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The StOpt Library

A C++ toolbox with python interface

@ Regression methods for conditional expectations :

Local with Linear, Constant per mesh approximation ,

Local adaptive to the distribution with Linear, Constant per mesh
approximation ,

Global polynomial (Hermite, Canonical, Tchebychev),

Sparse grids,

@ Interpolation methods (linear, Monotone Legendre, sparse grids )
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The StOpt Library

Provide a framework to solve complex optimization
problems

@ General HJB equations with deterministic Semi Lagrangian
methods,
@ Non linear Stochastic Optimization problems with stocks :

@ Regressions with Monte Carlo for non controlled processes,
e Stochastic Monte Carlo quantization for controlled process,

@ Some Linear problems with stocks in high dimension : Stochastic
Dual Dynamic Programming Method.
Parallelization :
@ Message Passing (MPI),
@ Multi-threaded,
@ Using vectorized matrix/array library Eigen (INRIA):
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The StOpt Library

An open source library

@ Developed during the ANR Caesars.

@ Gitlab site :
https://gitlab.com/stochastic-control/StOpt,

@ Documentation :
https://hal.archives-ouvertes.fr/hal-01361291

@ Python installer (Windows, Linux available at Labo FIME web site :
https://www.fime—-lab.org/

Try it and avoid to redevelop (most of the time less efficiently) even if
branching not currently available.
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Branching for KPP equations
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Branching for KPP equations

The KPP equation McKean’s formulation [1]

Equation to solve in RY:
Ot + Lu+ Bf(u) =0,
Lu=p-Du+ %UO’TZDZU
uT,)=g
with 1z € R?, o € MY, the non linear term :
fluy=u?—u

and notation A : B := Trace(AB").
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Using lto..

Consider the process for W; a d dimensional Brownian motion :
aXP™ =padt + odW;
X% =x

Supposing regularity of the solution :

E [u(T,X?’X)e’*BT] —u(0,x) +E

;
/ e P (Bu+ Lu— Bu) (s, Xg’x)ds]
0

/OT (6e‘ﬁsu(s, XS”‘)2> ds}

u(0, x) =E {g(X?’X)e‘ﬁT] +E

if 7 a R.V. following an exponential law with parameter (3 :

E[1,57] == ?T =1 — cdf(r),
p"(s) =pe Ps
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Branching for KPP equations

Introducing a Poisson process (") with intensity 3

Considering the integral as an expectation

u(0, ) =Eox [g(XP" )07+ 1o ru(r ™, X557

=Fo.x [¢(7(1),Xf(’1’§) (1)
where
P(t,X) =g(X) 17 + 1cru(t, X)?
Introduce the Poisson processes ("), 7(1:2) (2 particles) by
independence
u(t, x)2 =Eq [w(rw“ DX } Eyx [¢(t+7<1 2 X, ]
—Ey [w(t+ (00 X0 e+ 702 X 2))} 2)
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Branching for KPP equations

By recursion

Plugging (2) in (1), introducing

T(1) :TAT“),
T(1,j):T/\(T(1)+T(1’j)), j:1,2

u(0, x) =Eq x [1 7'(1):TQ(X%1);) +1 Tay<T
2 0
0,x X \2
(1 Tip=T9XT )+ 11y <7U(T(1, X75)) )
=1

I

Recursion till all particles arrive at date T.
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Branching for KPP equations

Kpp tree

(1.1,11)

L

T
<

(L1

N

(1.2)

\

1.1.2)

1,221

(O]

Loa22d

Figure: Galton-Watson tree for KPP

Xavier Warin

Branching for PDEs

At date Ty (1) generates (1,1)
and (1,2),

At date 7—(1’1),(171
(1,1,1)and (1,1,2),

At date T111 (1 1 1)
generates (1, 1 1, 1) and
(1,1,1,2)

At date T4 2), (1,2) generates
(1,2, 1)and(1, ,2),

) generates

At date T(122), (1,2,2)
generates (1,2,2,1) and
(1,2,2,2),
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Branching for KPP equations

Notations

@ k= (ki,ko,...,kn_1,kn) , ki € {1,2} particle of generation n
@ k— = (ki, ko, ..., kn—1) its ancestor , (1)— =0

@ K7 set of all living particles of generation n at date t.

@ Kt :=Up>1K{ set of all living particles at date ¢.

@ K; (resp. Ef) set of all particles (resp. of generation n) alive
before time t

e 7* Poisson process associated to particle k = (kq, ..., kn),
@ Branching times per particle k

T =(Tke +7*) AT,

Ty =0
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Branching for KPP equations

Kpp tree

L

ann

Figure: Galton-Watson tree
for KPP

Xavier Warin

@ (1,1,1,2) ancestor :

) ) )

(1,1,1,2)— = (1,1,1),

e K3 ={(1,2,1),(1,1,2)}

K% ={(1,1,1,1),(1,1,1,2),

(1,2,2,1),(1,2,2,2)}

@ K1 the 10 particles.

