Least-square regression Monte Carlo for approximating BSDEs and semilinear PDEs

Plamen Turkedjiev

BP International Plc

20th July 2017

Forward-Backward Stochastic Differential Equations (FBSDEs)

Definitions and relations in continuous time

(X,Y,Z) are predictable $\mathbb{R}^d \times \mathbb{R} \times \mathbb{R}^q$ -valued processes

$$X_t = X_0 + \int_0^t b(s, X_s)dt + \int_0^t \sigma(s, X_s)dW_s,$$

$$Y_t = \Phi(X_T) + \int_t^T f(s, X_s, Y_s, Z_s) ds - \int_t^T Z_s dW_s.$$

Feynmann-Kac relation (Pardoux-Peng-92): $(Y_t,Z_t)=(Y(t,X_t),Z(t,X_t))$ where (Y(t,x),Z(t,x)) deterministic and solve Y(t,x)=u(t,x) and $Z(t,x)=\nabla u(t,x)\sigma(t,x)$ for

$$\partial_t u(t,x) + \mathcal{L}(t,x) u(t,x) = f(t,x,u,\nabla_x u\sigma), \quad u(T,x) = \Phi(x),$$

$$\mathcal{L}(t,x)g(x) = \langle b(t,x), \nabla_x g(x) \rangle + \frac{1}{2} trace(\sigma \sigma^\top(t,x) Hess(g)(x)).$$

First steps to discrete time approximation

Goals of numerical method

- (1) approximate the stochastic process $\tilde{X} \approx X$;
- (2) compute approximations of Y(t,x) and Z(t,x) minimizing the loss function

$$l(\phi,\psi) := \mathbb{E}[\sup_{0 \leq t \leq T} |\phi(t,\tilde{X}_t) - Y(t,X_t)|^2] + \mathbb{E}[\int_0^T |\psi(t,\tilde{X}_t) - Z(t,X_t)|^2 dt];$$

- (3) tune the approximation algorithm to minimize the computational cost.
- In this talk, we are not concerned with approximating X; we drop the notation \tilde{X} hereafter.
- The loss function is not tractable and we must make an approximation.

Finite time grid approximation

Let $\pi = \{0 = t_0 < \ldots < t_n = T\}$ and define the loss function

$$l_{\pi}(\phi, \psi) := \max_{t \in \pi} \mathbb{E}[|\phi(t, X_t) - Y(t, X_t)|^2] + \sum_{i} \mathbb{E}[\int_{t_i}^{t_{i+1}} |\psi(t, X_t) - Z(s, X_s)|^2 ds]$$

- Clearly $l_{\pi}(\cdot)$ is an approximation of $l(\cdot)$.
- The choice of π will affect the efficiency of the approximation.
- The regularity and boundedness of Φ , f, b, and σ will influence the efficiency of the approximation.

Conditional expectation formulation

By taking conditional expectations in **PBSDE**:

$$Y_{t} = \mathbb{E}\left[\Phi(X_{T}) + \int_{t}^{T} f(s, X_{s}, Y_{s}, Z_{s}) ds \middle| \mathscr{F}_{t}\right] \quad a.s.$$

$$= \arg\inf_{\Psi_{t} \in \mathscr{A}(t)} \mathbb{E}\left[\left|\Phi(X_{T}) + \int_{t}^{T} f(s, X_{s}, Y_{s}, Z_{s}) ds - \Psi_{t}\right|^{2}\right]$$

where $\mathscr{A}(t) = \mathbf{L}_2(\mathscr{F}_t; \mathbb{R})$. Markov property: replace $\mathscr{A}(t)$ by

$$\mathscr{A}_t = \{ \psi : \mathbb{R}^d \to \mathbb{R} \mid \mathbb{E}[|\psi(X_t)|^2] < \infty \},$$

$$Y_t = \arg\inf_{\psi(t,\cdot) \in \mathcal{A}_t} \mathbb{E}\left[\left| \Phi(X_T) + \int_t^T f(s, X_s, Y_s, Z_s) ds - \psi(t, X_t) \right|^2 \right]$$

Reformulation of the Y-part of the loss

Orthogonality of conditional expectation:

$$\mathbb{E}[|\psi(t, X_t) - \Phi(X_T) - \int_t^T f(s, X_s, Y_s, Z_s) ds|^2]$$

$$= \mathbb{E}[|\psi(t, X_t) - Y(t, X_t)|^2] + \mathbb{E}[|Y(t, X_t) - \Phi(X_T) - \int_t^T f(s, X_s, Y_s, Z_s) ds|^2]$$

The Y part of the loss function becomes

$$l_{\pi,y}(t,\psi) = \mathbb{E}[|\psi(t,X_t) - \Phi(X_T) - \int_t^T f(s,X_s,Y_s,Z_s)ds|^2].$$

Z part of the loss

The optimal discrete Z is also a conditional expectation, \bigcirc BSDE:

$$Z_{\pi}(t_{i}, x) := \arg\inf_{\phi \in \mathscr{A}_{t}} \mathbb{E}\left[\int_{t_{i}}^{t_{i+1}} |\phi(X_{t_{i}}) - Z(s, X_{s})|^{2} ds\right]$$

$$= \frac{1}{t_{i+1} - t_{i}} \mathbb{E}\left[\int_{t_{i}}^{t_{i+1}} Z_{s} ds | X_{t_{i}} = x\right]$$

$$= \mathbb{E}\left[\frac{W_{t_{i+1}} - W_{t_{i}}}{t_{i+1} - t_{i}} \left(\Phi(X_{T}) - \int_{t_{i}}^{T} f(s, X_{s}, Y_{s}, Z_{s}) ds\right) \middle| X_{t_{i}} = x\right]$$

▶ D1

Z part of the loss

As before, we use orthogonality property of the conditional expectation

$$\mathbb{E}[|\phi(t_{i}, X_{t_{i}}) - Z_{\pi}(t_{i}, X_{t_{i}})|^{2}]
+ \mathbb{E}[|Z_{\pi}(t_{i}, X_{t_{i}}) - \frac{W_{t_{i+1}} - W_{t_{i}}}{t_{i+1} - t_{i}} \left(\Phi(X_{T}) + \int_{t_{i}}^{T} f(s, X_{s}, Y_{s}, Z_{s}) ds\right)|^{2}]
= \mathbb{E}[|\phi(t_{i}, X_{t_{i}}) - \frac{W_{t_{i+1}} - W_{t_{i}}}{t_{i+1} - t_{i}} \left(\Phi(X_{T}) + \int_{t_{i}}^{T} f(s, X_{s}, Y_{s}, Z_{s}) ds\right)|^{2}]
=: l_{\pi, z}(t_{i}, \phi).$$

The discrete loss is approximated by

$$l_{\pi}(\psi, \phi) \approx \max_{t_i \in \pi} l_{\pi,y}(t_i, \psi) + \sum_{t_i \in \pi} l_{\pi,z}(t_i, \phi)(t_{i+1} - t_i)$$

The loss function is still not tractable because of the integral.

