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Forward-Backward Stochastic Differential Equations (FBSDEs)

Plamen Turkedjiev (BP) Least-squares regression 20th July 2017 2/ 67



Continuous time framework

Definitions and relations in continuous time

(X,Y, Z) are predictable R? x R x R%valued processes

¢ ¢
X: = Xo +/ b(s, Xs)dt —|—/ o(s, Xs)dWs,
0 0
T T
Yt:<I>(XT)+/ £(5, X, Yy, Zs)ds —/ Z,dW,.
¢ ¢

Feymann-Kac relation (Pardoux-Peng-92): (Y, Z:) = (Y (¢, Xy), Z(t, X+))
where (Y (t,x), Z(t,x)) deterministic and solve Y (¢, z) = wu(t, z) and
Z(t,x) = Vu(t,z)o(t,z) for

ou(t,z) + ZL(t, x)u(t,x) = f(t,x,u, Vyuo), u(T,z)= (),

L(t,x)g(x) = (b(t,z), Vog(x)) + strace(oo ' (t,x)Hess(g)(x)).
> CE
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First steps to discrete time approximation
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First steps

Goals of numerical method

(1) approximate the stochastic process X ~ X
(2) compute approximations of Y (¢,x) and Z(t,x) minimizing the loss
function

T
U, ) = E[OiltlgT |6(t, Xo) = Y (¢, X0)[’] + ]E[/O lp(t, Xy) — Z(t, Xy)[2dt];

(3) tune the approximation algorithm to minimize the computational cost.

In this talk, we are not concerned with approximating X; we drop the
notation X hereafter.

X The loss function is not tractable and we must make an
approximation.
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Finite time grid approximation

First steps Finite time grid

Let r={0=1tp <...<t, =T} and define the loss function

Lr(@y 1) = maXE[|¢(t Xi)— Y(t,Xt)|2]+Z]E

7

o Clearly I-(-) is an approximation of I(-).

[ ot X0=2(s, X P

e The choice of 7 will affect the efficiency of the approximation.

e The regularity and boundedness of @, f, b, and o will influence the

efficiency of the approximation.
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First steps Finite time grid

Conditional expectation formulation

By taking conditional expectations in @EEEE:

T
Yi—E [<I>(XT) [ 6. X Y Zds
t

yt:| a.s.

T 2
’Q(XT) +/ f(SaX&Y:?? Zs)dS - \Ijt
t

= arg inf\pte%(t) E

where o7 (t) = La(.%#; R). Markov property: replace <7(t) by

h={:R' = R | E[v(X)?] < oo},

T
Yt = arg infw(t’.)em E ’@(XT) + / f(S, XS, YS, ZS)dS — w(t, Xt)
t

7
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First steps Finite time grid

Reformulation of the Y-part of the loss

Orthogonality of conditional expectation:

T
B[ (t, X,) - &(Xr) - / F(5, X0, Yo, Z,)ds|?]
T
=E[[y(t, X¢) — Y (¢, X)|?] + E[|Y (£, X;) — @(X7) — /t f(s,Xs,Ys, Z)ds|?]

The Y part of the loss function becomes

T
ey (t.9) = E[J(t, X)) — ®(Xp) - / f(5, X0, Y, Z0)ds]?)
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First steps Finite time grid

Z part of the loss

The optimal discrete Z is also a conditional expectation, @EEEED:

tit1
Zn(ti,x) = arginf e E[/ |p(X1,) — Z(s, Xs)|ds]
t;
1 tit1
= —IE[/ Zsds| X, = 7]
t’i—l—l - tl t;

Wy, — Ws,
:E[M (<1>(XT)—

T
f(s, X5, Y5, Zs)d3>

Xti = $:|

tit1 —t; t;
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First steps Finite time grid

Z part of the loss

As before, we use orthogonality property of the conditional expectation

Ell¢(ti, Xe,) = Zn(ti, Xt,)I’]

Wti+1 - Wti T 2
+E[‘Z7T(tivXti) - 7 ‘I)(XT) + f(saXSa Ys, Zs)ds ’ ]
Liv1 — i 4
Wy, — W, T
= E[’¢(ti7Xti) - % (CI)(XT) + /t f(87X57 Ys, Zs)ds) ’2]

= lﬂ',z (t’ia ¢) .