Branching for PDEs

CEMRACS July 2017

14/94



Branching for KPP equations

PDE representation

@ d-dimensional Brownian motion (Wtk)kekr’
e for k € K1\ K7, dynamic for Ty_ <t < Tx

XE = XE (= Ti) oWy,
@ Sample estimator:

0(0.%) = ] a(x¥)

kekr

@ The number of particles in K is finite a.s
@ if [|g]leo < 1, ue C3([0, T] x RY) :

e (0,x) e L' N2,

o u(0,x) = E[a(o,x)}
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Generalization of KPP equations
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Generalization of KPP equations

First extension of KPP

Non linear PDE

otu+ Lu+ Bf(u) =0,
u(T,.)=g

with
N
f(u) = pxt* —u
i=0

d k=1, 0<p<

Branching for PDES CEMRAGS Julyzory  17/94



Generalization of KPP equations

Feynman Kac :

@ Supposing regularity of the solution :

T N
/ <Be"3(s‘” > piu(s, XZ )’) dS]
t i=1

@ Introduce for particle k, (I")keET\KT random such that

u(t,x) =E {g(X%)e‘ﬁ(T")} +E

P(IK=1)=p.

(k)
u(0,x) =Eox [g(X™ )1 o7 + 1 cru(r™D, XDy ]
@ same estimator

u(0,x) =E[ ]| g(X7)]

ket
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Generalization of KPP equations

Tree generalization : f(u) = po + p1u + pau? + psu®

@ (1), (1,3) generate 3 particles

w <\< (probability pg),

@ (1,1) dies without children (prob py),

T, TT TT T
¢ b s [ L3

@ (1,2) generates one son (prob py),
Figure: Galton-Watson tree (1.2)9 (prob p1)

for generalized KPP @ (1,2,1), and (1,3, 3) generates 2 sons
(prob p2)

Branching for PDES CEMRAGS Julyaot7 19194



General polynomial driver in u [2]

Table of contents

e General polynomial driver in u [2]
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First extension of KPP
Non linear PDE

A

ou+Lu+fu)y=0, u(T,.)=g
with

N
fu)=>" au*
i—0

Rewrite choosing 3, (pi)., with positives values

otu+ Lu+ Bf(u) =0,

N
flu)y=>_pait’ —u
i=0

~ a + 1
where gp;ai=a;, i %1, a1 = :
Bp1
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Marked tree

azn
an
122

1.2y

4 @ (1),(1,3) marked 3 generates 3

\,{ particles ,

@ (1,1) marked 0 dies without children,

HE S

[

@ (1,2) marked marked 1 generates one
son (prob py),

Figure: Marked
Galton-Watson tree @ (1,2,1) and (1, 3,3) marked
generates 2 sons.
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General polynomial driver in u [2]

Feynman Kac :
o

1 1) /(M
u(0, x) =Eq x [Q(X(r ))1T(1>>r + 1T(1)<Ta,(1)u(7(1),Xi“)))’ ]

@ Same regularity on u, under sufficient condition Z %Hg“w < 1 (not depending on py)
i

u(0,x) =E[¢]
o=J[ o0 II aw
kekr keKT\K1
N
= [ axn]]a"
keKr i=0

@ w; number of particles marked i (branching i particles)
@ py chosen to minimize variance

5 = _audlolls
>oiaillgllse
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General polynomial driver in u [2]

Example

\< @ Sample 0
B 90 =as @] |arag(X;" " )g(X}" 49

o (1,3,1) (1,3,2)
Figure: Sample 0 for Marked {a3g(XT )9(G )
Galton-Watson tree (agg(X? ,3,3,1))Q(X(T1 ’3’3’2)))}
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General polynomial driver in u [2]

Alternative

No probability to choose the power of u
u(0,x) =Eox | g(X3™)Eox(1,m7)] + 1 <TZP131 XOX)

At each branching :
e treat each term u(r("), X% )' generating i particles
o summation : > pya;u(r™, X%
i
Disadvantage
@ Explosion of the computer time if many terms on the polynomial or
too long maturities
Advantage :
@ Reduce the variance,
@ As easy to program as for the initial algorithm.
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General driver f(u) [3]

Table of contents

e General driver f(u) [3]
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General driver f(u) [3]

Framework for small maturities

Approximation of the driver by a local polynomial expansion

Jo Lo

f(x,y) = Zzaﬂ Y@j 3)

j=1¢=0

where (&; ¢, ©j)e<, j<j, IS continuous and bounded maps satisfying

|lajel < Cu, » loj(y1) — @i(¥a)l < Lolys — yol and | <1,

v/

Figure: Example of ¢ functions
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General driver f(u) [3]

Feynman Kac

Feynman Kac, p density exponential law with 3 intensity, £ CDF,
F =1—F, (") with density p

u(0,x) =E

x o Lo X

j=1 ¢=0
0,
g(x$>)1 +1 Zi ajw%’ )(T“)’me)
= TM>T TM<T
F(T) 7 ) j=1 ¢=0 ) )
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General driver f(u) [3]

Idea

@ Impossible to use (29) directly in forward : u unknown so relevant
@;j unknown,

@ Rewrite as f(x,y) = ?(x, ¥, ¥), choosing probability p, with
lo
ZP( =1
=0
jo to

f(x.y.y) ZZP y«p,y’)

j=1 £=0
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General driver f(u) [3]

Theoretical algorithm

Use Picard iterations starting with u°
@ Using Feynman Kac

N xM
Un+1(07x) = x g/g-‘(;-))1r(1)>r+
o My, 0

o Ti a; o (7 ),XT(1))99/(U”(T(1 X)) 07 () XO,X)I(‘)

o j=1 p(T)pin At
™0, x) =Ey H g(X,T() H (a/(k)sﬁj(un))(nk),X’T‘k)

) - X - 7 .
keir (T = Tk2) ks Pioop(719)