Equivalent continuous time representations

One-step vs. multistep approximation

From the tower law,

$$Y(t_{i}, x) = \mathbb{E}\left[\Phi(X_{T}) + \int_{t_{i}}^{T} f(s, X_{s}, Y_{s}, Z_{s}) ds \middle| X_{t_{i}} = x\right]$$
$$= \mathbb{E}\left[Y_{t_{i+1}} + \int_{t_{i}}^{t_{i+1}} f(s, X_{s}, Y_{s}, Z_{s}) ds \middle| X_{t_{i}} = x\right].$$

Likewise,

$$Z_{\pi}(t_{i}, x) = \mathbb{E}\left[\frac{W_{t_{i+1}} - W_{t_{i}}}{t_{i+1} - t_{i}} \left(\Phi(X_{T}) + \int_{t_{i}}^{T} f(s, X_{s}, Y_{s}, Z_{s}) ds\right) \middle| X_{t_{i}} = x\right]$$

$$= \mathbb{E}\left[\frac{W_{t_{i+1}} - W_{t_{i}}}{t_{i+1} - t_{i}} \left(Y_{t_{i+1}} + \int_{t_{i}}^{t_{i+1}} f(s, X_{s}, Y_{s}, Z_{s}) ds\right) \middle| X_{t_{i}} = x\right].$$

Decomposition into a system

Define (\hat{y},\hat{z}) and (\tilde{Y},\tilde{Z}) solving respectively

$$\hat{y}_t = \Phi(X_T) - \int_t^T \hat{z}_s dW_s,$$

$$\tilde{Y}_t = \int_t^T f(s, X_s, \hat{y}_s + \tilde{Y}_s, \hat{z}_s + \tilde{Z}_s) ds - \int_t^T \tilde{Z}_s dW_s.$$

Observe that $Y_t = \hat{y}_t + \tilde{Y}_t$ and $Z_t = \hat{z}_t + \tilde{Z}_t$.

- ✓ The representation is beneficial:
 - The functions $\hat{y}(t,X_t) = \hat{y}_t$, $\hat{z}(t,X_t) = \hat{z}_t$ come from linear equation.
 - The functions $\tilde{Y}(t,X_t) = \tilde{Y}_t$, $\tilde{Z}(t,X_t) = \tilde{Z}_t$ are generally smoother than their Y(t,x), Z(t,x) counterparts.

► MI

Adding zero

From the conditional expectation

$$Y(t_i, x) = \mathbb{E}\left[\Phi(X_T) + \int_{t_i}^T f(s, X_s, Y_s, Z_s) ds \middle| X_{t_i} = x\right]$$

$$= \mathbb{E}\left[\Phi(X_T) + \int_{t_i}^T f(s, X_s, Y_s, Z_s) ds - \int_{t_i}^T Z_s dW_s \middle| X_{t_i} = x\right]$$

$$= Y(t_i, x)$$

✓ In other words, the integrand has conditional variance zero. More to come...

Adding zero

From the conditional expectation

$$Z_{\pi}(t_{i}, x) = \mathbb{E}\left[\frac{W_{t_{i+1}} - W_{t_{i}}}{t_{i+1} - t_{i}} \left(\Phi(X_{T}) + \int_{t_{i}}^{T} f(s, X_{s}, Y_{s}, Z_{s}) ds\right) \middle| X_{t_{i}} = x\right]$$

$$= \mathbb{E}\left[\frac{W_{t_{i+1}} - W_{t_{i}}}{t_{i+1} - t_{i}}\right]$$

$$\times \left(\underbrace{\Phi(X_{T}) + \int_{t_{i}}^{T} f(s, X_{s}, Y_{s}, Z_{s}) ds - Y(t_{i}, x) - \int_{t_{i+1}}^{T} Z_{s} dW_{s}}_{=T}\right) \middle| X_{t_{i}} = x\right]$$

$$= Y(t_{i+1}, X_{t_{i+1}}) - Y(t_{i}, x) + \int_{t_{i}}^{t_{i+1}} f(s, X_{s}, Y_{s}, Z_{s}) ds$$

√ The integrand has low conditional variance zero. More to come...

Malliavin representation (Hu-Nualart-Song-11)

Rather than computing $Z_{\pi}(t,x)$, directly use the representation

$$Z(t,x) = \mathbb{E}\left[D_t \Phi(X_T) + \int_{t_i}^T \nabla_x f(s,X_s,Y_s,Z_s) D_t X_s ds \middle| X_t = x\right]$$

$$+ \mathbb{E}\left[\int_t^T \partial_y f(s,X_s,Y_s,Z_s) D_t Y_s ds \middle| X_t = x\right]$$

$$+ \mathbb{E}\left[\int_t^T \nabla_z f(s,X_s,Y_s,Z_s) D_t Z_s ds \middle| X_t = x\right]$$

$$= \mathbb{E}\left[\Gamma(t,T) D_t \Phi(X_T) + \int_{t_i}^T \Gamma(t,s) \nabla_x f(s,X_s,Y_s,Z_s) D_t X_s ds \middle| X_t = x\right]$$
with $D_t Y_t = \nabla_t Y_t (\nabla_t Y_t)^{-1} \sigma(t,Y_t)$ and

with $D_t X_\tau = \nabla_x X_\tau (\nabla_x X_t)^{-1} \sigma(t, X_t)$ and

$$\Gamma(t,s) = \exp\left(\int_{t}^{s} \nabla_{z} f_{\tau} dW_{\tau} + \int_{t}^{s} (\partial_{y} f_{\tau} - \frac{1}{2} |\nabla_{z} f_{\tau}|^{2} d\tau\right)$$

Valid under restricted conditions.

