Multilevel and Multi-index Monte Carlo methods for the McKean-Vlasov equation

Abdul-Lateef Haji-Ali* Raúl Tempone†

*Mathematical Institute, University of Oxford, United Kingdom

†King Abdullah University of Science and Technology (KAUST), Saudi Arabia.

CEMRACS, Luminy, France July 21, 2017

Particle Systems in the Mean-field

- Particle systems are a collection of coupled, usually identical and simple, models that can be used to model complicated phenomena.
 - Molecular dynamics, Crowd simulation, Oscillators, . . .
- Certain stochastic particles systems have a mean-field limit when the number of particles increase. Such limits can be useful to understand their complicated phenomena.

Main reference

This presentation is based on the manuscript

• "Multilevel and Multi-index Monte Carlo methods for the McKean-Vlasov equation" by A. L. Haji Ali and R. Tempone. arXiv:1610.09934, 2016. To appear in Statistics and Computing.

A McKean-Vlasov process is a stochastic process described by a SDE whose coefficients depend on the distribution of the solution itself. They relate to the Vlasov model for plasma evolution and were first studied by Henry McKean in 1966. For $0 < t \le T$ the process X(t) solves

$$dX(t) = a(X(t), \mu(t))dW(t) + b(X(t), \mu(t))dt,$$

 $\mu(t) = \mathcal{L}(X(t))$

and $\mu(0)$ given. **Goal:** approximate E[g(X(T))] for some given g.

Convergence to the mean-field

For particles $X_{p|P}$, $p=1,\ldots,P$, (evolving in a system of size P) define "shadow" particles $X_{p|\infty}$, (evolving in a system of ∞ size)

$$\begin{split} X_{p|P}(t) &= x_p^0 + \int_0^t \left(a(X_{p|P}(t)) + \frac{1}{P} \sum_{q=1}^P A(X_{p|P}(t), X_{q|P}(t)) \right) \mathrm{d}t \\ &+ \sigma W_p(t) \\ X_{p|\infty}(t) &= x_p^0 + \int_0^t \left(a(X_{p|\infty}(t)) + \int A(X_{p|\infty}(t), y) \mu_\infty(t) (\mathrm{d}y) \right) \mathrm{d}t \\ &+ \sigma W_p(t), \end{split}$$

with $\mu_{\infty}(t)$ the marginal distribution for $X_{p|\infty}(t)$ for any p.

Consistency: The initial values x_p^0 , $p=1,\ldots,P$, are i.i.d. from $\mu_{\infty}(0)$.

For t > 0, and all x, the pdf of the marginal distribution $\mu_{\infty}(t)$ of the infinite size system satisfies a nonlinear Fokker Planck equation

$$\partial_t \rho_{\infty}(t, x) + div \left(\rho_{\infty}(t, x)(a(x) + \rho_{\infty}(t, \cdot) * A(x, \cdot))\right)$$

$$= \sum_i \frac{\sigma_i^2}{2} \partial_i^2 \rho_{\infty}(t, x)$$

with a given initial condition $\rho_{\infty}(0,\cdot)$ and suitable b.c.

Question: What about the rate of weak convergence?

$$\mathrm{E}\left[g(X_{p|P}(T))-g(X_{p|\infty}(T))\right]\lesssim\ldots$$

Kuramoto oscillator model †

For $p=1,2,\ldots,P$ consider equally coupled oscillators with intrinsic natural frequencies ϑ_p that follow a system of Itô SDEs

$$\mathrm{d}X_{p|P}(t) = \left(\vartheta_p + rac{1}{P}\sum_{q=1}^P \sin(X_{p|P}(t) - X_{q|P}(t))
ight)\mathrm{d}t + \sigma\mathrm{d}W_{p|P}(t)$$
 $X_{p|P}(0) = X_{p|P}^0$

where we are interested in

Total order =
$$\left(\frac{1}{P}\sum_{p=1}^{P}\cos\left(X_{p|P}(T)\right)\right)^{2} + \left(\frac{1}{P}\sum_{p=1}^{P}\sin\left(X_{p|P}(T)\right)\right)^{2};$$

a real number between zero and one that measures the level of synchronization of the coupled oscillators.

[†]Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, Springer, Berlin, 1984.