@ Use a priory bound
Un+1 — (Z‘IH—H A M) vV —-M

Convergence proved in [3].
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Effective algorithm for general driver f(u)
@ Choose a grid y; = Ymin + iy’"axil\_ly”"'”
function (not regular)

, 1 =0,N, ¢; indicator

ei(y) = 1y€[¥/u"/‘+1[
@ Use quadratic or cubic expansion on each mesh for f , with C' or
C? regularity defining f expansion,
@ Time discretization t; = i% such that (4) has a bounded variance
on [ fi1]

V J) e Use interpolator 7; at date t; on a

grid G;

Figure: Resolution with e Use backward resolution : solve

interpolation with branching on-interval
m Branching for PDEs CEMRACS July 2017 31/94



General driver f(u) [3]

Effective algorithm for general driver f(u)

1: for x € Gy_1 do
2: T@ = ty—1

(k)
3: u(t x)=E H 9(7)(,?) H (al(“’@/(g))(n")’xﬁ)
: M—1, M—1,x l_-'(T— Te) 2 p/<k>p(7(k))
ket keKT\KT
4: end for
5. fori =M —2,0do
6: for x ¢ G,‘ do
7: Top =1t
. A K
8: u(t,x) =E 11 liva (ution, XE ) 11 (3/<k>@j(’i+1(“(ti+1’")))(T(k)’X;k))
: iy X) = Lj x I_-_(l‘,-+1 —Ti) P,(k)P(T(k))

ke)c[fﬂ keky,

i+1 \Ky

i+1
9: end for
o: end for
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Remark on the algorithm

@ No Picard iteration : pure explicit scheme,
@ Interpolation is needed:

o To compare with general semi-Lagrangian methods [4] where
interpolation is used and CFL stability condition (connecting time
and spacial discretization)

e Here CFL replace by variance condition

@ Possible to use some general “most of the time high order”
monotone interpolator [5] on regular grids

@ Subject to the “curse” of dimension.
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General driver f(u) [3]

Does it work ?

otu+ Lu+ f(u) =0,

@ Domain X := [0,2]¢
@ SDE coefficient V =0.2, U = 0.1

p(x)=Ux(1-x) and o(x) := VH(Z — x;)x1d.

@ Solution not bounded by 1, with C = ~
u(t7X) = e%%E:gﬂ &4-1517

@ Use monotone interpolator [5]
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General driver f(u) [3]

First 1D case

2
1(4,9) =¥ ~ 5sslolt, TY)@C — 6(t. Ty ~ U(C — 6(t, T, 1),

t

AT, y) =logly) ~ -

— 20 quadratic spline, 80 time steps
175 -~ 40 quadratic spline, 80 time steps
—+- 40 quadratic spline, 40 time steps
— 10cubic spline, 80 time steps 150 —+~ 80 quadratic spline, 80 time steps
10 -~ 20 cubic spline, 80 time steps )
—-= 40 cubic spline, 80 time steps 12s 7!
—— 40 cubic spline, 40 time steps 5 Ny /_
08 5 NS T
2 100 ~ /
Sos 2 ors .
2 & 7
5 oso{ 7
§ o4 /
0254 -
—— <
02 0.00
N = 000 025 050 075 100 125 150 175 2.00
00 = S, = x

000 025 050 075 100 125 150 175 2.00
x

Figure: Quadratic spline
Figure: Cubic spline method. method.
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Second 1D case

f(x,y) =h(y) + f(x),

2 .o
fi(y) =— (¥ +sin(-¥)),
10 2
2.2
1 2 o(x)°cc oxp It
= X+ . X+
(x) =5 — (5= + Cux)) — — —sin(;e” 27)
2 10 2 10
—— 10 cubic spline, 80 time steps 0.7 —— 10 quadratic spline, 80 time steps
30| == 20 cubic spline, 80 time steps / ~-- 20 quadratic spline, 80 time steps
“27] —-- 40 cubic spline, 80 time steps / 06 ~=- 40 quadratic spline, 80 time steps
—— 20 cubic spline, 40 time steps / ~-- 40 quadratic spline, 40 time steps
/
25 / 05
8 8
520 3 04
v v
g g
§1s 5 o3
8 s
& &
10 02
05 - J 01
- N
w
00 — 00

Figure: Cubic spline method. Figure: Quadratic spline method.
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General driver f(u) [3]

Remarks

@ A small number of splines gives a “large error” :
e approximation of the driver leads to an error (controlled)
e large time steps means error on ¢, term : error on the cell meaning
large error
@ a large number of spline :
e very small error on the driver
e larger statistical error on the ¢; term : but an error on the cell
number means only use of a polynomial close to the good one.
@ high number of time step necessary :
o limit the variance problem : less Monte Carlo simulation needed
meaning less computational time
e limits the error on o;
e Interpolation error has to be of “second order”
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General driver f(u) [3]

Multidimensional results

d 2 2
(o}
Z &ea sd eIt

c
d 2d

f(x) 2,
X) == —(—
2 2 o

2 . T—t
2 an(Zeg Thin T
10°"2

— Percentage error depending on the point number ere for depending on the point number

00 000

1 2000 4000 6000 8000 o 2000 4000 6000 8000
Point number Point number

40 splines, 80 time steps. 80 splines, 160 time steps

Figure: Error in dimension 3 for different time steps and spline numbers with
cubic spline.
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General driver f(u) [3]