Malliavin integration by parts

(Ma-Zhang-02)(T.-15) Rather than computing $Z_{\pi}(t,x)$, directly use the representation

$$Z(t,x) = \mathbb{E}\left[\Phi(X_T)M(t,T) + \int_{t_i}^T f(s,X_s,Y_s,Z_s)M(t,s)ds \middle| X_t = x\right]$$

for random variables

$$M(t,s) := \frac{1}{s-t} \int_t^s \sigma^{-1}(\tau, X_\tau) D_t X_\tau dW_\tau)^\top.$$

- **X** Valid under restricted conditions.
- ✓ Sometimes M(t,s) is available in closed form. E.g. for $X_t = W_t$ or geometric Brownian motion, $M(t,s) = \frac{W_s W_t}{s t}$.

Continuous time approximations

Truncation

Let $\Phi_M(x)=\Phi(\mathscr{T}_{1,M}(x))$, $f_M(t,x,y,z)=f(t,x,\mathscr{T}_{2,M}(y),\mathscr{T}_{3,M}(z))$ and define

$$Y_M(t) = \Phi_M(X_T) + \int_t^T f_M\big(t, X_s, Y_M(s), Z_M(s)\big) ds - \int_t^T Z_M(s) dW_s.$$

- ✓ Processes $(Y_M,Z_M)\approx (Y,Z)$ have better stability conditions, i.e. a priori estimates, comparison theorems.
- \rightarrow Important to approximate case of super-linear f (Chassagneux-Richou-16) (Lionnet-dos Reis-Szpruch-15).

Discrete time approximation

Discretizing the integral

Define $\Delta_i=t_{i+1}-t_i$, $\Delta W_j=W_{t_{j+1}}-W_{t_j}$, $\mathbb{E}_i[\cdot]=\mathbb{E}[\cdot|\mathscr{F}_{t_i}].$

$$Y_i = \Phi(X_T) + \sum_{j \ge i} \mathbb{E}_j[f(t_j, X_{t_j}, Y_{j+1}, Z_j)] \Delta_j - \sum_{j \ge i} Z_j \Delta W_j - \sum_{j \ge i} \Delta L_j$$

where L_j discrete time BSDE. Kunita-Watanabe: $\exists ! (Y, Z, L)$ s.t. $\{W_iL_i: i=0,\ldots,n\}$ is a martingale w.r.t. discrete filtration and

$$Y_{i} = \mathbb{E}_{i}[\Phi(X_{T}) + \sum_{j \geq i} f(t_{j}, X_{t_{j}}, Y_{j+1}, Z_{j})\Delta_{j}],$$

$$Z_{i} = \mathbb{E}_{i}\left[\frac{\Delta W_{i}}{\Delta_{i}}(\Phi(X_{T}) + \sum_{j \geq i+1} f(t_{j}, X_{t_{j}}, Y_{j+1}, Z_{j})\Delta_{j})\right].$$

Discrete time analogue of W

Markov property: $Y_i = y_i(X_{t_i})$ and $Z_i = z_i(X_{t_i})$.

Discretizing the integral

The loss function is approximated by

$$l(\psi, \phi) \approx \max_{t_i \in \pi} \tilde{l}_{\pi, y}(t_i, \psi) + \sum_{t_i \in \pi} \Delta_i \tilde{l}_{\pi, z}(t_i, \phi)$$

where

$$\begin{split} \tilde{l}_{\pi,y}(t,\psi) &= \mathbb{E}[|\psi(t,X_t) - \Phi(X_T) - \sum_{j \geq i} f(t_j,X_{t_j},Y_{j+1},Z_j)\Delta_j|^2] \\ \tilde{l}_{\pi,z}(t,\phi) &= \mathbb{E}[|\psi(t,X_t) - \frac{\Delta W_i}{\Delta_i}(\Phi(X_T) + \sum_{i \geq i+1} f(t_j,X_{t_j},Y_{j+1},Z_j)\Delta_j)|^2] \end{split}$$

 $(Y_i, Z_i)_{t_i \in \pi}$ is still not tractable because conditional expectations generally not available analytically. Loss function is still not tractable!

Other formulations

 $Y_n = \Phi(X_T)$ and

$$Y_i = \mathbb{E}_i[Y_{i+1} + f(t_i, X_{t_i}, Y_{i+1}, Z_i)\Delta_i], \quad Z_i = \mathbb{E}_i[\frac{\Delta W_i}{\Delta_i} Y_{i+1}].$$

Discrete time analogue of Continuous time equations.

Likewise.

$$Y_i = \mathbb{E}_i[\Phi(X_T) + \sum_{j \ge i} f(t_j, X_{t_j}, Y_{j+1}, Z_j) \Delta_j - \sum_{j \ge i} Z_j \Delta W_j],$$

$$Z_i = \mathbb{E}_i\left[\frac{\Delta W_i}{\Delta_i}(\Phi(X_T) + \sum_{j \ge i+1} f(t_j, X_{t_j}, Y_{j+1}, Z_j)\Delta_j - Y_i - \sum_{j \ge i} Z_j \Delta W_j)\right]$$

is the discrete time analogue of Continuous time equations.

Convergence result

- (A1) $\Phi(\cdot)$ is θ_{Φ} -Hölder continuous;
- $\begin{array}{ll} \text{(A2)} \ L_f, C_f \in [0,\infty) \text{ and } \theta_L, \theta_C \in [0,1) \text{ s.t.} \\ |f(t,x,0,0)| \leq C_f (T-t)^{\theta_C-1}, \text{ and} \end{array}$

$$|f(t, x_1, y_1, z_1) - f(t, x_2, y_2, z_2)| \le L_f \frac{|x_1 - x_2| + |y_1 - y_2| + |z_1 - z_2|}{(T - t_i)^{(1 - \theta_L)/2}};$$

- (A3) b(t,x) and $\sigma(t,x)$ twice differentiable in x, $\frac{1}{2}$ -Hölder in t, bounded and bounded partial derivatives, and $\exists \eta > 0 \ s.t. \ x^{\top} \sigma \sigma^{\top} x > \eta |x|^2$.
- (A4) For $\beta \in (0,1]$, $t_i = T T(1-i/N)^{\beta}$.