Kuramoto oscillator model †

For $p=1,2,\ldots,P$ consider equally coupled oscillators with intrinsic natural frequencies ϑ_p that follow a system of Itô SDEs

$$\mathrm{d}X_{p|P}(t) = \left(artheta_p + rac{1}{P}\sum_{q=1}^P \sin(X_{p|P}(t) - X_{q|P}(t))
ight)\mathrm{d}t + \sigma\mathrm{d}W_{p|P}(t)$$
 $X_{p|P}(0) = X_{p|P}^0$

$$\phi_P = \frac{1}{P} \sum_{i=1}^{P} \cos \left(X_{p|P}(T) \right),$$

Mean-field limit: $\phi_P \to \phi_\infty = \mathrm{E}\left[\cos(X_{\rho|\infty(T)})\right]$ as $P \uparrow \infty$

$$\mathrm{d}X_{\rho|\infty} = \left(\vartheta_{\rho} + \int_{\mathbb{D}} \sin(X_{\rho|\infty}(t) - y) \mu_{\infty}(t, \mathrm{d}y)\right) \mathrm{d}t + \sigma \mathrm{d}W_{\rho|P}(t)$$

 $^{^{\}dagger}$ Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, Springer, Berlin, 1984.

Simple Example

Kuramoto oscillator model †, Euler-Maruyama

For $p=1,2,\ldots,P$ consider equally coupled oscillators with intrinsic natural frequencies ϑ_p that follow a system of Itô SDEs

$$X_{p|P}^{n|N} - X_{p|P}^{n-1|N} = \left(\vartheta_P + \frac{1}{P} \sum_{q=1}^{P} \sin(X_{p|P}^{n|N} - X_{q|P}^{n|N})\right) \frac{T}{N} + \sigma \Delta W_{p|P}^{n|N}$$
$$X_{p|P}^{0|N} = X_{p|P}^{0}$$

where we are interested in:

$$\phi_P^N = \frac{1}{P} \sum_{p=1}^P \cos\left(X_{p|P}^{N|N}\right),\,$$

Mean-field limit: $\phi_P \to \phi_\infty = \mathrm{E} \left[\cos(X_{\rho \mid \infty(T)}) \right]$ as $P \uparrow \infty$

$$\mathrm{d}X_{p|\infty} = \left(\vartheta_p + \int_{\mathbb{D}} \sin(X_{p|\infty}(t) - y) \mu_\infty(t, \mathrm{d}y)\right) \mathrm{d}t + \sigma \mathrm{d}W_{p|P}(t)$$

[†]Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, Springer, Berlin, 1984.

Objective

Our objective is to build an estimator $\mathcal{A} \approx \phi_{\infty}$ with minimal work where

$$P(|\mathcal{A} - \phi_{\infty}| \leq \text{TOL}) \geq 1 - \epsilon$$

for a given accuracy TOL and a given confidence level determined by 0 $<\epsilon\ll$ 1.

Objective

Our objective is to build an estimator $\mathcal{A} \approx \phi_{\infty}$ with minimal work where

$$P(|\mathcal{A} - \phi_{\infty}| \leq \text{TOL}) \geq 1 - \epsilon$$

for a given accuracy TOL and a given confidence level determined by $0<\epsilon\ll 1$. We instead impose the following, more restrictive, two constraints:

Bias constraint: $|E[A] - \phi_{\infty}| \leq TOL/3$,

Statistical constraint: $P(|A - E[A]| \ge 2TOL/3)$

Objective

Our objective is to build an estimator $\mathcal{A} \approx \phi_{\infty}$ with minimal work where

$$P(|\mathcal{A} - \phi_{\infty}| \leq \text{TOL}) \geq 1 - \epsilon$$

for a given accuracy TOL and a given confidence level determined by $0<\epsilon\ll 1$. We instead impose the following, more restrictive, two constraints:

Bias constraint: $|E[A] - \phi_{\infty}| \leq TOL/3$,

Variance constraint: $Var[A] \leq (2TOL/3C_{\epsilon})^2$.

assuming (at least asymptotic ^a) normality of the estimator, \mathcal{A} . Here, $0 < C_{\epsilon}$ is such that $\Phi(C_{\epsilon}) = 1 - \frac{\epsilon}{2}$, where Φ is the c.d.f. of a standard normal random variable.