Interpolation with sparse grids

—— Percentage error depending on the point number 10 —— Percentage error depending on the point number
020
0.8
0.15
0.6
0.10
0.4
0.05
0.2
0.00
o 500 1000 1500 2000 2500 o 2000 4000 6000 8000 10000 12000
Point number Point number

4D, 80 splines, 160 time steps. 5D, 80 splines, 160 time steps.
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General driver f(u) [3]

Modified version

For g function bounded by 1, not to long maturities, small driver
coefficients :

1: for x € Gy_4 do
2: Ty = ty—1

k 091(9) (T, X
5 Uty 1 %) = Eur s H& I (@2 (D) Ty, X7,”)

_ k
kekKt F(T = Tk-) keKT\Kr p/(k)p(T( )
4. end for
5. fori=M — 2,0 do
6: for x € G,‘ do
7: TQ) =1t
e : (k)

o(X ) @il rogm (i1 (T X77)

8 u(ti,x) =Eix | [ Fltr—Te) Pitky p(H))
keky i+1 k— KEKT\KT 1P

9: end for
10: end for
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Recall on Malliavin weights
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Recall on Malliavin weights

General case for first derivative

°
Xt = (s, XE¥)ds + o (s, XE*)dWs
@ Suppose u, o continuous, with bounded continuous gradients Dy,
Do and o uniformly elliptic,
@ ¢ :RY — R bounded measurable function
@ The tangent process is well defined

d
Y=g, dYs = Du(s, X*)Ysds +)  Doj(s, Xg*) YsdWy, for s € [t, T], P-a
i=1

@ We have the automatic differentiation rule :

oE[o(x")] = B[ T [ o7 X v Taw].
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Recall on Malliavin weights

Case ¢ regular, i, o constant, 1D

HE[6(Xs™)] =E[¢' (X5™)]
:\/127 / P(x+u(s—t)+ovs— tu)e‘gdu

2
u
e 2du

:\/127/_Z¢(X+u(s_t)+g s — tu)

o Ws — W,
~E[o(X) sy

u
ovSs—t

@ If (s — t) small, high variance (~ sC—t)
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Recall on Malliavin weights

When s — t small

@ Variance reduction 1:
W — W,
OE[6(X6")] = B[ (6(X") - 00 e
@ Variance reduction 2 : Define Antithetic :

dX* = pds — cdWs

OE[6(X")] = B (6(%) — 6(X")) Lt

@ Variance bounded by ||¢'||~ using taylor expansion variance.
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Recall on Malliavin weights

Second order derivative

@ Suppose u , o constant, ¢ regular enough
RE[6(Xs™)] = E[¢(Xs™)W]

T (Ws— W) (Ws — Wi)T — (s— )1 _
W=(1HT (s 12 o1

Proof : double integration by part.

’
(s — 1)

@ If (s —t) small, high variance ~

@ Variance reduction :

OZE[6(X¢™)] = E[ (6(XE) + 6(XE) - 26(x)) VZV

]

Because
S(Xs™) + 6(Xe™) —26(x) = ¢"(€)(s — )V
Branching for PDEs CEMRACS July 2017
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Recall on Malliavin weights

First alternative second ordrer scheme

t+s t+s

Apply 2 first order derivatives on [t, 5 ——J],and [—— 5

reduction

, 8] with variance

Wes — Wy)(Ws — Wess) T
el - (T )
b= (X&) + 0 (x+ ult =) = 6 (x+ ult = )+ o(Weys — W) -
0 (x+u(t— s)+o(Ws — WHTS))

Often more effective [6].

Branching for PDES CEMRAGS July o1y 46194



Recall on Malliavin weights

Second alternative second order scheme

Same as before but with Antithetic :
x (Wess — Wy)(Ws — Wiis)T
8§E[¢)(Xst )] = E[’(/)((O’T)71 2 (s - t)2 2 071)]

¥ =500 (X%) +20 00+t~ )~ 6 (x4 plt — 8) + o (Wegs — W) -

¢(X+M(t—s)+0’(Ws— WHTS)) +¢()‘(st,x) B
¢>(x+u(t—s)—a(w%s - Wt)) _¢’<X+u(t—s)—a(ws_ WHTS))}
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Unbiased simulation of SDE for linear PDE [7] [8]

Table of contents

@ Unbiased simulation of SDE for linear PDE [7] [8]
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Unbiased simulation of SDE for linear PDE [7] [8]

Linear problem

Linear problem :

otu+Lu=0
u(T,x) =g(x),

{ d)o(f’x = pu(t, XON)dt + o (t, XO¥)dW,,
XX = x
0 Y

1

(Le)(t,x) =p(t, x).Dp(t,X) + 5a(t,X) : DPp(t,X) .
a(t, x) =o(t,x)o(t,x)"

How to solve it without bias (no Euler scheme) with usual condition : u

and a uniformly Lipschitz in space , a Holder in time
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Unbiased simulation of SDE for linear PDE [7] [8]

Freezing the coefficient

Operator with coefficient frozen at (¢, X)

L% (t, x) = p(t, %) De(t, X)+;a( %): Dp(t,x)

SDE with frozen coefficients
XER0X = x - u(E R)(t~ o) + o X)(We — W) -
Rewriting
O + LU + HYX(t, x, Du, D?u) = 0

H (%, 7.2) = (u(t, %) — n(E.R).y + y(a(tx) — a(f.%)) : 2

Feynman Kac for regular u

- T . .
u(t, x) = E[g(X7""") + / HYX (s, X5, Du(s, Xg*"), Du(s, Xs ")) ds]
t
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Unbiased simulation of SDE for linear PDE [7] [8]