For
$$\beta < \gamma \wedge \theta_{\Phi} \wedge \theta_L$$
, let $\gamma = \theta_C \wedge (2\theta_C \wedge \theta_{\Phi} + \theta_L)$,

(Gobet-Makhlouf-10)(T.-15) show

$$\inf l(\psi, \phi) \le O(n^{-1}) \mathbf{1}_{\theta_{\Phi} + \gamma + \beta \ge 1} + O(n^{-\gamma}) \mathbf{1}_{\theta_{\Phi} + \gamma + \beta < 1}.$$

Convergence result

- (A1) $\Phi(\cdot)$ is Lipschitz continuous;
- (A2) f(t,x,y,z) is Lipschitz continuous in (x,y,z) with linear growth, $\frac{1}{2}$ -Hölder continuous in t; (A3) b(t,x) and $\sigma(t,x)$ are Lipschitz continuous with linear growth in x and
 - (A3) b(t,x) and $\sigma(t,x)$ are Lipschitz continuous with linear growth in x and $\frac{1}{2}$ -Hölder in t.
 - (Zhang-04) shows $\inf l(\psi, \phi) \leq O(n^{-1})$; (Gobet-Labart-07) show additionally under $\Phi \in C_1(\mathbb{R}^d : \mathbb{R})$ that $\inf l(\psi, \phi) \leq O(n^{-2})$.

Two alternatives

Conditioning inside the driver (Pagès-Sagna-17):

$$Y_i = \Phi(X_T) + \sum_{j \ge i} f(t_j, X_{t_j}, \mathbb{E}_j[Y_{j+1}], Z_j) \Delta_j - \sum_{j \ge i} Z_j \Delta W_j - \sum_{j \ge i} \Delta L_j$$

Implicit version:

$$Y_i = \Phi(X_T) + \sum_{j \ge i} f(t_j, X_{t_j}, Y_j, Z_j) \Delta_j - \sum_{j \ge i} Z_j \Delta W_j - \sum_{j \ge i} \Delta L_j$$

There are many references for implicit numerical scheme, (Chassagneux-Richou-16) prove that it tends to be more stable than the explicit version (with modification on ΔW terms).

Picard scheme for One-step/multistep implicit schemes

One-step scheme from (Gobet-Lemor-Warin-05):

$$Y_{q+1,i} = \mathbb{E}_{i}[Y_{q,i+1}] + f(t_{i}, X_{t_{i}}, Y_{q,i}, Z_{q,i})\Delta_{i}$$

$$Z_{q+1,i} = \mathbb{E}_{i}\left[\frac{\Delta W_{i}}{\Delta_{i}}Y_{q+1,i}\right].$$

Multistep scheme of (Bender-Denk-07)

$$\begin{split} Y_{q+1,i} &= \mathbb{E}_i [\Phi(X_T) + \sum_{j \geq i} f(t_j, X_{t_j}, Y_{q,j}, Z_{q,j}) \Delta_j] \\ Z_{q+1,i} &= \mathbb{E}_i [\frac{\Delta W_i}{\Delta_i} (\Phi(X_T) + \sum_{j \geq i+1} f(t_j, X_{t_j}, Y_{q,j}, Z_{q,j}) \Delta_j)]. \end{split}$$

High order discretization of the integral

(Chassagneux-Crisan-14) Let
$$(Y_n,Z_n)=(\Phi(X_T),\nabla_x\Phi(X_T)\sigma(T,X_T)).$$

For $j=1,\ldots,q$, and for i < n: set $(Y_{i,q},Z_{i,q})=(Y_{i+1},Z_{i+1})$ and

$$Y_{i,j} = \mathbb{E}_{i,j}[Y_{i+1} + c_j \Delta_i \sum_{k=j}^{q} a_{j,k} f(t_k, X_{t_k}, Y_{i,k}, Z_{i,k})]$$

$$Z_{i,j} = \mathbb{E}_{i,j}[H_{i,j}Y_{i+1} + \Delta_i \sum_{k=j+1}^q A_{j,k}H_{i,k}f(t_k, X_{t_k}, Y_{i,k}, Z_{i,k})]$$

Set
$$(Y_i, Z_i) = (Y_{i,0}, Z_{i,0}).$$

Given sufficient smoothness and Hörmander condition, optimal four stage explicit scheme loss is $\inf l(\psi, \phi) \leq O(n^{-6})$.

Given sufficient smoothness and Hörmander condition, optimal three stage implicit scheme loss is $\inf l(\psi, \phi) \leq O(n^{-6})$.

Discrete time Malliavin weights scheme

(T.-15)(Gobet-T.-15) Recalling Malliavin representation of Z, discrete approximation of the integral and Malliavin weight terms (first order approximation):

$$Y_i = \mathbb{E}_i \left[\Phi(X_T) + \sum_{j \ge i} f(t_j, X_{t_j}, Y_{j+1}, Z_j) \Delta_j \right],$$

$$Z_i = \mathbb{E}_i \left[\Phi(X_T) M_{i,n} + \sum_{j \ge i+1} f(t_j, X_{t_j}, Y_{j+1}, Z_j) M_{i,j} \Delta_j \right].$$

New loss function for Z:

$$\hat{l}_{\pi,z}(t,\phi) = \mathbb{E}[|\phi(t,X_t) - \Phi(X_T)M_{i,n} - \sum_{j>i+1} f(t_j, X_{t_j}, Y_{j+1}, Z_j)M_{i,j}\Delta_j|^2].$$

Convergence result

- (A1) $\Phi(\cdot)$ is θ_{Φ} -Hölder continuous;
- $\begin{array}{ll} \text{(A2)} \ L_f, C_f \in [0,\infty) \text{ and } \theta_L, \theta_C \in [0,1) \text{ s.t.} \\ |f(t,x,0,0)| \leq C_f (T-t)^{\theta_C-1}, \text{ and} \end{array}$

$$|f(t, x_1, y_1, z_1) - f(t, x_2, y_2, z_2)| \le L_f \frac{|x_1 - x_2| + |y_1 - y_2| + |z_1 - z_2|}{(T - t_i)^{(1 - \theta_L)/2}};$$

- (A3) b(t,x) and $\sigma(t,x)$ twice differentiable in x, $\frac{1}{2}$ -Hölder in t, bounded and bounded partial derivatives, and $\exists \eta > 0 \ s.t. \ x^{\top} \sigma \sigma^{\top} x > \eta |x|^2$.
- (A4) For $\beta \in (0,1]$, $t_i = T T(1 i/N)^{\beta}$.