The discrete loss is approximated by

lTr(¢7 ¢) ~ I{lgfr( lﬂ',y(ti? ¢) + Z lW,Z(ti7 ¢) (ti+1 - ti)

tiem

X The loss function is still not tractable because of the integral.
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Equivalent continuous time representations
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Equivalent representations

One-step vs. multistep approximation

From the tower law,

T
Y(t;,z) =E [@(XT) -I—/ f(s,Xs,Ys, Zs)ds| Xy, = x]
t;
tit1
- ]E |:}/ti+1 +/ f(SaXS7YS7ZS)dS Xti = I:| N
t;
Likewise,
Wi, — W, T
Zﬂ(tivx) =E [M (q)(XT) + f(saX&Y:‘:‘?ZS)dS) Xti = :E:|
liv1 — i t;
Wi, — Wy, titt
—E| by +/ f(s, Xs,Ys, Zo)ds )| Xy, = x| .
liv1 — i t;
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Equivalent representations

Decomposition into a system
Define (i}, 2) and (Y, Z) solving respectively
T
= 0(Xr) ~ [ 2w,
t
Ve [ 56 Xt Yzt Zyds— [ Zeaw.,
t t

Observe that Y; = §, + Y; and Z, = 3, + Z,.

V' The representation is beneficial:
e The functions y(t, X;) = 9, 2(t, X¢) = 2 come from linear equation.

e The functions Y (¢, X;) = Y;, Z(t, X;) = Z; are generally smoother
than their Y (¢, x), Z(t,x) counterparts.

» ML
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Equivalent representations

Adding zero

From the conditional expectation

T
Y(ti,z) =E [‘I)(XT) + [ f(s, X5, Ys, Zs)ds| Xy, = x]
t;
T T
=E [®(X7) + f(s, Xs,Ys, Zs)ds —/ ZdWs| Xy, =
ti t;

[\ /

= Y(ti,:c)

v/ In other words, the integrand has conditional variance zero. More to
come...
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Equivalent representations

Adding zero

From the conditional expectation

Wy . . — W, T
Zﬂ'(tivx) =E [M (q)(XT) + f(saX&}/S) ZS)dS) Xti = $:|
liv1 — ti 4
-F |:Wt7l+1 - Wti
tit1 — 1
T T
« | ®(xp) + / F(s, Xy, Yo, Z,)ds — Y (ts,7) — / Zodw, | |x,, = x]
t; tit1
tit1
=Y (1, Xi) = Y(t2) 4 [ F(6 X0 Yiu Ze)ds
ti

V' The integrand has low conditional variance zero. More to come...
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Equivalent representations

Malliavin representation

Rather than computing Z(t, z), directly use the representation

T
Z(t,z) =E [D@(XT) + | Vaof(s, Xy, Ys, Zo)Di X ds

ti

Xt=$:|

T
+E |:/ ayf(SaXSaY:sz)Dthst
t

Xt=$:|

T
+ E |:/ vzf(‘S?XS?}/Sa Zs)DtstS
t

Xt:$:|

T
~E [r(t,T)Dtcb(XT)Jr/ T(t, )V f(s, Xs, Yo, Zs)De X ods
t;

with DtXT = VwXT(vat)_IO'(t, Xt) and

T(t,s) = exp ( /t S V. frdW; + /t S(ayfT - %Ivszlzdf)

Xt:l‘:|

X Valid under restricted conditions.
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Equivalent representations