Expression for derivatives

Using Malliavin weights (constant parameters)

Du(t,x) = E[Q(X?,Q,I,X)ME;;—_F
" (s, S5 Do, S5, DFuls, S5 ]
t
e - Hgiotss

T
/ Hl‘,X(S7 )"(Sf,X,t,X7 DU(S, )”'(sl‘,x,l‘,X)7 DQU(S, XST,X,t,X))Vtt:;( ds] 7
t

Ws Wt
T s—t

o1, %)

MEE = (o(F, %) )T

e

b
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Unbiased simulation of SDE for linear PDE [7] [8]

Introducing stochastic mesh

To 0
Thiq T + ATg,q ,for kK = 0, Ny where (5)
ATy Tt AT = (T + 7h44)) ",

7« i.i.d density p, F=1— F, F CDF.

Freezing coefficient between two time steps

)_(0 = X;(-)O’_X =X
Xk+1 = Xk + l,L( Tk, ,Xk)ATk+1 + U(Tka Xk)AWk+1 ?

where AWk+~| = WTk_*_1 — WT

k"
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Unbiased simulation of SDE for linear PDE [7] [8]

Similar to branching..

E[g()_(k-H )1 Tk+1:T]

T, Xi) = —= E[Hk111

u(Ti; X) FT-T) [Hicr1 17, <7]

Hey o Tt Xt Du(Ties1, Xiean), DPU(Tig1, Xis1))
e P(ATis1)

Need for Du, and D?U expression to plug in for recursion

Tist, X
E[Q(Xk+z)MTZj} T 17 ,=1]

— That s Xkt
Du(Tyi1, Xk1) = (T— Terr) + E[Hi e Mz 50, 17 <T]
+
_ E[Q(Xk+2) Tk+17 k+1 17 .1] _
DT, Xir) - = Frory T EHaVR R el
+
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Unbiased simulation of SDE for linear PDE [7] [8]

Representation

Myci1 + 3 Vicsr

P = b
! P(BTk)
M = Apg.( —1yT AWy with  Apg := pugx — p
k+1 Kk-(0) NP k = Mk k—1
AW 1AW . — AT 41
_ (o —INT +1 k+1 k17 4 : —
Vk+1 = Aag: (O’k ) (ATK+1 )2 O with Aay := ax — ak_1 -

Using previous equations recursively (Ty, 41 = T):

u(0, x) :=E[g(X7")]

9(Xn1) T
[_(ATNT-H) kl;[z Pl
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Unbiased simulation of SDE for linear PDE [7] [8]

Second representation with antithetic

Control variate for all gradient weights

s 9(X)
t =E P, 1 E[= ) PV
u(to, Xo) [5,(|:|2 kIny>1] + [F(AT1) Ny=0] »

where 3 = %(51 + B2) with

9(Xny 1) — 9(Xny) Myt + 3 Vg1

T T R aTea), WBT)
B = I Xy 1) = 9(Xnr) —Mny1 + 3 V41
' F(ATn+1) p(ATn;)

Use of control variate necessary for variance issue !
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Unbiased simulation of SDE for linear PDE [7] [8]

Variance issue (Poisson process)

@ As ATy can go to zero do we have variance bounded ?
@ Mixing two successive weights , AT, going to 0

Aay ~O(AT?),
AW/(+1AWKT+1 — ATk+1H N

~O(AT, !
(ATky1)? (A7)
soin1D
AW AW, —AT,I _1
A@—%m%—L%qAUZ)
p(ATg) p(ATg)

@ Suppose the branching dates follow a Poisson process :
e Condition with respect to the number of Branching dates,
o Conditional law of increment uniform

T_ 2
Agy AVGAW, AT AT
~ O(
P

(AT;()2
p(ATk) (ATy)?
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Unbiased simulation of SDE for linear PDE [7] [8]

Variance issue : change law for time increments

@ Use Gamma law

gr—1 e—S/9

p?ﬁ(s) — W , for all s > 0 s (6)

Ir gamma Euler function
°
AW, AW] —AT,17 2
(ATy)?

p(ATg)

Aay 1-2x
~ O((ATk) ™)

So Sufficient Condition for bounded variance bounded : < < 0.5
@ Rigorous demonstration for bounded variance in [8]
@ Variance reduction with interaction particles (“a la Del moral”) in
[8]-
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Unbiased simulation of SDE for linear PDE [7] [8]

Results dimension 4

o(t, x) =(0.5 + amin((>_ x)2, 1)1

i=1
;1 d

9(x) :(E Sox—-nt
i=1

u(t,x) = =10V (1 —x) A10

0122

0120

o118

Global estimate
Log of standard deviation

0116

o114

Figure:4D,a=04
Branching for PDEs CEMRACS July 2017
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Unbiased simulation of SDE for linear PDE [7] [8]

Results dimension 4

Global estimate

Global estimate

Xavier Warin

/ _ N, =T =
—=- Reference -
— o

12

1

15
log(n)

Figure: 4D, a= 0.6,

Log of standard deviation

— ep
— Theoretical

--- k=03.0=25
— - k=05.6=2.5

2

) 5
log(n)

no re-sampling

15
fog(n)

Figure: 4D a = 0.6 re-sampling

Branching for PDEs
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Unbiased simulation of SDE for linear PDE [7] [8]

Conclusion

@ Only effective for small maturities, small change in coefficients,
@ Permits to avoid time discretization
@ Can compete with Euler only for small change in coefficients
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Semi linear equations

Table of contents

e Semi linear equations
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An example

—0iu — Lu =f(u, Du),

ur=g, t<T,xeRY
1

==A
Lu 5 u,

(y,2) =/ +y2).
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Semi linear equations

Feynman Kac

)
(0. x) =Eo « [F(T)Z +/0 u, D“ t W) plt)ot] )
=Eox[¢(0, T(1)7WT )L (8)

(") with values 0 and 1 with equal probability

151y 1<) (1)
P(s,t,y): ﬂg(”"'m(”y u)(t, y).
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On the event set {/(') = 0}

(WD u)(t,y) = u(t,y)? = Ery[o(t t+ 7", W) 1))°.