 $^{^{}a}$ N. Collier, A.-L. Haji-Ali, E. von Schwerin, F. Nobile, and R. Tempone. "A continuation multilevel Monte Carlo algorithm". BIT Numerical Mathematics, 55(2):399-432, (2015).

Monte Carlo

The simplest (and most popular) estimator is the Monte Carlo estimator

$$\mathcal{A}_{\mathsf{MC}} = rac{1}{M} \sum_{m=1}^{M} \phi_P^N(\omega_P^m).$$

For a given P, N and M that we can choose to satisfy the error constraints and minimize the work. Here $\omega_P^m = \left(\omega_p^m\right)_{p=1}^P$ and for each particle, ω_p^m denotes the independent, identically distributed (i.i.d.) samples of the set of underlying random variables that are used in calculating $X_{p|P}^{N|N}$, $1 \leq p \leq P$.

Monte Carlo work complexity

In our 1D example, we can check (at least numerically) that

Minimize total work: $Work(A_{MC})$,

such that:
$$\operatorname{Bias}(\mathcal{A}_{MC}) = \left| \phi_{\infty} - \operatorname{E} \left[\phi_{P}^{N} \right] \right| \leq \frac{\operatorname{TOL}}{3}$$

and:
$$\operatorname{Var}[\mathcal{A}_{\mathsf{MC}}] = \frac{\operatorname{Var}\left[\phi_P^N\right]}{M} \le \left(\frac{2\mathrm{TOL}}{3C_\epsilon}\right)^2$$

Monte Carlo work complexity

In our 1D example, we can check (at least numerically) that

Minimize total work: Work(\mathcal{A}_{MC}) = $\mathcal{O}(MNP^2)$

such that:
$$\operatorname{Bias}(\mathcal{A}_{MC}) = \mathcal{O}(N^{-1}) + \mathcal{O}(P^{-1}) \leq \frac{\operatorname{TOL}}{3}$$

and:
$$\operatorname{Var}[\mathcal{A}_{MC}] = \frac{\mathcal{O}(P^{-1})}{M} \le \left(\frac{2\operatorname{TOL}}{3C_{\epsilon}}\right)^{2}$$

Monte Carlo work complexity

In our 1D example, we can check (at least numerically) that

Minimize total work: Work(\mathcal{A}_{MC}) = $\mathcal{O}(MNP^2)$

such that:
$$\operatorname{Bias}(\mathcal{A}_{MC}) = \mathcal{O}(N^{-1}) + \mathcal{O}(P^{-1}) \leq \frac{\operatorname{TOL}}{3}$$

and:
$$\operatorname{Var}[\mathcal{A}_{MC}] = \frac{\mathcal{O}(P^{-1})}{M} \le \left(\frac{2\operatorname{TOL}}{3C_{\epsilon}}\right)^{2}$$

In this case, we choose

$$P = \mathcal{O}(\mathrm{TOL}^{-1}), \quad N = \mathcal{O}(\mathrm{TOL}^{-1}), \quad M = \mathcal{O}(\mathrm{TOL}^{-1})$$

and the total cost of a naive Monte Carlo is $\mathcal{O}(\mathrm{TOL}^{-4})$.

Observe: The cost of a "single cloud" naive method with M=1 is $\mathcal{O}\left(\mathrm{TOL}^{-5}\right)$

Following (Heinrich, 2001) and (Giles, 2008), For a given $L \in \mathbb{N}$, define two hierarchies $\{N_\ell\}_{\ell=1}^L$ and $\{P_\ell\}_{\ell=1}^L$ satisfying $P_{\ell-1} \leq P_\ell$ and $N_{\ell-1} \leq N_\ell$ for all ℓ .

Recall the telescopic decomposition

$$\phi_{\infty} pprox \mathrm{E}\left[\phi_{P_{L}}^{N_{L}}\right] = \mathrm{E}\left[\phi_{P_{0}}^{N_{0}}\right] + \sum_{\ell=1}^{L} \mathrm{E}\left[\phi_{P_{\ell}}^{N_{\ell}} - \varphi_{P_{\ell-1}}^{N_{\ell-1}}\right]$$

Following (Heinrich, 2001) and (Giles, 2008), For a given $L \in \mathbb{N}$, define two hierarchies $\{N_\ell\}_{\ell=1}^L$ and $\{P_\ell\}_{\ell=1}^L$ satisfying $P_{\ell-1} \leq P_\ell$ and $N_{\ell-1} \leq N_\ell$ for all ℓ .

