , x) +
1
2

a(t , x) : D2ϕ(t , x) ,

a(t , x) :=σ(t , x)σ(t , x)>

How to solve it without bias (no Euler scheme) with usual condition : µ
and a uniformly Lipschitz in space , α Hölder in time
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Unbiased simulation of SDE for linear PDE [7] [8]

Freezing the coefficient
Operator with coefficient frozen at (̃t , x̃)

Lt̃,x̃ϕ(t , x) = µ(̃t , x̃).Dϕ(t , x) +
1
2

a(̃t , x̃) : D2ϕ(t , x) ,

SDE with frozen coefficients

X̃ t̃,x̃,t0,x
t = x + µ(̃t , x̃)(t − t0) + σ(̃t , x̃)(Wt −Wt0 ) .

Rewriting

∂tu + Lt̃,x̃u + H t̃,x̃ (t , x ,Du,D2u) = 0

H t̃,x̃ (t , x , y , z) = (µ(t , x)− µ(̃t , x̃)).y +
1
2

(a(t , x)− a(̃t , x̃)) : z

Feynman Kac for regular u

u(t , x) = E[g(X̃ t̃,x̃,t,x
T ) +

∫ T

t
H t̃,x̃ (s, X̃ t̃,x̃,t,x

s ,Du(s, X̃ t̃,x̃,t,x
s ),D2u(s, X̃ t̃,x̃,t,x

s )) ds]
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Unbiased simulation of SDE for linear PDE [7] [8]

Expression for derivatives

Using Malliavin weights (constant parameters)

Du(t , x) = E[g(X̃ t̃,x̃,t,x
T )Mt̃,x̃

t,T +∫ T

t
H t̃,x̃ (s, X̃ t̃,x̃,t,x

s ,Du(s, X̃ t̃,x̃,t,x
s ),D2u(s, X̃ t̃,x̃,t,x

s ))Mt̃,x̃
t,s ds]

D2u(t , x) = E[g(X̃ t,x,t,x
T )V t,x

t,T +∫ T

t
H t,x (s, X̃ t,x,t,x

s ,Du(s, X̃ t,x,t,x
s ),D2u(s, X̃ t,x,t,x

s ))V t,x
t,s ds] ,

Mt̃,x̃
t,s := (σ(̃t , x̃)−1)>

Ws −Wt

s − t
,

V t̃,x̃
t,s := (σ(̃t , x̃)−1)>

(Ws −Wt )(Ws −Wt )
> − (s − t)I

(s − t)2 σ(̃t , x̃)−1 .
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Unbiased simulation of SDE for linear PDE [7] [8]

Introducing stochastic mesh

 T0 = 0
Tk+1 = Tk + ∆Tk+1 , for k = 0,NT where
∆Tk+1 = τk+1 ∧ (T − (Tk + τk+1))+ ,

(5)

τk i.i.d density ρ , F̄ = 1− F , F CDF.
Freezing coefficient between two time steps{

X̄0 = X t0,x
T0

= x
X̄k+1 = X̄k + µ(Tk , , X̄k )∆Tk+1 + σ(Tk , X̄k )∆Wk+1 ,

where ∆Wk+1 := WTk+1 −WTk .
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Unbiased simulation of SDE for linear PDE [7] [8]

Similar to branching..

u(Tk , X̄k ) =
E[g(X̄k+1)1Tk+1=T ]

F̄ (T − Tk )
+ E[Hk+1 1Tk+1<T ]

Hk+1 :=
HTk ,X̄k (Tk+1, X̄k+1,Du(Tk+1, X̄k+1),D2u(Tk+1, X̄k+1))

ρ(∆Tk+1)

Need for Du, and D2U expression to plug in for recursion

Du(Tk+1, X̄k+1) =
E[g(X̄k+2)MTk+1,X̄k+1

Tk+1,T
1Tk+2=T ]

F̄ (T − Tk+1)
+ E[Hk+2MTk+1,X̄k+1

Tk+1,Tk+2
1Tk+2<T ]

D2u(Tk+1, X̄k+1) =
E[g(X̄k+2)VTk+1,X̄k+1

Tk+1,T
1Tk+2=T ]

F̄ (T − Tk+1)
+ E[Hk+2VTk+1,X̄k+1

Tk+1,Tk+2
1Tk+2<T ] .
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Unbiased simulation of SDE for linear PDE [7] [8]

Representation



Pk+1 =
Mk+1 + 1

2 Vk+1

ρ(∆Tk )
,

Mk+1 = ∆µk .(σ
−1
k )>

∆Wk+1

∆Tk+1
, with ∆µk := µk − µk−1

Vk+1 = ∆ak : (σ−1
k )>

∆Wk+1∆W>k+1 −∆Tk+1I
(∆Tk+1)2

σ−1
k , with ∆ak := ak − ak−1 .