Malliavin integration by parts

(Ma-Zhang-02)(T.-15) Rather than computing Z.(t,z), directly use the
representation

T
Z(t, ) =E [fI)(XT)M(t,T)+/ F(s, Xs, Yo, Zo)M (2, s)ds

Xt = x]
for random variables

M(t,s) =

/ o (1, X, ) D X dW,) "
t

s—t
X Valid under restricted conditions.

v/ Sometimes M (t, s) is available in closed form. E.g. for X, = W, or

geometric Brownian motion, M (t,s) = WS Wt.
» D3
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Continuous time approximations
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Continuous time approximations

Let ®p/(z) = (T m(2)), fu(t,z,y,2) = f(t,z, Foam(y), T3,.m(2)) and
define

T T
Var(t) = G (X7) + /t Far (£, X, Yar(s), Zaa(s)) ds — /t Zni(s)d WV,

v/ Processes (Yar, Zu) ~ (Y, Z) have better stability conditions, i.e. a
priori estimates, comparison theorems.

—  Important to approximate case of super-linear f
(Chassagneux-Richou-16) (Lionnet-dos Reis-Szpruch-15).
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Discrete time approximation
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Discrete time approximation

Discretizing the integral
Define AZ = ti—l—l — ti, AW] = Wtj+1 — Wtj: Ez[] = E[|5‘\tl]

O(Xr) + Y Bi[f(t, Xy, Yipr, Z)I1A; = Y Z;AW; = Y AL

> i =i

where L; discrete time BSDE. Kunita-Watanabe: 3!(Y, Z, L) s.t
{W;L; : i=0,...,n} is a martingale w.r.t. discrete filtration and

J=i
AW;
Tl(é(XT) + Z f(t]7XtJ7Yj+1sz)A])]

j>i+1

Z; :Ei[

Discrete time analogue of @@

v/ Markov property: Y; = y;(Xy,) and Z; = z(Xy,).
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Discrete time approximation

Discretizing the integral

The loss function is approximated by

(w ¢) ~ ItnaXlwy i, Z l~ tz;

tiem
where
lry(t,0) = Bl[0(t, Xy) = (X7) = f(ty, X1, Y1, Zy) A7)

j>i
~ AWZ' 2
lee(t,6) = ElJ(t, X0) = (@K + 3 (1 X1, Vi Z)A)P)

j>i+1

X Y;, Z;)t.ex is still not tractable because conditional expectations
i€
generally not available analytically. Loss function is still not tractable!
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Discrete time approximation

Other formulations

Y, = ®(Xr) and

AW;
Yi = EilYirs + f(ti, Xo,, Yien, Z)A)], - Zi = B Yin]:
Discrete time analogue of @EIEIEEITIEEIETIED,
Likewise,
Y = Eil®(X7) + Y f(ty, Xe;, Vi Zj) A5 — Y Z;AW)),
Jj2i Jjzi
AW;
Zi = By ——(®(X1) + D F Xy, Yy, Z)A; = Yi = Y Z;AW;)]
! jZit1 j>i

is the discrete time analogue of CEIIIIEENTIEITEED.
aD
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Discrete time approximation

Convergence result

(A1) ®(:) is Op-Holder continuous;
(A2) Lf,Cf € [0, o0) and 0r,0¢c € [0,1) s.t.
|f(t,2,0,0)| < Cy(T —t)?~", and

|21 — 22| + |y1 — y2| + |21 — 20|
(T — t;)(-00)2 7

|f(t,z1,y1,21)—f(t, 22,92, 22)| < Ly

(A3) b(t,z) and o(t, z) twice differentiable in z, 3-Holder in ¢, bounded
and bounded partial derivatives, and I > 0 s.t. zToo 2 > n|z|? .
(A4) For B € (0,1],t; =T —T(1 —1i/N)".