Recall the telescopic decomposition

$$\phi_{\infty} \approx \mathrm{E}\left[\phi_{P_L}^{N_L}\right] = \mathrm{E}\left[\phi_{P_0}^{N_0}\right] + \sum_{\ell=1}^L \mathrm{E}\left[\phi_{P_\ell}^{N_\ell} - \varphi_{P_{\ell-1}}^{N_{\ell-1}}\right] = \sum_{\ell=0}^L \mathrm{E}[\Delta_\ell \phi].$$

$$\text{where}\quad \Delta_{\ell}\phi = \begin{cases} \phi_{P_0}^{\textit{N}_0} & \text{if } \ell = 0,\\ \phi_{P_{\ell}}^{\textit{N}_{\ell}} - \varphi_{P_{\ell-1}}^{\textit{N}_{\ell-1}} & \text{if } \ell > 0. \end{cases}$$

Here, we assume that the auxiliary estimator φ satisfies

$$\mathrm{E}\left[\varphi_{P_{\ell-1}}^{N_{\ell-1}}\right] = \mathrm{E}\left[\phi_{P_{\ell-1}}^{N_{\ell-1}}\right]$$

Then, using Monte Carlo to approximate each level independently, the MLMC estimator can be written as

$$\mathcal{A}_{\mathsf{MLMC}} = \sum_{\ell=0}^L rac{1}{M_\ell} \sum_{m=1}^{M_\ell} \Delta_\ell \phi(\omega_{P_\ell}^{\ell,m}).$$

where M_{ℓ} is optimally chosen. High correlation is crucial (between the pairs $(N_{\ell}, N_{\ell-1})$? $(P_{\ell}, P_{\ell-1})$?) to ensure that

$$Var[\Delta_{\ell}\phi]$$

goes to zero sufficiently fast.

Variance reduction

Recall:

$$ext{Var}[\mathcal{A}_{MC}] = rac{1}{M_L} ext{Var}[S_L].$$

$$ext{Var}[\mathcal{A}_{MLMC}] = rac{1}{M_0} ext{Var}[S_0] + \sum_{\ell=1}^L rac{1}{M_\ell} ext{Var}[\Delta_\ell S].$$

Main point: MLMC reduces the variance of the deepest level using samples on coarser (less expensive) levels!

Recall: MLMC optimal work complexity ‡ §

Bias: $|E[\Delta_{\ell}S]| = \mathcal{O}(\exp(-w\ell)),$

Variance: $\operatorname{Var}[\Delta_{\ell}S] = \mathcal{O}(\exp(-s\ell)),$

Work: Work[$\Delta_{\ell}S$] = $\mathcal{O}(\exp(\gamma \ell))$.

 $^{^{\}ddagger}$ Cliffe, K.A. and Giles, M.B. and Scheichl, R. and Teckentrup, A. Computing and Visualization in Science, "Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients" (2011).

[§]Giles, Acta Numerica 2015.

Recall: MLMC optimal work complexity ‡ §

Bias:
$$|E[\Delta_{\ell}S]| = \mathcal{O}(\exp(-w\ell)),$$

Variance:
$$\operatorname{Var}[\Delta_{\ell}S] = \mathcal{O}(\exp(-s\ell)),$$

Work: Work[$\Delta_{\ell}S$] = $\mathcal{O}(\exp(\gamma \ell))$.

The optimal work of MLMC is

$$\begin{cases} \mathcal{O}\left(\mathrm{TOL}^{-2}\right) & s > \gamma \\ \mathcal{O}\left(\mathrm{TOL}^{-2}\right)\left(\log\left(\mathrm{TOL}^{-1}\right)\right)^{2} & s = \gamma \\ \mathcal{O}\left(\mathrm{TOL}^{-2-\frac{\gamma-s}{w}}\right) & s < \gamma \end{cases}$$

Recall the total cost of Monte Carlo is

$$\mathcal{O}\left(\mathrm{TOL}^{-2-\frac{\gamma}{w}}\right)$$

 $^{^\}ddagger$ Cliffe, K.A. and Giles, M.B. and Scheichl, R. and Teckentrup, A. Computing and Visualization in Science, "Multilevel Monte Carlo methods and applications to elliptic PDEs with random coefficients" (2011).