Using previous equations recursively (TNT +1 = T ):

u(0, x) :=E[g(X 0,x
T )]

=E[
g(X̄NT +1)

F̄ (∆TNT +1)

NT +1∏
k=2

Pk ] ,
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Unbiased simulation of SDE for linear PDE [7] [8]

Second representation with antithetic

Control variate for all gradient weights

u(t0, x0) = E[β

NT∏
k=2

Pk 1NT≥1] + E[
g(X̄1)

F̄ (∆T1)
1NT =0] ,

where β :=
1
2

(β1 + β2) with
β1 :=

g(X̄NT +1)− g(X̄NT )

F̄ (∆TNT +1)

MNT +1 + 1
2 VNT +1

ρ(∆TNT )
,

β2 :=
g(X̂NT +1)− g(X̄NT )

F̄ (∆TNT +1)

−MNT +1 + 1
2 VNT +1

ρ(∆TNT )

Use of control variate necessary for variance issue !
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Unbiased simulation of SDE for linear PDE [7] [8]

Variance issue (Poisson process)

As ∆Tk can go to zero do we have variance bounded ?
Mixing two successive weights , ∆Tk going to 0

∆ak ≈O(∆T
1
2

k ),

∆Wk+1∆W>
k+1 −∆Tk+1I

(∆Tk+1)2 ≈O(∆T−1
k )

so in 1D

∆ak
∆Wk ∆W>k −∆Tk I

(∆Tk )2

ρ(∆Tk )
≈O(

∆T
− 1

2
k

ρ(∆Tk )
)

Suppose the branching dates follow a Poisson process :
Condition with respect to the number of Branching dates,
Conditional law of increment uniform∆ak

∆Wk ∆W>k −∆Tk I
(∆Tk )2

ρ(∆Tk )

2

≈ O(
∆T−1

k
ρ(∆Tk )2 ) not integrable
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Unbiased simulation of SDE for linear PDE [7] [8]

Variance issue : change law for time increments

Use Gamma law

ρκ,θΓ (s) =
sκ−1e−s/θ

Γ(κ)θκ
, for all s > 0 , (6)

Γ gamma Euler function

∆ak
∆Wk ∆W>k −∆Tk I

(∆Tk )2

ρ(∆Tk )

2

≈ O((∆Tk )1−2κ)

So Sufficient Condition for bounded variance bounded : κ ≤ 0.5
Rigorous demonstration for bounded variance in [8]
Variance reduction with interaction particles (“a la Del moral”) in
[8].
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Unbiased simulation of SDE for linear PDE [7] [8]

Results dimension 4

σ(t, x) =(0.5 + a min((
4∑

i=1

xi )
2
, 1))I

g(x) =(
1

d

d∑
i=1

xi − 1)+

µ(t, x) =− 10 ∨ (1− x) ∧ 10

x0 =1

T =1

Figure: 4D , a = 0.4
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Unbiased simulation of SDE for linear PDE [7] [8]

Results dimension 4

Figure: 4D, a = 0.6, no re-sampling

Figure: 4D a = 0.6 re-sampling
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Unbiased simulation of SDE for linear PDE [7] [8]

Conclusion

Only effective for small maturities, small change in coefficients,
Permits to avoid time discretization
Can compete with Euler only for small change in coefficients

Xavier Warin Branching for PDEs CEMRACS July  60 / 94



Semi linear equations
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Semi linear equations

An example

−∂tu − Lu =f (u,Du),

uT =g, t < T , x ∈ Rd ,

Lu :=
1
2

∆u,

f (y , z) =
1
2

(y2 + yz).
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Semi linear equations

Feynman Kac

u(0, x) =E0,x

[
F (T )

g(WT )

F (T )
+

∫ T

0

f (u,Du)(t ,Wt )

ρ(t)
ρ(t)dt

]
(7)

=E0,x
[
φ
(
0,T(1),W 1

T(1)

)]
, (8)

I(1) with values 0 and 1 with equal probability

φ(s, t , y) :=
1{t≥T}

F (T − s)
g(y)+

1{t<T}

ρ(t − s)
(uDI(1)

u)(t , y).
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Semi linear equations

On the event set {I(1) = 0}

(uDI(1)
u)(t , y) = u(t , y)2 = Et ,y

[
φ(t , t + τ1,W 1

t+τ1)
]2
.