For B <~y Afs N0, let v =0c A (20c N Os + 01),
(Gobet-Makhlouf-10)(T.-15) show

inf (¢, ¢) < O™ 1gg 421 + O ") 1gg 1<t

Plamen Turkedjiev (BP) Least-squares regression 20th July 2017 24 / 67



Discrete time approximation

Convergence result

(A1) ®(-) is Lipschitz continuous;

(A2) f(t,z,y,z) is Lipschitz continuous in (x,y, z) with linear growth,
%—Hb’lder continuous in t;

(A3) b(t,x) and o(t,z) are Lipschitz continuous with linear growth in  and
%-H&ilder in t.

(Zhang-04) shows inf (¢, ¢) < O(n™!); (Gobet-Labart-07) show
additionally under ® € C1(R? : R) that inf (1), ¢) < O(n~2).
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Discrete time approximation

Two alternatives

Conditioning inside the driver (Pagés-Sagna-17):

Yo = @(Xp) + Y [y, Xy, By [Via), Z) A5 = Y ZAW; = Y AL

J>i j>i Jj>i

Implicit version:

Y =@(Xr) + Y [y, X0y, Y5, Z) A = Y Z;AW; = > AL

j2i Jj2i Jj2i

v/ There are many references for implicit numerical scheme,
(Chassagneux-Richou-16) prove that it tends to be more stable than
the explicit version (with modification on AW terms).
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Discrete time approximation

Picard scheme for One-step/multistep implicit schemes

One-step scheme from (Gobet-Lemor-Warin-05):

Yor1i = Ei[Yq i) + f(ts, Xy, Yain Zg0) A
AW;
Zgi1i = Bal " Yar1]

Z

Multistep scheme of (Bender-Denk-07)

Yorri = Bil®(X0) + > f(ty, Xe;, Yo, Zaj)Aj)

J=i

AW
Zq—i-lz—E[ A, § : ft]’XtJ’ ’J’ )AJ)]
j>i+1
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Discrete time approximation

High order discretization of the integral

(Chassagneux-Crisan-14) Let (Yy,, Z,,) = (®(X7), Vo @(X 7)o (T, X71)).
For j=1,...,q, and for i < n: set (Y4, Zi q) = (Yit1, Ziy1) and
q
Yij =B (Vi + A ajnf(te, Xo, Yin, Zig)]
k=j

q
Zij=Bij[HijYier + A Y AjpHif (try X, Vi Zi)]
k=j+1
Set (Y3, Zi) = (Yio, Zio)-

Given sufficient smoothness and Hérmander condition, optimal four stage
explicit scheme loss is inf (¢, ¢) < O(n~%).

Given sufficient smoothness and Hormander condition, optimal three stage
implicit scheme loss is inf I(3), ¢) < O(n~5).
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Discrete time approximation

Discrete time Malliavin weights scheme

(T.-15)(Gobet-T.-15) Recalling CIEEINTESETEIEED, discrete
approximation of the integral and Malliavin weight terms (first order
approximation):

Y;:]El (I)(XT)+Zf(t]athaY]+1aZ])Aj )
Jj=i

Zi =i |®(X0)Min+ Y flts, Xe;, Vi1, Zj) Mij A,
j>i+1

New loss function for Z:

Ir 2t ¢) = Ellg(t, Xo) — O(Xq) M — Y flts, Xe;, Yia, Z) Mij A4
j>i+1

ad
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Discrete time approximation

Convergence result

(A1) ®(-) is fp-Holder continuous;
(A2) Ly, C € [0,00) and 0,,0¢c € [0,1) s.t.
[f(t,2,0,0)] < Cp(T — 1)’ and

|21 — @2| + |y1 — ya| + |21 — 22
|f(t,3717y1,21)_f(t7$27y2;z2)| S Lf (T — ti)(l_eL)/2 5

(A3) b(t,z) and o(t,z) twice differentiable in z, 3-Hdlder in ¢, bounded
and bounded partial derivatives, and 3n > 0 s.t. x oo 'z > n|z|? .
(A4) For B € (0,1],t; =T —T(1 —1i/N)5.