[§]Giles, Acta Numerica 2015.

- In the following, we look at different settings in which either P_{ℓ} or N_{ℓ} depends on ℓ while the other parameter is constant for all ℓ .
- We begin by recalling the optimal convergence rates of MLMC when applied to a generic real valued random variable, Y, for the case when there are two discretization parameters:
 - ℓ , that is a function of the level,
 - \bullet \mathcal{L} , that is fixed for all levels.

Multilevel Monte Carlo (MLMC) – Introduction

Corollary (Optimal MLMC complexity)

Let $Y_{\mathcal{L},\ell}$ be an approximation of Y for every $(\mathcal{L},\ell) \in \mathbb{N}^2$. Consider the MI MC estimator

$$\mathcal{A}_{\mathsf{MLMC}}(L,\mathcal{L}) = \sum_{\ell=0}^{L} rac{1}{M_{\ell}} \sum_{m=1}^{M_{\ell}} (Y_{\mathcal{L},\ell} - Y_{\mathcal{L},\ell-1})$$

with $Y_{\mathcal{L},-1}=0$ and assume the following

- 1. $\left| \mathrm{E} \left[Y Y_{\mathcal{L},\ell} \right] \right| \lesssim \exp(-\widetilde{w}\mathcal{L}) + \exp(-w\ell)$
- $2. \ \operatorname{Var} \big[Y_{\mathcal{L},\ell} Y_{\mathcal{L},\ell-1} \big] \lesssim \exp(-\widetilde{c}\mathcal{L}) \exp(-s\ell)$
- 3. $WY_{\mathcal{L},\ell} Y_{\mathcal{L},\ell-1} \lesssim \exp(\widetilde{\gamma}\mathcal{L}) \exp(\gamma\ell)$.

The optimal work of MLMC in this setting is

$$W(\mathcal{A}_{\mathsf{MLMC}}) \lesssim \begin{cases} \mathrm{TOL}^{-(2-\widetilde{c})-\frac{\widetilde{\gamma}}{\widetilde{w}}} & \text{if } s > \gamma, \\ \mathrm{TOL}^{-(2-\widetilde{c})-\frac{\widetilde{\gamma}}{\widetilde{w}}} \log \left(\mathrm{TOL}^{-1}\right)^2 & \text{if } s = \gamma, \\ \mathrm{TOL}^{-(2-\widetilde{c})-\frac{\widetilde{\gamma}}{\widetilde{w}}-\frac{\gamma-s}{w}} & \text{if } s < \gamma. \end{cases}$$

- $P_{\ell} = P_L$ and $N_{\ell} = 2^{\ell}$.
- Build correlated samples by using the same Brownian paths discretized with different meshes 2^ℓ and $2^{\ell-1}$ (Recall that we are using Euler-Maruyama discretization).

$$\varphi_{P_L}^{N_{\ell-1}}(\boldsymbol{\omega}_{P_L}^{\ell,m}) = \phi_{P_L}^{N_{\ell-1}}(\boldsymbol{\omega}_{P_L}^{\ell,m})$$

•
$$P_\ell = P_L$$
 and $N_\ell = 2^\ell$.

Bias, w = 1, s = 2

• $P_{\ell} = P_L$ and $N_{\ell} = 2^{\ell}$.

- $P_{\ell} = P_L$ and $N_{\ell} = 2^{\ell}$.
- **Summary:** $w = 1, s = 2, \gamma = 1$
- Fixing P_L , the optimal work of biased MLMC is $\mathcal{O}\left(\mathrm{TOL}^{-2}\right)$.