By independence

(uDI(1)
u)(t , y) =Et ,y

[
φ
(
t , t + τ (1,1),W (1,1)

t+τ (1,1)

)]
Et ,y

[
φ
(
t , t + τ (1,2),W (1,1)

t+τ (1,2)

)]
=Et ,y

[
φ
(
t , t + τ (1,1),W (1,1)

t+τ (1,1)

)
φ
(
t , t + τ (1,2),W (1,2)

t+τ (1,2)

)]
,

Xavier Warin Branching for PDEs CEMRACS July  64 / 94



Semi linear equations

On the event set {I(1) = 1}

(uDI(1)
u)(t , y) = Et,y

[
φ
(
t , t + τ (1,1),W (1,1)

t+τ (1,1)

)]
∂yEt,y

[
φ
(
t , t + τ (1,2),W (1,2)

t+τ (1,2)

)]
.

Automatic differentiation :

∂yEt,y
[
φ
(
t , t + τ (1,2),W (1,2)

t+τ (1,2)

)]
=Et,y

[W (1,2)

(t+τ (1,2))∧T
−W (1,2)

t

τ (1,2) ∧ (T − t)
φ
(
t , t + τ (1,2),W (1,2)

t+τ (1,2)

)]
,

Independance :

(uDI(1)
u)(t , y) = Et,y

[W (1,2)

(t+τ (1,2))∧T
−W (1,2)

t

τ (1,2) ∧ (T − t)
φ
(
t , τ (1,1)

t ,W (1,1)

τ
(1,1)
t

)
φ
(
t , τ (1,2)

t ,W (1,2)

τ
(1,2)
t

)]
,
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Semi linear equations

Plugging uDI(1)

u into initial (8)

Notation

W(1) := 1{I(1)=0} + 1{I(1)=1}

∆W (1,2)
T(1,2)

∆T(1,2)
,

∆W (1,2)
T(1,2)

:=W (1,2)
T(1,2)

−W (1,2)
T(1)

, ∆T(1,2) :=T(1,2) − T(1),

so that

u(0, x) =E0,x

[
1{T(1)=T}

g(WT )

F (T )
+ 1{T(1)<T}

W(1)

ρ(T(1))

2∏
i=1

(
1{T(1,i)=T}

g(W 1,i
T )

F (∆T(1,i))
+ 1{T(1,i)<T}

(uDI1,i
u)
(
T(1,i),W

1,i
T(1,i)

)
ρ(∆T(1,i))

)]
.
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Semi linear equations

General case

` = (`0, `1, · · · , `m) ∈ L, L ⊂ Nm+1, |`| :=
m∑

i=0

`i

f (t , x , y , z) :=
∑

`=(`0,`1,··· ,`m)∈L

c`(t , x) y `0
m∏

i=1

(
bi(t , x) · z

)`i .
same Galton Watson tree construction as for f (u)

for a particle k , Ik permits to identify the term to treat in f ; Identify
values taken by Ik and element of L
On the event Ik = ` = (`0, `1, · · · , `m) , we consider

c`(t , x) y `0
m∏

i=1

(
bi(t , x) · z

)`i
On the event Ik = ` , |Ik | particles are generated :

`0 are marked 0,
`1 are marked 1 ...
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Semi linear equations

Example marked Galton Watson tree

f (t , x , y , z) := c0,0(t , x) + c1,0(t , x)y + c1,1(t , x)yz

m = 1,L = {¯̀1 = (1,0), ¯̀2 = (1,1)}

Figure: Galton-Watson tree for KPP

T(1), (1) branches into two particles (1, 1)
and (1, 2).

T(1,1), (1, 1) branches into (1, 1, 1) and
(1, 1, 2).

T(1,2), (1, 2) branches into (1, 2, 1).

T(1,1,2), (1, 1, 2) dies out without any
offspring particle.

T(1,1,1), (1, 1, 1) branches into (1, 1, 1, 1)
and (1, 1, 1, 2).