For B <~y Afg ANOp, let v =00 A (200 A O +01), (T.-15) shows

inf (1), §) < O(n™ 1) 1gg 4521 + O 77 ) 1gg 44 5<1.
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Least-squares regression
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Least-squares regression

General setup

Let Sy, 7(w) = Si(w(ti),...w(t,)) be a random fuctional and define

lx(ti, 6) == El|¢(X¢,) — St 7(X)I7]
Then arginfyc o, Ir(ti; ¢)(x) = ¢*(x) := E[S:, 7(X)| X = ] .

X Generally can’t compute E[-] for a search policy.
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Least-squares regression

General setup

Estimating the measure by empirical measure,

Le(t, d) ~ e ar(t, ) - Z 6(X™) = Sy, (m, X )2
= arginf e, n(t, ) ~ arginf e, Lo ar(t, 9)

X <, infinite dimensional, not suitable for a search policy.
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Least-squares regression

General setup

Two stage approximation:

e Choosing finite dimensional hypothesis space J#" C 7.,
arginf Iz (ti, ) = arginf , I (t;, ¢);
approximation error
E[l¢" (Xe) = ¢% (X0 = inf E[|6"(Xy,) — ¢(X,) ).
because Vo €
E[| S, 7(X)=(Xe,)I*) = E[|St,7(X) =6 (Xe, ) PIHE[|6" (Xz, ) —d(Xe, )]

B The choice of hypothesis space is crucial: good space “is close to” the
solution.
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Least-squares regression

General setup

e Approximate the probability measure with the empirical measure
arg inf%ti lx(ti, ¢) = arginf , Uz pr(ti, &)

where L (£, 8) = 4 Sobi_y [Sh,r(m, X)) — 6(X[™) P2

Let {p1(x),...,pr(z)} be a basis for #, X = [p(X™)] s, and
Y= [StuT(m?X(m))]m:

. . 1 9
glgf Le v (tin @) = Blelﬂl{fK M\Xﬂ —yl3

vV The right-hand side is a least-squares problem (least-squares
regression): finally a tractable algorithm!

Plamen Turkedjiev (BP) Least-squares regression 20th July 2017 35 / 67



Least-squares regression
Error estimation

Assume ¢*(z) := E[S;, 7(X)| X;, = ] is bounded by L.

Define 6% 5,(2) = Z1(p(a) " Bp):

Ell6*(Xe) — % ar(Xe) ]

= E[[0"(X.) ~ Sy ar (X2 — 216" (X)) = &% as (X))
PR 16 (X)) — 6t (X))

< Blsup (B[0" (%) ~ O] - 716" (X))~ LK NE) |
beX n

2 } .
+ B[ 167 (X1)) = 6% (X3 B
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Least-squares regression

Concentration of measure

Very conservative upper bound (Gobet-T-15):

E[sup (EW(X%) ~ GNP~ 1t (X)) - z;w(xﬁ;)))@) )
X n
< 2028(K + 1) log(3M)L?

— M N

v Converges as M — 0.
X Low variance of St, 7(X) doesn’t appear to improve estimates.

B Tricky, conservative estimation using Vapnik-Chervonenkis dimension.
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Least-squares regression
Empirical measure part

E[l¢* (X)) — ¢ ar(X)3)
<E[¢* (X)) - p(XE) T B3 13]

= Bl¢*(X1)) — p(X) T B33 +Elp(X ) T (B3 — Bin)l3]

-~

< M¢ié1)fg]E[|¢*(Xt,-) — (X))

where Bh = arginfgepr |¢*(Xt(:n)) —p(Xt(:n))TB]%.
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Least-squares regression

Statistical error

Normal equations:
B* € arginfsepr |[XB—y|* = X' XB*=XTy.

w.l.o.g. basis functions orthonormal in empirical norm, normal equations
give
1 INT Sk V12 G |2
(X)) T (B3 = Bin = 183, — B3

1 M K
= > Yo pe(X("™)

mi,mo=1 k=1

X (i (X)) = §* (X)) (i (X)) — 6t (X(72)))
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Least-squares regression

Statistical error

Taking conditional expectations w.r.t. {Xt(im)]»m and then expectations,

SUpy V(Stz,T(X) |th = LL‘)K
M .