For
$$\beta < \gamma \wedge \theta_{\Phi} \wedge \theta_{L}$$
, let $\gamma = \theta_{C} \wedge (2\theta_{C} \wedge \theta_{\Phi} + \theta_{L})$, (T.-15) shows

$$\inf l(\psi, \phi) \le O(n^{-1}) \mathbf{1}_{\theta_{\Phi} + \gamma + \beta \ge 1} + O(n^{-\gamma}) \mathbf{1}_{\theta_{\Phi} + \gamma + \beta < 1}.$$

Least-squares regression

Let $S_{t_i,T}(\omega) = S_i(\omega(t_i), \dots \omega(t_n))$ be a random functional and define

$$l_{\pi}(t_i, \phi) := \mathbb{E}[|\phi(X_{t_i}) - S_{t_i, T}(X)|^2]$$

Then $\arg\inf_{\phi\in\mathscr{A}_t} l_{\pi}(t_i,\phi)(x) = \phi^{\star}(x) := \mathbb{E}[S_{t_i,T}(X)|X_t = x]$.

Estimating the measure by empirical measure,

$$l_{\pi}(t,\phi) \approx l_{\pi,M}(t,\phi) := \frac{1}{M} \sum_{m=1}^{M} |\phi(X_{t_i}^{(m)}) - S_{t_i,T}(m,X^{(m)})|^2$$
$$\Rightarrow \arg\inf_{\phi \in \mathscr{A}_{t_i}} l_{\pi}(t,\phi) \approx \arg\inf_{\phi \in \mathscr{A}_{t_i}} l_{\pi,M}(t,\phi)$$

 \mathscr{A}_{t_i} infinite dimensional, not suitable for a search policy.

Two stage approximation:

• Choosing finite dimensional hypothesis space $\mathscr{K} \subset \mathscr{A}_{t_i}$,

$$\operatorname{arg\,inf}_{\mathscr{A}_{i_i}} l_{\pi}(t_i, \phi) \approx \operatorname{arg\,inf}_{\mathscr{K}} l_{\pi}(t_i, \phi);$$

approximation error

$$\mathbb{E}[|\phi^*(X_{t_i}) - \phi_{\mathscr{K}}^*(X_{t_i})|^2] = \inf_{\mathscr{K}} \mathbb{E}[|\phi^*(X_{t_i}) - \phi(X_{t_i})|^2].$$

because $\forall \phi \in \mathscr{K}$

$$\mathbb{E}[|S_{t_i,T}(X) - \phi(X_{t_i})|^2] = \mathbb{E}[|S_{t_i,T}(X) - \phi^*(X_{t_i})|^2] + \mathbb{E}[|\phi^*(X_{t_i}) - \phi(X_{t_i})|^2].$$

The choice of hypothesis space is crucial: good space "is close to" the solution.

Approximate the probability measure with the empirical measure

$$\operatorname{arg\,inf}_{\mathscr{A}_{t_i}} l_{\pi}(t_i, \phi) \approx \operatorname{arg\,inf}_{\mathscr{K}} l_{\pi, M}(t_i, \phi)$$

where
$$l_{\pi,M}(t_i,\phi) := \frac{1}{M} \sum_{m=1}^{M} |S_{t_i,T}(m,X^{(m)}) - \phi(X_{t_i}^{(m)})|^2$$
.

Let $\{p_1(x), \dots, p_K(x)\}$ be a basis for \mathcal{K} , $X := [p_k(X_{t_i}^{(m)})]_{m,k}$, and $y = [S_{t_i,T}(m,X^{(m)})]_m$:

$$\inf_{\mathcal{K}} l_{\pi,M}(t_i,\phi) = \inf_{\beta \in \mathbb{R}^K} \frac{1}{M} |X\beta - y|_2^2$$

✓ The right-hand side is a least-squares problem (least-squares regression): finally a tractable algorithm!

Error estimation

Assume $\phi^{\star}(x) := \mathbb{E}[S_{t_i,T}(X)|X_{t_i} = x]$ is bounded by L.

Define
$$\phi_{\mathscr{K},M}^{\star}(x) = \mathscr{T}_L(p(x)^{\top}\beta_M^{\star}).$$

$$\mathbb{E}[|\phi^{\star}(X_{t_{i}}) - \phi^{\star}_{\mathcal{K},M}(X_{t_{i}})|^{2}] \\
= \mathbb{E}[|\phi^{\star}(X_{t_{i}}) - \phi^{\star}_{\mathcal{K},M}(X_{t_{i}})|^{2} - \frac{2}{M}|\phi^{\star}(X_{t_{i}}^{(\cdot)}) - \phi^{\star}_{\mathcal{K},M}(X_{t_{i}}^{(\cdot)})|_{2}^{2}] \\
+ \mathbb{E}[\frac{2}{M}|\phi^{\star}(X_{t_{i}}^{(\cdot)}) - \phi^{\star}_{\mathcal{K},M}(X_{t_{i}}^{(\cdot)})|_{2}^{2}] \\
\leq \mathbb{E}[\sup_{\phi \in \mathcal{K}} \left(\mathbb{E}[|\phi^{\star}(X_{t_{i}}) - \mathcal{T}_{L}(\phi(X_{t_{i}}))|^{2}] - \frac{2}{M}|\phi^{\star}(X_{t_{i}}^{(\cdot)}) - \mathcal{T}_{L}(\phi(X_{t_{i}}^{(\cdot)}))|_{2}^{2} \right)_{+} \\
+ \mathbb{E}[\frac{2}{M}|\phi^{\star}(X_{t_{i}}^{(\cdot)}) - \phi^{\star}_{\mathcal{K},M}(X_{t_{i}}^{(\cdot)})|_{2}^{2}]$$

Concentration of measure

Very conservative upper bound (Gobet-T-15):

$$\mathbb{E}[\sup_{\phi \in \mathcal{K}} \left(\mathbb{E}[|\phi^{\star}(X_{t_i}) - \mathcal{T}_L(\phi(X_{t_i}))|^2] - \frac{2}{M} |\phi^{\star}(X_{t_i}^{(\cdot)}) - \mathcal{T}_L(\phi(X_{t_i}^{(\cdot)}))|_2^2 \right)_+] \\ \leq \frac{2028(K+1)\log(3M)L^2}{M}.$$

- \checkmark Converges as $M \to \infty$.
- **X** Low variance of $S_{t_i,T}(X)$ doesn't appear to improve estimates.
- Tricky, conservative estimation using Vapnik-Chervonenkis dimension.