By independence

(D" u)(t,y) =Exy[o(t t+ 0 WD) By [o(t t+ 702, WD)

=By [o(t t+ 0D WD No(t t+702 w2 )],
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On the event set {/(') = 1}

(UD'(”U)(Ly) _ E,,y[¢(t,t+7’(1’1)7 WI“")W)]ayEz,y[zﬁ(i,i+‘r(1*2),W“’z) )]

+T(

Automatic differentiation :

t47(1,2)

(1,2) (1,2)
1,2 1,2 (t4r02)AT 12) (1,2

ayEtuV [¢(t’ t+ T( )’ Wt(+7-()1,2))] :Et,y [ 7_(1,2) A (T _ t) ¢(t7 t+ T( )’ W[+T(1.2))] ’

Independance :
(1,2)(1 —_— Wt(1,2)

Q) . (t+r(LHAT (1 1) (1,2)

o' u)(t,y) = By [ an oy o Wie(t " W),
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Plugging uD"" u into initial (8)

Notation
(1,2)
i
W(1) = 1{I(1):0} + 1{/(1):1} AT(1(,1:)) ’
(1,2) . 1/(1,2) (1.2) =
WT(1,2) = WT(1,2) - WT(1) ’ ATU:Z)'_ 7-(1’2) B TU)’
so that
g(Wy) w)
0 = 1 =T} = 1 o(Ty)
u(0,X) =Eox[1(7,,-7) ATy o< (T
(s Wi D (T W)
T ,‘:T TIAT T ! d
1l {Tap }F(AT(1,/')) o=t AAT)

)]
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Semi linear equations

General case

m
° £:(£0a£1v"‘ ,fm)E L,LCNm+1, |f’ = Zf,-

i=0
i L
f(tvxvy)z) = Z Cg(t,X) yZo H(bi(t,X)'z) g
0=(Ly,0l1, - Lm)EL i=1

@ same Galton Watson tree construction as for f(u)
@ for a particle k, Iy permits to identify the term to treat in f ; Identify
values taken by I/, and element of L
@ Ontheevent Iy =¢= (o, %1, - ,¢m) , We consider
m

¢
C@(tv X) yfo H (bl(tv X) ) Z)
i=1
@ Onthe event Iy = ¢, |lx| particles are generated :
@ /y are marked 0,
@ (/1 are marked 1 ...
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Example marked Galton Watson tree

t,x)y + cia(t,x)yz
Mo = (1,1)}

T(1), (1) branches into two particles (1, 1)
and (1,2).

T(1,1), (1,1) branches into (1,1, 1) and
(1,1,2).

1,2), (1,2) branches into (1,2,1).
T(1,1,2), (1,1,2) dies out without any
offspring particle.

T(1,1,1), (1,1, 1) branches into (1,1,1,1)
and (1,1,1,2)

Figure: Galton-Watson tree for KPP @ Particles in blue marked by 0, particles in

red marked by 1.
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Semi linear equations

Representation in case o constant (explicit Malliavin
weight to simplify)

Wy = 1{9k:0} + 1{9”&0} bek(kaaXlﬂ,)'(UoT)i ATy

e e
Weight for u term Du term

g(X®) — g(XF_)1{g,20) e (T XE)

w . [kl_ICIT F(?fk) Wk} {kelg{lcr plk P(ATk)

Necessary variance reduction for Du term when reaching T

u(0,x) = E M
ETEE CENMRACS July a0y 69194
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Semi linear equations

Variance consideration

@ Suppose
o (pe)ecy satisfies p, > O forall ¢ € L, and Y |¢] p; < oo.
el
e p(t) > Ct 71 with g € (2, 0)
@ u, o bounded continuous, bounded continuous partial gradients
Du, Do, o is uniformly elliptic.
e ¢ :[0,T]xR?Y - Randb; : [0, T] x RY — RY bounded continuous
and some integration conditions on ¢,.
@ Then E(¢) < oo,

@ Then E(¢?) < oc:
e Consider °, s > 2 and bound its coefficients
e Show that for one s the representation with bounded coefficient
corresponds to the branching representation ¢ associated an EDO
with a solution v bounded, A
e Integrability gives that E[|¢°|] < E[|¢]] < oo

@ Convergence towards the viscosity solution.
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In practice

Finite variance if :
@ small coefficients , small maturities,
@ p can be chosen as a gamma law with x < 0.5.