—E[p(X)T (81 - Bl < K

v Impact of variance is captured in this estimate, where it was not in
the concentration of measure.
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Least-squares regression

Special case improvement: piecewise constant basis

(Gobet-T.-16) Let pi(z) = 1g, (x), {Hy C Rd}k:L..,,K.
For each k € {1,..., K}, define osc,gm) 1= SUp, yep, [0 (2) — ¢*(y)l-

Define also the upper bound ¢ := sup,cpa V(Y | X = z). Then
Ell¢*(Xe,) — 65 (Xe) ]

K 2
< O lose{™*P(X,, € Hy) + CKUM+CL21/(DC)
k=1

where D := UK H.
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Least-squares regression

Back to the BSDE approximation

Sti,T(X) = (I)(XT) + ZjZi f(tj7 th7yj+1(th+1)> zj(th))Aj:
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Least-squares regression

Back to the BSDE approximation

S%T(X) = ¢(Xr) + ZjZi f(t5 th7y%-1(Xt]—+1)a Z]M(th))Aj:
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Least-squares regression
Propagation of error

E[¢* (X)) — ¢ ar(X)3)

<E[¢* (X)) = p(X) T B313)

= E[l¢* (X)) = p(X) T 3113 + Ellp(X )T (B3 — Bin)3]

<M inf E[6"(Xe) = 6(X0) ] + 2E[p(X;)) T (53 — B30I
+2E(|p(X )T (B — Bin)3]

where 3, = arginf s [E[SM(XO){X™ Y] = p(X)]2
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Least-squares regression

Propagation of error

E{lp(X) T (Bhr — i) < ME[lyi(Xe,) — B[S (01X,
Now, Y,V := E[S%T(X)|Xti] solves linear discrete BSDE with driver
Fur(tiy Xe) 1= E[f (fis X g1 (Keip), 2 (X)) {X Y0, X
so the term above is treated with a priori estimates for discrete BSDE.
N.B. Compare with @EEEEETETD, where
SMP(X) =y s (Keyy) + F (b Xe ytha (Koo )s 27 (X0) A
discrete BSDE property is lost = large propagation of error.

v’ Similar analysis for @IEEREIEETD.
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Least-squares regression

Least-squares regression

Method of normal equations:
B* € arginfgepi [ X3 — y? —= X'Xp*=X"y.
B* = arginf{|3*|2} is unique and given by 8* = Aty for A = X T X.

Condition number: x(B) = max oy(B)/ min oo (B) determines sensitivity
of solving a linear problem. l.e., |Bf(y + ¢) — Bly|a/|Biyls.

Cost = O(K2M) to form XTX = 2%21 p(Xt(?))p(Xgn))T, can be done
in parallel.

2 For normal equations: x(A) = k(X)2
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Least-squares regression

Least-squares regression

Method of QR factorization: multiplication by orthogonal matrix P doesn't
change length,

|P(XB—y)l2=|XB— 1yl

Q = [@Q1 Q2] orthogonal and R = [131] upper-right triangular (R; full
rank) such that X = QR.