Empirical measure part

 $\mathbb{E}[|\phi^{\star}(X_{t}^{(\cdot)}) - \phi^{\star}_{\mathscr{K}M}(X_{t}^{(\cdot)})|_{2}^{2}]$

$$\leq \mathbb{E}[|\phi^{\star}(X_{t_{i}}^{(\cdot)}) - p(X_{t_{i}}^{(\cdot)})^{\top}\beta_{M}^{\star}|_{2}^{2}]$$

$$= \underbrace{\mathbb{E}[|\phi^{\star}(X_{t_{i}}^{(\cdot)}) - p(X_{t_{i}}^{(\cdot)})^{\top}\hat{\beta}_{M}^{\star}|_{2}^{2}]}_{\leq M \inf_{\phi \in \mathcal{K}} \mathbb{E}[|\phi^{\star}(X_{t_{i}}) - \phi(X_{t_{i}})|^{2}]} + \mathbb{E}[|p(X_{t_{i}}^{(\cdot)})^{\top}(\beta_{M}^{\star} - \hat{\beta}_{M}^{\star})|_{2}^{2}]$$

where $\hat{\beta}_M^\star := \arg\inf_{\beta \in \mathbb{R}^K} |\phi^\star(X_{t_i}^{(m)}) - p(X_{t_i}^{(m)})^\top \beta|_2^2$.

Statistical error

Normal equations:

$$\beta^* \in \operatorname{arg\,inf}_{\beta \in \mathbb{R}^K} |X\beta - y|^2 \iff X^\top X \beta^* = X^\top y.$$

w.l.o.g. basis functions orthonormal in empirical norm, normal equations give

$$\begin{split} \frac{1}{M} |p(X_{t_i}^{(\cdot)})^\top (\beta_M^{\star} - \hat{\beta}_M^{\star})|_2^2 &= |\beta_M^{\star} - \hat{\beta}_M^{\star}|_2^2 \\ &= \frac{1}{M^2} \sum_{m_1, m_2 = 1}^M \sum_{k = 1}^K p_k(X_{t_i}^{(m_1)}) p_k(X_{t_i}^{(m_2)}) \\ &\quad \times (S_{t_i, T}(X^{(m_1)}) - \phi^{\star}(X_{t_i}^{(m_1)})) (S_{t_i, T}(X^{(m_2)}) - \phi^{\star}(X_{t_i}^{(m_2)})) \end{split}$$

Statistical error

Taking conditional expectations w.r.t. $\{X_{t_i}^{(m)}\}_m$ and then expectations,

$$\frac{1}{M} \mathbb{E}[|p(X_{t_i}^{(\cdot)})^{\top} (\beta_M^{\star} - \hat{\beta}_M^{\star})|_2^2] \le K \frac{\sup_x \mathbb{V}(S_{t_i,T}(X)|X_{t_i} = x)K}{M}.$$

Impact of variance is captured in this estimate, where it was not in the concentration of measure.

Special case improvement: piecewise constant basis

(Gobet-T.-16) Let
$$p_k(x) = \mathbf{1}_{H_k}(x)$$
, $\{H_k \subset \mathbb{R}^d\}_{k=1,\dots,K}$. For each $k \in \{1,\dots,K\}$, define $\operatorname{osc}_k^{(m)} := \sup_{x,y \in H_k} |\phi^{\star}(x) - \phi^{\star}(y)|$.

Define also the upper bound $\sigma^2 := \sup_{x \in \mathbb{R}^d} \mathbb{V}(Y \mid X = x)$. Then

$$\mathbb{E}[|\phi^{\star}(X_{t_{i}}) - \phi^{\star}_{\mathcal{K},M}(X_{t_{i}})|^{2}]$$

$$\leq C \sum_{k=1}^{K} [\operatorname{osc}_{k}^{(m)}]^{2} \mathbb{P}(X_{t_{i}} \in H_{k}) + CK \frac{\sigma^{2}}{M} + CL^{2}\nu(D^{c})$$

where $D := \bigcup_{k=1}^K H_k$.

Back to the BSDE approximation

$$S_{t_i,T}(X) = \Phi(X_T) + \sum_{j \geq i} f(t_j, X_{t_j}, y_{j+1}(X_{t_{j+1}}), z_j(X_{t_j})) \Delta_j$$
:

Back to the BSDE approximation

$$S^{M}_{t_{i},T}(X) = \Phi(X_{T}) + \sum_{j \geq i} f(t_{j}, X_{t_{j}}, y^{M}_{j+1}(X_{t_{j+1}}), z^{M}_{j}(X_{t_{j}})) \Delta_{j}$$
:

▶ USES

Propagation of error

$$\mathbb{E}[|\phi^{\star}(X_{t_{i}}^{(\cdot)}) - \phi_{\mathcal{K},M}^{\star}(X_{t_{i}}^{(\cdot)})|_{2}^{2}] \\
\leq \mathbb{E}[|\phi^{\star}(X_{t_{i}}^{(\cdot)}) - p(X_{t_{i}}^{(\cdot)})^{\top}\beta_{M}^{\star}|_{2}^{2}] \\
= \mathbb{E}[|\phi^{\star}(X_{t_{i}}^{(\cdot)}) - p(X_{t_{i}}^{(\cdot)})^{\top}\hat{\beta}_{M}^{\star}|_{2}^{2}] + \mathbb{E}[|p(X_{t_{i}}^{(\cdot)})^{\top}(\beta_{M}^{\star} - \hat{\beta}_{M}^{\star})|_{2}^{2}] \\
\leq M \inf_{\phi \in \mathcal{K}} \mathbb{E}[|\phi^{\star}(X_{t_{i}}) - \phi(X_{t_{i}})|^{2}] + 2\mathbb{E}[|p(X_{t_{i}}^{(\cdot)})^{\top}(\tilde{\beta}_{M}^{\star} - \hat{\beta}_{M}^{\star})|_{2}^{2}] \\
+ 2\mathbb{E}[|p(X_{t_{i}}^{(\cdot)})^{\top}(\hat{\beta}_{M}^{\star} - \beta_{M}^{\star})|_{2}^{2}]$$

where $\hat{\beta}_{M}^{\star} = \arg\inf_{\beta \in \mathbb{R}^{K}} |\mathbb{E}[S_{t_{\cdot}:T}^{M}(X^{(\cdot)})|\{X_{t_{\cdot}}^{(m)}\}_{m}] - p(X_{t_{\cdot}}^{(\cdot)})|_{2}$