- $P_{\ell} = P_L$ and $N_{\ell} = 2^{\ell}$.
- **Summary:** $w = 1, s = 2, \gamma = 1$
- Fixing P_L , the optimal work of biased MLMC is $\mathcal{O}\left(\mathrm{TOL}^{-2}\right)$.
- To control bias $\mathcal{O}\left(P_L^{-1}\right)$, choose $P_L = \mathcal{O}\left(\mathrm{TOL}^{-1}\right)$
 - Cost per sample: $\mathcal{O}\left(P_L^2N_\ell\right)$
 - Variance: $\mathcal{O}\left(P_L^{-1}N_\ell^{-1}\right)$
 - Summary: $\hat{w} = 1, \hat{c} = 1, \hat{\gamma} = 2$

then the total cost becomes

$$\mathcal{O}\left(\mathrm{TOL}^{-3}\right) = \mathcal{O}\left(\mathrm{TOL}^{-(2-\tilde{c})-\frac{\tilde{\gamma}}{\tilde{w}}}\right).$$

- \bullet $P_{\ell}=2^{\ell}$ and $N_{\ell}=N_{L}$.
- Build correlated samples by sampling 2^{ℓ} and sub-sampling $2^{\ell-1}$ particles out of them (e.g. the first $2^{\ell-1}$). Use the same initial conditions, Brownian paths or any other random variables associated to a particle.

$$\varphi_{P_{\ell-1}}^{N_L}(\boldsymbol{\omega}_{P_{\ell}}^{\ell,m}) = \phi_{P_{\ell-1}}^{N_L} \left(\left(\omega_p^{\ell,m} \right)_{p=1}^{P_{\ell-1}} \right)$$

• $P_{\ell}=2^{\ell}$ and $N_{\ell}=N_{L}$.

$$s = w = 1$$

• $P_\ell = 2^\ell$ and $N_\ell = N_L$.

- $P_{\ell}=2^{\ell}$ and $N_{\ell}=N_{L}$.
- **Summary:** $w = 1, s = 1, \gamma = 2$
- Fixing N_L , the optimal work of biased MLMC is $\mathcal{O}\left(\mathrm{TOL}^{-3}\right)$.

- $P_{\ell}=2^{\ell}$ and $N_{\ell}=N_{L}$.
- **Summary:** $w = 1, s = 1, \gamma = 2$
- Fixing N_L , the optimal work of biased MLMC is $\mathcal{O}\left(\mathrm{TOL}^{-3}\right)$.
- ullet To control bias $\mathcal{O}\left(N_L^{-1}
 ight)$, choose $N_L=\mathcal{O}\left(\mathrm{TOL}^{-1}
 ight)$
 - Cost per sample: $\mathcal{O}(N_L P_\ell)$
 - Variance: $\mathcal{O}\left(P_{\ell}^{-1}\right)$
 - Summary: $\tilde{w}=1, \tilde{c}=0, \tilde{\gamma}=1$

then the total cost becomes

$$\mathcal{O}\left(\mathrm{TOL}^{-4}\right) = \mathcal{O}\left(\mathrm{TOL}^{-\left(2 + \frac{\gamma - s}{w}\right) - \frac{\tilde{\gamma}}{\tilde{w}}}\right).$$

 No advantage of MLMC over MC? Need a more correlated estimator! └ Multilevel Monte Carlo (MLMC) - In number of particles

Summary

Method	Work complexity
Monte Carlo	$\mathcal{O}\left(\mathrm{TOL}^{-4}\right)$
MLMC in N	$\mathcal{O}\left(\mathrm{TOL^{-3}}\right)$
MLMC in P	$\mathcal{O}\left(\mathrm{TOL^{-4}}\right)$

Reducing the variance w.r.t P; partitioning sampler

- The crucial element is how fast $Var[\Delta \phi_{\ell}]$ goes to zero compared to how much it costs to compute $\Delta \phi_{\ell}$.
- Better choice of $\varphi(\cdot)$ to reduce $Var[\Delta_{\ell}\phi]$.