Small time steps have a high probability meaning sometimes a high
number of weights
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Semi linear equations

Variance intuition when gamma law

AWy
p(ATK)ATk
@ Variance bounded for all laws of the branching date distribution

@ Term in product when Du term : ~ C(AT,)** "

conditionally to the number of branching if x < %

@ For Full Non Linear, second ordrer Malliavin term

(AW)(AWK)T — AT I C
p(ATi)(ATy)? T p(AT)ATK

Integrability problem.
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Semi linear equations

Test case

@ Gamma law with x =0.5and 9§ =2.5
o
f(t,x,y,z) =k(t,x) +cy(b- z)

2 1
k(t, x) :==cos(xq + -+ + Xd)(a + % +csin(xq + -+ + xd)3d2§ eo‘(T_’)>ea(T_t)

@ a=02c=015T=1, x, = 0.51,

@ Small non linearity decreasing with the dimension, g bounded by
one.

@ Solution

u(t, x) = cos(xq + - - - + xq)e*(T=1,
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Semi linear equations

Linear versus non linear results

Non linearity has an impact on solution :

Dimension 5 10 20
Linear Solution -1.0436 0.3106 -0.9661
Non linear solution | -0.97851 | 0.34646 | -1.0248

Table: Analytic solution linear PDE versus analytic solution for the semi-linear

PDE in d =5,10 and 20.

Xavier Warin

Branching for PDEs

CEMRACS July 2017
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Semi linear equations

Results

WWWWW

Estimation and standard deviation Estimation and standard deviation
d=>5. d=10.

@ Estimation and
standard deviation
d=20
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Re-normalization of ghost method [9], [10]

Table of contents
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Re-normalization of ghost method [9], [10]

Remark on branching with Gamma laws

@ Gamma laws permits to get finite variance methods,
@ « should be taken below 0.5 so high number of small jump :

o Computation time important,
e High number of weights terms meaning quite high variance,

@ Use of the following ghost method permits to deal with longer
maturities with less computation cost.

@ Possibility to use nesting : each conditional expectation estimated
with a few particles.

@ No proof of convergence with ghost even for low maturity ... but
we are sure we have integrability and finite variance.

Branching for PDES CEMRAGS July 017 77194



Re-normalization of ghost method [9], [10]

When coupled to a Euler scheme

@ Malliavin can be use by integration by part on first step with size
At

At

@ Gradient weight

.| M/(TK+AT)ATk+1 - WTk
AT AN AL

bo, (Tk— X%, ) - (o9)
@ Variance explodes when taking a small time step
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Re-normalization of ghost method [9], [10]

Burgers without ghost

u(0, %) =Eox [¢(Tp1), X71) )]

1 1
#(t,y) = gf;)} 9+ {Pj(j)r L (bubu)(t, y).
g(X7)

@ On {1{T(1)ZT}}just compute = ,

F(T)
@ On {147, <m3}

bubu(T), Xr,))
o(T1y) p(T1y

@ Generate 2 particles (1,1) marked 0((1,1)) =0 and (1,2) marked 6((1,2)) =1
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Re-normalization of ghost method [9], [10]

Re-normalization Labordere et al. [9]

@ For gradient term :

W(tp)
ET X [ AT( (¢(T1 X( ,P)) ¢(T X( ,P )))]
(1)AT 4 aoAT(1 ) (1:p)> T4, (1,p)s ’
p=1,2

o X(P) has the same past as X(") at date Ty ,
same future increments between 7'(17p) and T ,
no brownian increment between T4y and Ty )

@ Acts as a control variate.
P2
o IETU)-,XT(1 [(¢(T(1 \P) X1p)> ¢<T(1,P)>X§':1'Z)))) } = O(AT(1,p))'

@ Permits to use all p densities (so exponential); finite variance in
the linear case. No current result in the semi linear one.

@ This ghost method outperforms the original method.
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Re-normalization of ghost method [9], [10]

Original Galton-Watson tree and the ghost particles
associated for the Brownian.

G om L San
. . A 2 i} A.f(””///T'
wit ey 7 Ly
(L1 //’
W ~ il o WERE;
R WL i// Toan . oy o /// r“.y\\'\\ Wit 2, ALY
. - W= w - BT N
TS e g g <_ ) b
W WO W / o ?(Im\\ ° Toy e 5 ey .12
- T\\ - R 12 O Nz
~ T
\\\ $a- o, wea T
T . .
(b) Tree with ghost particle
L _ 1
(a) Original Galton-Watson tree K =(1.1")
W — W w® = WM
WD — 3 4 700 w11 — ()
WD — 30 @2 WD Z 30 4 72
wOTD — W @0 gD Wt SRR
w12 = @ 4 @D w12 w112 — gy, g0.1.2)
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Re-normalization of ghost method [9], [10]

Original re-normalization for burgers Labordere et al.
[9]

Backward recursion :

k
5 =90 7

v TFATY)
—~ b ~ ~ .
2 ATy I = Yt piypoy e Te<T

k:{(k11 )1(k72)}

u(0, x) =Eoq x {@5(1)}-
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Re-normalization of ghost method [9], [10]

Re-normalization with antithetic ghosts Warin [11]

4/(1.0)
-1 WAT(1~PJ 1

Eryxr, [(70) mg@(ntp)vngﬁf) = (T X152 )]

o XU*) has the same past as X('"P) at date Ty,

same future increments between T(; ;) and T and

—ngf) increment between T(3y and Tq ) -

@ Finite variance in the linear case.
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Re-normalization of ghost method [9], [10]

Gamma without ghost versus exponential law with
original ghost Labordere et al. [9]

- - Reference

— Method A A=0.2

— Method A A=0.2 A -~ Method AX=0.4
011 Method A A=0.4 Method A A=0.6
Method A A=0.6 Method B
10 — Method B -
Method C

Log of standard deviation divided by square root of n

6 17 18 19 20 s PR PR F)

51 5 16
log(n) log(n)

Figure: Analytical case : Estimation, errorind =3, c=0.2, T = 1 on the

semilinear case depending on the log of the number of particles using a non

. . 1 1 2
linearity cu(Du.b), b := a(1 + 8’1 + o ,2)
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Re-normalization of ghost method [9], [10]

Numerical original ghost Labordere et al. [9] versus
antithetic ghosts Warin [11] for u calculation.

foginl

Figure: Error in d = 6 for (Du)? non linearity.
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Re-normalization of ghost method [9], [10]

Numerical original ghost versus antithetic ghosts for
Du calculation.