Propagation of error

$$\mathbb{E}[|p(X_{t_i}^{(\cdot)})^{\top}(\tilde{\beta}_M^{\star} - \hat{\beta}_M^{\star})|_2^2] \le M\mathbb{E}[|y_i(X_{t_i}) - \mathbb{E}[S_{t_i,T}^M(X)|X_{t_i}]|^2]$$

Now, $Y_i^M := \mathbb{E}[S_{t_i,T}^M(X)|X_{t_i}]$ solves linear discrete BSDE with driver

$$f_M(t_i, X_{t_i}) := \mathbb{E}[f(t_i, X_{t_i}, y_{i+1}^M(X_{t_{i+1}}), z_i^M(X_{t_i})) | \{X^{(m)}\}_m, X_{t_i}]$$

so the term above is treated with a priori estimates for discrete BSDE.

N.B. Compare with one step scheme, where

$$\hat{S}_{t_i,T}^M(X) = y_{i+1}^M(X_{t_{i+1}}) + f(t_i, X_{t_i}, y_{i+1}^M(X_{t_{i+1}}), z_i^M(X_{t_i}))\Delta_i$$

discrete BSDE property is lost \Rightarrow large propagation of error.

✓ Similar analysis for • Malliavin weights scheme

Least-squares regression

Method of normal equations:

$$\beta^* \in \operatorname{arg\,inf}_{\beta \in \mathbb{R}^K} |X\beta - y|^2 \iff X^\top X \beta^* = X^\top y.$$

 $\beta^* = \arg\inf\{|\beta^*|_2\}$ is unique and given by $\beta^* = A^{\dagger}y$ for $A = X^{\top}X$.

Condition number: $\kappa(B) = \max \sigma_0(B)/\min \sigma_0(B)$ determines sensitivity of solving a linear problem. I.e., $|B^\dagger(y+\epsilon)-B^\dagger y|_2/|B^\dagger y|_2$.

Cost = $O(K^2M)$ to form $X^\top X = \sum_{m=1}^M p(X_{t_i}^{(m)}) p(X_{t_i}^{(m)})^\top$, can be done in parallel.

For normal equations: $\kappa(A) = \kappa(X)^2$.

Least-squares regression

Method of QR factorization: multiplication by orthogonal matrix P doesn't change length,

$$|P(X\beta - y)|_2 = |X\beta - y|_2.$$

 $\exists ! Q = [Q_1 \ Q_2]$ orthogonal and $R = \begin{bmatrix} R_1 \\ 0 \end{bmatrix}$ upper-right triangular (R_1 full rank) such that X = QR.

$$|X\beta - y|_2^2 = |QR\beta - y|_2^2 = |Q^{\top}Q R\beta - Q^{\top}y|_2^2 = |R_1\beta - Q_1^{\top}y|_2^2 + |Q_2y|_2^2$$

So
$$\beta^{\star} = R_1^{-1} Q_1^{\top} y$$
.

 $Cost = O(K^2M)$ to compute the QR factorization.

✓ Condition number: $\kappa(R_1) = \kappa(X)$, much better than for normal equations!

Choice of hypothesis space (Goodfellow et al-16)

How well does the coefficient generalize? Draw i.i.d. testing sample:

Regularization

Add "lasso" penalty $\mu |\beta|_1$ to the training loss function, unmodified testing loss:

Regularization

BSDE tricks

In high dimension, constrained by memory budget and computational time

- To conserve memory, re-simulate X trajectories at each time point
- Use variance reduction schemes
- Reduce time points by high order scheme (Chassagneux-Crisan-14).
- Use the USES sampling method to increase basis stability and leverage HPC...

Multilevel scheme (Becherer-T.-14)

$$f(t, x, y, z) = \left(\sum_{k=1}^{d} z_k\right) \left(0 \lor y \land 1 - \frac{2+d}{2d}\right), \Phi(x) = \frac{\exp(T + \sum_{k=1}^{d} x_k)}{1 + \exp(T + \sum_{k=1}^{d} x_k)}$$

Variance reduced scheme based on var

N	$MSE_{Y,max}$	$MSE_{Y,av}$	$MSE_{Z,av}$
4	0.0335796	0.0083949	0.0126556
8	0.0334017	0.00417521	0.00651092
16	0.0421584	0.0026349	0.00344173

Standard multistep forward:

N	$MSE_{Y,max}$	$MSE_{Y,av}$	$MSE_{Z,av}$
4	0.0353173	0.00882931	0.0351813
8	0.0372012	0.00465015	0.0289552
16	0.0474109	0.00296318	0.025199

Uniform Sub-Exponential Sandwiching (USES)

Stratified simulation

If X_{t_i} distribution explicit, stratified sampling possible.

Removes sources of instability:

- random sample size per cell in piecewise basis simulation
- high condition number due to poor basis selection.
- ✓ In piecewise basis, cell-by-cell simulation also reduce simulation memory budget constraint and parallel processing across cells reduces computation time.
- $m{X}$ X_{t_i} distribution is rarely explicit.

Generic method for Markov X

Function $y_i(\cdot)$ determined by transition function of X after t_i ; doesn't care about X_{t_i} law.

Simulations $\{X^{(i,m)}: m=1,\ldots,M\}$ started from an arbitrary random variable at time t_i .

Need to conserve law of $\{X^{(i)}\}_i$ to estimate propagation of error.