Particles in blue marked by 0, particles in
red marked by 1.
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Semi linear equations

Representation in case σ constant (explicit Malliavin
weight to simplify)

Wk := 1{θk =0} + 1{θk 6=0} bθk (Tk−,X k
Tk−

) · (σ>0 )−1 ∆Wk

∆Tk

Weight for u term Du term

ψ :=
[ ∏

k∈KT

g(X k
T )− g(X k

Tk−
)1{θk 6=0}

F (∆Tk )
Wk

][ ∏
k∈KT \KT

cIk (Tk ,X k
Tk

)

pIk

Wk

ρ(∆Tk )

]
Necessary variance reduction for Du term when reaching T

u(0, x) = E
[
ψ
]
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Semi linear equations

Variance consideration

Suppose
(p`)`∈L satisfies p` > 0 for all ` ∈ L, and

∑
`∈L

|`| p` <∞.

ρ(t) ≥ Ct−
q

2(q−1) with q ∈ (2,∞)
µ, σ bounded continuous, bounded continuous partial gradients
Dµ,Dσ, σ is uniformly elliptic.
c` : [0,T ]× Rd → R and bi : [0,T ]× Rd → Rd bounded continuous
and some integration conditions on c`.

Then E(ψ) <∞,
Then E(ψ2) <∞:

Consider ψs, s ≥ 2 and bound its coefficients
Show that for one s the representation with bounded coefficient
corresponds to the branching representation φ̂ associated an EDO
with a solution v bounded,
Integrability gives that E [|ψs|] < E[|φ̂|] <∞

Convergence towards the viscosity solution.
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Semi linear equations

In practice

Finite variance if :
small coefficients , small maturities,
ρ can be chosen as a gamma law with κ < 0.5.

Small time steps have a high probability meaning sometimes a high
number of weights
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Semi linear equations

Variance intuition when gamma law

Term in product when Du term :
∆Wk

ρ(∆Tk )∆Tk
≈ C(∆Tk )0.5−κ

Variance bounded for all laws of the branching date distribution

conditionally to the number of branching if κ ≤ 1
2

For Full Non Linear, second ordrer Malliavin term

(∆Wk )(∆Wk )> −∆Tk I
ρ(∆Tk )(∆Tk )2 ≈ C

ρ(∆Tk )∆Tk

Integrability problem.
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Semi linear equations

Test case

Gamma law with κ = 0.5 and θ = 2.5

f (t , x , y , z) =k(t , x) + cy(b · z)

k(t , x) := cos(x1 + · · ·+ xd )
(
α+

σ2

2
+ c sin(x1 + · · ·+ xd )

3d + 1
2d

eα(T−t)
)

eα(T−t)

α = 0.2, c = 0.15, T = 1, x0 = 0.51Id

Small non linearity decreasing with the dimension, g bounded by
one.
Solution

u(t , x) = cos(x1 + · · ·+ xd )eα(T−t).
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Semi linear equations

Linear versus non linear results

Non linearity has an impact on solution :

Dimension 5 10 20
Linear Solution -1.0436 0.3106 -0.9661
Non linear solution -0.97851 0.34646 -1.0248

Table: Analytic solution linear PDE versus analytic solution for the semi-linear
PDE in d = 5,10 and 20.
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Semi linear equations

Results

Estimation and standard deviation
d = 5.

Estimation and standard deviation
d = 10 .

Estimation and
standard deviation
d = 20
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Re-normalization of ghost method [9], [10]
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Re-normalization of ghost method [9], [10]

Remark on branching with Gamma laws

Gamma laws permits to get finite variance methods,
κ should be taken below 0.5 so high number of small jump :

Computation time important,
High number of weights terms meaning quite high variance,

Use of the following ghost method permits to deal with longer
maturities with less computation cost.
Possibility to use nesting : each conditional expectation estimated
with a few particles.
No proof of convergence with ghost even for low maturity ... but
we are sure we have integrability and finite variance.
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Re-normalization of ghost method [9], [10]

When coupled to a Euler scheme

Malliavin can be use by integration by part on first step with size
∆t

Gradient weight

bθk (Tk−,X k
Tk−

) · (σ>0 )−1 W(Tk +∆t)∧Tk+1
−WTk

∆Tk ∧∆t

Variance explodes when taking a small time step
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Re-normalization of ghost method [9], [10]

Burgers without ghost

u(0, x) =E0,x
[
φ
(
T(1),X

(1)
T(1)

)]
φ(t , y) :=

1{t≥T}

F̄ (T )
g(y)+

1{t<T}

ρ(t)
(buDu)(t , y).