X8 —yl3 = QR —yl3 = Q¥Q RA — QTyl3 = |R1S — Q[ yl3 + |Qay3
So " = R Q[y.
Cost = O(K2M) to compute the QR factorization.

v/ Condition number: x(R;) = x(X), much better than for normal
equations!
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Least-squares regression
Choice of hypothesis space
How well does the coefficient generalize? Draw i.i.d. testing sample:
Underfitting/Overfitting

—— training error
—— testing error

25 A

20 A

log Error
=
w
|

=
o
1

0.0 2.5 5.0 7.5 10.0 12,5 15.0 17.5

dDg [\
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Least-squares regression

Regularization

Add “lasso" penalty p|f3|; to the training loss function, unmodified testing

loss:
Least-squares error

0.74
—— Lasso

— LS
0.72 A

0.70 A

o o
o o
=) @™
L .

log Error

0.64 -

0.62

0.60

0 5 10 15 20 25 30

Polynomial degree
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Regularization

Least-squares regression

Coefficient error

8_
—— Lasso
— LS
6 -
.
2 4-
=
w
(=]
o
2_
O_
T T
0 5
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BSDE tricks
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In high dimension, constrained by memory budget and computational time
e To conserve memory, re-simulate X trajectories at each time point

[+ simulation ]

Use variance reduction schemes > MalliJ

Reduce time points by high order scheme (Chassagneux-Crisan-14).

If you don’t care about conserving coefficients, use the one-step

scheme to conserve coefficients @

Use the USES sampling method to increase basis stability and leverage
HPC...
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BSDE tricks

Multilevel scheme

fltyz,y,z) = (Zzzl zk> (0\/y/\ 1-— %ld) ,O(x) =

exp(T+3°5_ 1)

Variance reduced scheme based on @EEZD @FD:

| N [| MSEymax | MSEya | MSEz., |

4 ] 0.0335796 [ 0.0083949 | 0.0126556

8 || 0.0334017 | 0.00417521 | 0.00651092

16 | 0.0421584 | 0.0026349 | 0.00344173

Standard multistep forward :

| N [| MSEy,max | MSEya | MSEz., |

4 ]I 0.0353173 | 0.00882931 | 0.0351813

8 || 0.0372012 | 0.00465015 | 0.0289552

16 || 0.0474109 | 0.00296318 | 0.025199

Plamen Turkedjiev (BP)
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Uniform Sub-Exponential Sandwiching (USES)
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Stratified simulation

If X3, distribution explicit, stratified sampling possible.

Removes sources of instability:

e random sample size per cell in piecewise basis
e high condition number due to poor basis selection.
vV In piecewise basis, cell-by-cell simulation also reduce simulation

memory budget constraint and parallel processing across cells reduces
computation time.

X, distribution is rarely explicit.
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Generic method for Markov X

Function y;(-) determined by transition function of X after t;; doesn’t care
about Xy, law. @D

Simulations {X ™) : m =1,..., M} started from an arbitrary random
variable at time ¢;.

4 T

X Need to conserve law of {X®}; to estimate propagation of error.
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Sufficient condition for error estimates

For every 1, Xi(i) sampled from density p satisfying Uniform
Sub-Exponential Sandwiching (USES) property

|z|2

VA€ [0, ALz erY, 2@ S/Rd (z + 2VN)———dz < C(A)p(x),

ey

3C, > 0 such that, for all ¢ : R? — R square integrable and j > i,

El|o(X;
EIOCO < g0x,)2 < (6 ).
P
Suitable densities: Laplace, logistic, twisted exponential, Parato type,...
(Gobet-T.-16) (Gobet-Salas-T.-Vazquez-16).