Sufficient condition for error estimates

For every i, $X_i^{(i)}$ sampled from density p satisfying Uniform Sub-Exponential Sandwiching (USES) property

$$\forall \lambda \in [0, \Lambda], x \in \mathbb{R}^d, \quad \frac{p(x)}{C(\Lambda)} \le \int_{\mathbb{R}^d} p(x + z\sqrt{\lambda}) \frac{e^{-\frac{|z|^2}{2}}}{(2\pi)^{d/2}} dz \le C(\Lambda) p(x),$$

 $\exists C_p > 0$ such that, for all $\phi : \mathbb{R}^d \to \mathbb{R}$ square integrable and $j \geq i$,

$$\frac{\mathbb{E}[|\phi(X_i)|^2]}{C_n} \le \mathbb{E}[|\phi(X_j)|^2] \le C_p \mathbb{E}[|\phi(X_i)|^2].$$

Suitable densities: Laplace, logistic, twisted exponential, Parato type,... (Gobet-T.-16) (Gobet-Salas-T.-Vázquez-16).

Huge advantage: easy stratified simulation.

Sufficient conditions on random initial value

For initial density $p(x) = 0.5 \times \exp(-|x|)$, density of particles is almost stationary:

Piecewise constant d=6

- 12 core CPU processor with 2.9GHz, -O3 compiler optimization.
- Nvidia GeForce GTX Titan Black 6GB memory.
- #C=(# cells) $^{1/d} = \left| 2\sqrt{N} \right|$.

Δ_t	#C	K	M	$MSE_{Y,max}$	$MSE_{Y,av}$	$MSE_{Z,av}$	CPU	GPU
0.2	4	4096	25	-2.707882	-2.784022	-0.477751	0.29	1.94
0.1	6	46656	100	-3.195937	-3.294488	-1.133834	13.72	2.44
0.05	8	262144	400	-3.505867	-3.664396	-1.795697	775.33	52.20

Piecewise affine high dimensional examples

- 12 core CPU processor with 2.9GHz, -O3 compiler optimization.
- Nvidia GeForce GTX Titan Black 6GB memory.
- #C = 2.

d	K	M	$MSE_{Y,max}$	$MSE_{Y,av}$	$MSE_{Z,av}$	CPU	GPU
15	32768	5000	-2.981181	-3.106590	-1.574532	578.88	139.60
16	65536	6000	-2.795353	-2.959375	-1.588716	1411.75	429.53
17	131072	5000	-2.772595	-2.936549	-1.371146	2580.06	793.61
18	262144	4000	-2.845755	-2.918057	-1.114600	4275.13	1589.30
19	524288	3200	-2.726427	-2.851617	-0.839849	7245.91	4370.31

Adaptive importance sampling scheme

Change of probability measure

SDE satisfies $dX_t = b_t dt + \sigma_t dW_t$, approximation scheme is

$$Y(t,x) := \mathbb{E}_t[\Phi(X_T) + \int_t^T f(s, X_s, Y_s, Z_s)ds]$$

SDE satisfies $d\tilde{X}_t = \tilde{b}_t dt + \sigma_t dW_t$, approximation scheme is

$$Y(t,x) := \mathbb{E}_t[\Phi(\tilde{X}_T)\mathcal{L}_{t_i,T}(\tilde{b}) + \int_t^T f(s,\tilde{X}_s,Y_s,Z_s)\mathcal{L}_{t,s}(\tilde{b})ds]$$

Optimal choice to minimize variance (Gobet-T.-15):

$$\tilde{b}_t = b_t + \sigma_t \frac{Z_t}{Y_t};$$

How to obtain particles $\tilde{X}_{t_i}^{(m)}$ without $\{(Y_t, Z_t) : t \leq t_i\}$?

Use stationarity of the distribution:

letting \tilde{X}_i have distribution $\lambda(dx) = \prod_{j=1}^d 0.5 \times \exp(-|x_j|) dx$, simulate paths $\{\tilde{X}_i, \tilde{X}_{i+1}, \dots, \tilde{X}_N\}$.

Defining $d\mathscr{L}_t(h) := \mathscr{L}_t(h) h_t dW_t$,

$$S(t,T) = (\mathcal{L}_t(h))^{-1} \left(Y_T \mathcal{L}_T(h) + \int_t^T f(s, Y_s, Z_s) \mathcal{L}_s(h) ds \right)$$

$$= \mathcal{Y}_t + (\mathcal{L}_t(h))^{-1} \int_t^T \mathcal{L}_s(h) [-f(s, Y_s, Z_s) ds + Z_s dW_s]$$

$$- (\mathcal{L}_t(h))^{-1} \int_t^T [\mathcal{L}_s(h) Y_s h_s dW_s^{(h)} + \mathcal{L}_s(h) Y_s h_s^\top Z_s ds]$$

$$+ (\mathcal{L}_t(h))^{-1} \int_t^T f(s, Y_s, Z_s) \mathcal{L}_s(h) ds$$

$$= Y_t + (\mathcal{L}_t(h))^{-1} \int_t^T \mathcal{L}_s(h) (Z_s - Y_s h_s) dW_s^{(h)}.$$

Choosing h=Z/Y, the \mathscr{F}_{t_i} -conditional variance of S(t,T) is zero under the changed probability.

Fully implementable scheme

Setting
$$\mathcal{L}_{i,j} = \exp\left(-\sum_{k=i+1}^{j-1} \left\{ \frac{Z_k^M(\tilde{X}_k)^\top \Delta W_k}{Y_k^M(\tilde{X}_k)} + \frac{|Z_k^M(\tilde{X}_k)|^2 \Delta_k}{2|Y_k^M(\tilde{X}_k)|^2} \right\} \right),$$

$$Y_i(\tilde{X}_i) := \mathbb{E}_i \left[\Phi(\tilde{X}_N) \mathcal{L}_{i,N} + \sum_{j=i}^{N-1} f_j(\tilde{X}_j, Y_{j+1}(\tilde{X}_{j+1})) \mathcal{L}_{i,j} \Delta_j \right]$$

$$\approx S(t_i, T)$$

 $Z_k^M(x)$ obtained without importance sampling with a Malliavin Weight's scheme:

$$Z_i(X_i) := \mathbb{E}_i[\Phi(X_N)H_N^i + \sum_{j=i+1}^{N-1} H_j^i f_j(X_j, Y_{j+1})\Delta_j)],$$

Limitations:

- No (efficient) importance sampling available for the Z component.
- Can't include Z dependence in the driver due to the propagation of non-variance reduction.

Why the approximation of Z is important

Thank You!