Maturity 1.5
1
c — Nested 1
g -~ Nested 2
e - Nested 4
g -1 | Nested 1 antithetic
g ) — Nested 2 antithetic
2 -3
s
§ -4 -
é -5
2 6
5 -7
g
-8
1 12 13 14 15 16 17 18 19

log(n)

Figure: Error in d = 6 for the term b.Du on Burgers test case for T = 1.5.
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The full non linear case

Table of contents
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Full non linear f(u, Du, D?u) = bu®(Du)"(D?u)" :
original scheme with 2 ghosts Labordeére et al. [9]

D?E Ty o, xU0P)
Tty X7y [#(T1.p)

—2
=E
T(ij)} Ty X7y [(e0)

1 1
_! (1,p) (1.p)y _ x(1.6%)
v=3 ["’(T(tp)’xr(hp)) +¢(T<1,p)’xr(1,p)) 26(T(1,p)» Tap )]

(1.p) - i
° XT(1,p) the original particle

° X%Z;) ghost with —ngf) increment between Ty and T4 p)

° X(Tz;fj) ghost without increment between T4y and T4
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The full non linear case

Finite variance in the linear case (f linear in D2u)

® Eryyxy, (V)] = O(ATE ).

@ The variance of the scheme is finite for small maturities , small
coefficients,

@ No current proof for the full non linear case.
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The full non linear case

A first new scheme for Full Non Linear with 3 ghosts

Warin [11]

- e — A ATi,p)
@ Use first order derivative weights on two successive time steps 2' 5

@ (Wi
o

1oee kn_1 skn) ENP L A>1,i=1,2 independent BM

2 (1,p) _ —2
BBy Xy 190 X705 = By ot [0

3
¥ =6(Tap) X“’p))) + (T, XY P)) = 6(T1 ),

" Tap Ti,p)
()1 ) o e)2
AT, AT,
(1.0) — x(1) (1,p) (1,p)
@ x =X 4 uATq ) + 00 7
3
@ x(P) — x() 4 uAT(1 p) ghost freezing position
wit:p)1
1 AT,
@ x(.ph) — x(M + uATq p) + o0 (1.p)

wil.p).2

5 AT, .
@ X7 = X 4 uATY 4y + 0o —P) ghost without first W increment

V2

ghost without second W increment

/(1.0).1 7/(1.0).2
W w
AT, p) ¢ )

1.p) ATd,p)

AT(1,p)

)],

2
p)) _ 45(7—(1,p)vx'(r1’p ))'

(1,p)

CEMRACS July 2017
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The full non linear case

Remark and extension

@ Bounds on variance calculation indicate a potential smaller
variance value of the new scheme,

@ An antithetic ghost version of the second scheme with 7 ghosts
can be used.

@ Higher number of ghosts means higher memory requirement.
@ Higher derivatives are easy to treat.
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The full non linear case

Results for full non linearity uD?u

0.1
f(u, Du, D?u) =h(t, x) + —ua: D?u),

n=0.2109 = 0.51, a=02

2
o
h(t, x) =(a + ?U)cos(n + ..+ Xd)ea(Tit) +0.1cos(xy + .. + Xd)ZeZQ(T—1)+
psin(xq + .. + Xd)ea(Tit),
u(t, x) = cos(xq + .. + xg)eT =0,
? = vemon1] . = Vet

— Version 2

\ — Version 3
) / \
N\
=\

o / Version 2
/ version 3
. / E—
1200 o / I
- /
1208 .
o \
/ / \
s / \ .
/ \ -
/ -~
/ N
/

Global estimate

-1210]

1212

Log of standar

Figure: Solution u(0,0.5) obtained and error in d = 6 with T = 1, analytic
solution is —1.20918.
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The full non linear case

Results for full non linearity uD?u : derivative

— Version 1 = — Version 1
-0.8 Version 2 M Version 2
— Version 3 g -2 — Version 3
®
2-3
3 -09 = N
g 2 N
g 3 -
2 2 ~ T
© -10 g — .
g s ~_
] N
g .
-6
11 £ N~
\ .
11 2 3 1 5 16 ) 18 19 1 f¥) [ 1 5 16 17 18 1
log(n) log(n)

Figure: Derivative (1.Du) obtained and error in d = 6 with T = 1.
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The full non linear case

Results for non linearity DuD?u

f(u, Du, D?u) = 0.0125(1.Du)(1 : D?u).

— Version 1
Version 2
-~ Version 3
05
£ —06
5
07
08
i 12 B 1 15 1 17 181 [ R 7 R T TR VS R ]

log(n) log(n)

Figure: Solution u(0,0.5) and error obtained for d = 4 with T = 1.
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