On {1{T(1)≥T}} just compute
g(XT )

F̄ (T )
,

On {1{T(1)<T}},

buDu(T(1),XT(1)
)

ρ(T(1))
=

b
ρ(T(1))

ET(1),XT(1)

[
φ
(
T(1,1),X

(1,1)
T(1,1)

)]

ET(1),XT(1)

[ Ŵ (1,2)
∆T(1,2)

σ0∆T(1,2)

φ
(
T(1,2),X

(1,2)
T(1,2)

)]

Generate 2 particles (1, 1) marked θ((1, 1)) = 0 and (1, 2) marked θ((1, 2)) = 1
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Re-normalization of ghost method [9], [10]

Re-normalization Labordère et al. [9]

For gradient term :

ET(1),XT(1)

[ Ŵ (1,p)
∆T(1,p)

σ0∆T(1,p)

(
φ
(
T(1,p),X

(1,p)
T(1,p)

)
− φ

(
T(1,p),X

(1,p1)
T(1,p)

))]
,

p = 1,2

X (1,p1) has the same past as X (1,p) at date T(1) ,

same future increments between T(1,p) and T ,

no brownian increment between T(1) and T(1,p)

Acts as a control variate.
ET(1),XT(1)

[(
φ
(
T(1,p),X

(1,p)
T(1,p)

)
− φ

(
T(1,p),X

(1,p1)
T(1,p)

))2]
= O(∆T(1,p)).

Permits to use all ρ densities (so exponential); finite variance in
the linear case. No current result in the semi linear one.
This ghost method outperforms the original method.
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Re-normalization of ghost method [9], [10]

Original Galton-Watson tree and the ghost particles
associated for the Brownian.

(a) Original Galton-Watson tree
W (1) = Ŵ (1)

W (1,1) = Ŵ (1) + Ŵ (1,1)

W (1,2) = Ŵ (1) + Ŵ (1,2)

W (1,1,1) = Ŵ (1) + Ŵ (1,1) + Ŵ (1,1,1)

W (1,1,2) = Ŵ (1) + Ŵ (1,1) + Ŵ (1,1,2)

(b) Tree with ghost particle
k = (1,11)

W (1) = Ŵ (1)

W (1,11) = Ŵ (1)

W (1,2) = Ŵ (1) + Ŵ (1,2)

W (1,11,1) = Ŵ (1) + Ŵ (1,1,1)

W (1,11,2) = Ŵ (1) + Ŵ (1,1,2)
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Re-normalization of ghost method [9], [10]

Original re-normalization for burgers Labordère et al.
[9]

Backward recursion :

ψ̂k :=
g(X k

T )

F (∆Tk )
if Tk = T

ψ̂k :=
b

ρ(∆Tk )

∏
k̃={(k ,1),(k ,2)}

(
ψ̂k̃ − ψ̂k̃11{θ(k̃)6=0}

)
Wk̃ , if Tk < T

u(0, x) =E0,x

[
ψ̂(1)

]
.
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Re-normalization of ghost method [9], [10]

Re-normalization with antithetic ghosts Warin [11]

ET(1),XT(1)

[
(σ>0 )−1

Ŵ (1,p)
∆T(1,p)

∆T(1,p)

1
2
(
φ
(
T(1,p),X

(1,p)
T(1,p)

)
− φ

(
T(1,p),X

(1,p1)
T(1,p)

))]
.

X (1,p1) has the same past as X (1,p) at date T(1) ,

same future increments between T(1,p) and T and

−Ŵ (1,p)
∆Tk

increment between T(1) and T(1,p) .

Finite variance in the linear case.
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Re-normalization of ghost method [9], [10]

Gamma without ghost versus exponential law with
original ghost Labordère et al. [9]

Figure: Analytical case : Estimation, error in d = 3, c = 0.2, T = 1 on the
semilinear case depending on the log of the number of particles using a non

linearity cu(Du.b), b :=
1
d

(1 +
1
d
,1 +

2
d
, · · · ,2)
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Re-normalization of ghost method [9], [10]

Numerical original ghost Labordère et al. [9] versus
antithetic ghosts Warin [11] for u calculation.