Huge advantage: easy stratified simulation.
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Sufficient conditions on random initial value

For initial density p(z) = 0.5 x exp(—|z|), density of particles is almost

stationary:
1.4
time = 0.1 s
time = 0.2 w—
time = 05w
1oL time = 1.0 m— |
. time = 0.0 w—
1+ E
0.8 | B
06 i

0

L
-2 -15 -1 -0.5 0 0.5 1 15 2
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Piecewise constant d = 6

e 12 core CPU processor with 2.9GHz, —O3 compiler optimization.
e Nvidia GeForce GTX Titan Black 6GB memory.

o #O=(# cells) /4 = PWJ

[ A ] #C | K| M || MSEymax | MSEya. | MSEza., | CPU | GPU |
02 ] 4 4096 [ 25 [[ —2.707882 | —2.784022 | —0.477751 029 [ 1.94
0.1 | 6| 46656 | 100 || —3.195937 | —3.294488 | —1.133834 | 13.72 | 2.44
0.05 | 8 | 262144 | 400 || —3.505867 | —3.664396 | —1.795697 | 775.33 | 52.20
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Piecewise affine high dimensional examples

12 core CPU processor with 2.9GHz, —O3 compiler optimization.
Nvidia GeForce GTX Titan Black 6GB memory.
e #C = 2.

[ d] K| M| MSEyma | MSEya | MSEz., | CPU| GPU |
15 [ 32768 [ 5000 || —2.981181 | —3.106590 | —1.574532 | 578.88 | 139.60
16 | 65536 | 6000 || —2.795353 | —2.959375 | —1.588716 | 1411.75 | 429.53
17 [ 131072 | 5000 || —2.772595 | —2.936549 | —1.371146 | 2580.06 | 793.61
18 | 262144 | 4000 || —2.845755 | —2.918057 | —1.114600 | 4275.13 | 1589.30
19 | 524288 | 3200 || —2.726427 | —2.851617 | —0.839849 | 7245.91 | 4370.31

Plamen Turkedjiev (BP) Least-squares regression 20th July 2017 60 / 67



Adaptive importance sampling scheme
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Importance Sampling

Change of probability measure

SDE satisies dX; = bidt + o3dWy, approximation scheme is

T
Y(t,x) :=E[®(X7) —|—/t f(s, Xs,Ys, Zs)ds]
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SDE satisies dX; = bydt + o dW, approximation scheme is
~ ~ T ~ ~
Y (t,2) = Bl @(X1).Z, () + / f(s, X, Y, Z5).2, 4 (B)ds]
t
Optimal choice to minimize variance (Gobet-T.-15):
Y;

~ VA
by = by +O’t7t;
t

How to obtain particles Xt(lm) without {(Y3, Z) @ t <t;}7?
Use stationarity of the distribution:

letting X; have distribution \(dz) = H;l:l 0.5 x exp(—|x;|)dz, simulate
paths {Xi, Xit1ye-. ,XN}.

Plamen Turkedjiev (BP) Least-squares regression 20th July 2017 63 / 67



Defining d.£(h) := Z(h)hidWy,
S(t,T) =(Z(h) (YTzT / A ()d)

= %+ (L(h)! / LW~ (5, Y, Z,)ds + Z,dW,]
t

-z | LAY dW )+ L (R)Yh] Zuds
' T

n)! / F(5.Ys, Z0) Zu(h)ds
+ (L (h /z Y(Zs — Yohg)dW M.

Choosing h = Z/Y, the .%;,-conditional variance of S(¢,T) is zero under
the changed probability.
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Importance Sampling

Fully implementable scheme

. . i1 ZM (X)) T AW, |ZM (Xp)2A
Setting 2, = exp (= Tl { S50 + Ticior 1)

N-1
Yi(Xi) == Bi@(Xn)Lin + Y fi(X, Vi (X)) %54
=i

J/

-~

~ S(t;,T)

Z,?/[(a:) obtained without importance sampling with a Malliavin Weight's
scheme:
N—1
Zi(X;) = E[®(Xn)Hy + > Hif;(X;,Y;01)4)],
j=i+1
Limitations:
e No (efficient) importance sampling available for the Z component.
e Can't include Z dependence in the driver due to the propagation of

non-variance reduction.
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Importance Sampling

Why the approximation of Z is important

MWDP —— MWDP ——
SemiPerfect ISMDP —— MCISMDP ——
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Thank You!
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