Figure: Error in d = 6 T = 3 for Burgers

Figure: Error in d = 6 for (Du)2 non linearity.
Xavier Warin Branching for PDEs CEMRACS July  85 / 94



Re-normalization of ghost method [9], [10]

Numerical original ghost versus antithetic ghosts for
Du calculation.

Figure: Error in d = 6 for the term b.Du on Burgers test case for T = 1.5.
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The full non linear case
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The full non linear case

Full non linear f (u,Du,D2u) = bul0(Du)l1(D2u)l2 :
original scheme with 2 ghosts Labordère et al. [9]

D2ET(1),XT(1)

[
φ
(
T(1,p), X (1,p)

T(1,p)

)]
= ET(1),XT(1)

[
(σ0)−2

(Ŵ (1,p)
∆T(1,p)

)2 − ∆T(1,p)

(∆T(1,p))2
ψ
]
,

ψ =
1

2

[
φ
(
T(1,p), X (1,p)

T(1,p)

)
+ φ

(
T(1,p), X (1,p1)

T(1,p)

)
− 2φ

(
T(1,p), X (1,p2)

T(1,p)

)]
.

X (1,p)
T(1,p)

the original particle

X (1,p1)
T(1,p)

ghost with −Ŵ (1,p)
∆Tk

increment between T(1) and T(1,p)

X (1,p2)
T(1,p)

ghost without increment between T(1) and T(1,p)
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The full non linear case

Finite variance in the linear case (f linear in D2u)

ET(1),XT(1)

[(
ψ)2] = O(∆T 2

(1,p)),

The variance of the scheme is finite for small maturities , small
coefficients,
No current proof for the full non linear case.
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The full non linear case

A first new scheme for Full Non Linear with 3 ghosts
Warin [11]

Use first order derivative weights on two successive time steps
∆T(1,p)

2
.

(Ŵ k,i )k=(k1,··· ,kn−1,kn)∈Nn,n>1,i=1,2 independent BM

D2ET(1),XT(1)

[
φ
(
T(1,p), X (1,p)

T(1,p)

)]
= ET(1),XT(1)

[
2(σ0)−2

Ŵ (1,p),1
∆T(1,p)

∆T(1,p)

(Ŵ (1,p),2
∆T(1,p)

)

∆T(1,p)

ψ)
]
,

ψ = φ
(
T(1,p), X (1,p)

T(1,p)

)
+ φ

(
T(1,p), X (1,p3)

T(1,p)

)
− φ

(
T(1,p), X (1,p1)

T(1,p)

)
− φ

(
T(1,p), X (1,p2)

T(1,p)

)
.

X (1,p) = X (1) + µ∆T(1,p) + σ0

 Ŵ (1,p),1
∆T(1,p)

) + Ŵ (1,p),2
∆T(1,p)√

2


X (1,p3) = X (1) + µ∆T(1,p) ghost freezing position

X (1,p1) = X (1) + µ∆T(1,p) + σ0

Ŵ (1,p),1
∆T(1,p)√

2
ghost without second Ŵ increment

X (1,p2) = X (1) + µ∆T(1,p) + σ0

Ŵ (1,p),2
∆T(1,p)√

2
ghost without first Ŵ increment
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The full non linear case

Remark and extension

Bounds on variance calculation indicate a potential smaller
variance value of the new scheme,
An antithetic ghost version of the second scheme with 7 ghosts
can be used.
Higher number of ghosts means higher memory requirement.
Higher derivatives are easy to treat.
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The full non linear case

Results for full non linearity uD2u

f (u,Du,D2u) =h(t, x) +
0.1

d
u(1I : D2u),

µ = 0.21σ0 = 0.51I, α = 0.2

h(t, x) =(α +
σ2

0

2
) cos(x1 + .. + xd )eα(T−t) + 0.1 cos(x1 + .. + xd )2e2α(T−t)+

µ sin(x1 + .. + xd )eα(T−t)
,

u(t, x) = cos(x1 + .. + xd )eα(T−t)
.

Figure: Solution u(0,0.5) obtained and error in d = 6 with T = 1, analytic
solution is −1.20918.
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The full non linear case

Results for full non linearity uD2u : derivative

Figure: Derivative (1.Du) obtained and error in d = 6 with T = 1.
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The full non linear case

Results for non linearity DuD2u

f (u,Du,D2u) = 0.0125(1.Du)(1I : D2u).

Figure: Solution u(0,0.5) and error obtained for d = 4 with T = 1.
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