Reducing the variance w.r.t *P*; partitioning sampler

- The crucial element is how fast $\mathrm{Var}[\Delta\phi_\ell]$ goes to zero compared to how much it costs to compute $\Delta\phi_\ell$.
- Better choice of $\varphi(\cdot)$ to reduce $Var[\Delta_{\ell}\phi]$.
- If $P_{\ell-1} = P_{\ell}/2$, then given a group of P_{ℓ} particles, we can subsample *two identically-distributed*, *independent groups* that have $P_{\ell-1}$ particles and average the QoI

$$\varphi_{P_{\ell-1}}^{\textit{N}_{\textit{L}}}(\boldsymbol{\omega}_{P_{\ell}}^{\ell,m}) = \frac{1}{2} \left(\phi_{P_{\ell-1}}^{\textit{N}_{\textit{L}}} \left(\left(\omega_{\textit{p}}^{\ell,m} \right)_{\textit{p}=1}^{P_{\ell-1}} \right) + \phi_{P_{\ell-1}}^{\textit{N}_{\textit{L}}} \left(\left(\omega_{\textit{p}}^{\ell,m} \right)_{\textit{p}=1+P_{\ell-1}}^{P_{\ell}} \right) \right)$$

- $P_{\ell} = 2^{\ell}$ and $N_{\ell} = N_{I}$.
- Build correlated samples by sampling 2^ℓ and sub-sampling two identically-distributed, independent groups of $2^{\ell-1}$ particles out of them. Use the same initial conditions, Brownian paths or any other random variables associated to a particle.

$$\varphi_{P_{\ell-1}}^{N_L}(\omega_{P_{\ell}}^{\ell,m}) = \frac{1}{2} \left(\phi_{P_{\ell-1}}^{N_L} \left(\left(\omega_p^{\ell,m} \right)_{p=1}^{P_{\ell-1}} \right) + \phi_{P_{\ell-1}}^{N_L} \left(\left(\omega_p^{\ell,m} \right)_{p=1+P_{\ell-1}}^{P_{\ell}} \right) \right)$$

• $P_{\ell} = 2^{\ell}$ and $N_{\ell} = N_{L}$.

Bias, w = 1, s = 2

• $P_{\ell} = 2^{\ell}$ and $N_{\ell} = N_{L}$.

- $P_{\ell} = 2^{\ell}$ and $N_{\ell} = N_{I}$.
- **Summary:** $w = 1, s = 2, \gamma = 2$
- Fixing N_L , the optimal work of biased MLMC is $\mathcal{O}(\mathrm{TOL}^{-3})$.

- $P_{\ell} = 2^{\ell}$ and $N_{\ell} = N_{L}$.
- **Summary:** $w = 1, s = 2, \gamma = 2$
- Fixing N_L , the optimal work of biased MLMC is $\mathcal{O}\left(\mathrm{TOL}^{-3}\right)$.
- To control bias $\mathcal{O}\left(N_L^{-1}\right)$, choose $N_L = \mathcal{O}\left(\mathrm{TOL}^{-1}\right)$
 - Cost per sample: $\mathcal{O}(N_L P_\ell)$
 - Variance: $\mathcal{O}\left(P_{\ell}^{-1}\right)$
 - Summary: $\tilde{w}=1, \tilde{c}=0, \tilde{\gamma}=1$

then the total cost becomes

$$\mathcal{O}\left(\mathrm{TOL}^{-3}\left(\log\mathrm{TOL}\right)^{2}\right) = \mathcal{O}\left(\mathrm{TOL}^{-2-\frac{\tilde{\gamma}}{\tilde{w}}}\log\left(\mathrm{TOL}^{-1}\right)^{2}\right).$$

• Can we do better?

Summary

Work complexity
$\mathcal{O}\left(\mathrm{TOL}^{-4}\right)$
$\mathcal{O}\left(\mathrm{TOL}^{-3}\right)$
$\mathcal{O}(\mathrm{TOL}^{-4})$
$\mathcal{O}\left(\mathrm{TOL}^{-3}\log(\mathrm{TOL}^{-1})^2\right)$

- $P_{\ell}=2^{\ell}$ and $N_{\ell}=2^{\ell}$.
- Build correlated samples by
 - Sampling 2^ℓ and sub-sampling two identically-distributed, independent groups of $2^{\ell-1}$ particles out of them. Use the same initial conditions, Brownian paths or any other random variables associated to a particle
 - At the same time, by using the same Brownian paths discretized with different meshes 2^{ℓ} and $2^{\ell-1}$.

$$\varphi_{P_{\ell-1}}^{N_{\ell-1}}(\omega_{P_{\ell}}^{\ell,m}) = \frac{1}{2} \left(\phi_{P_{\ell-1}}^{N_{\ell-1}} \left(\left(\omega_{p}^{\ell,m} \right)_{p=1}^{P_{\ell-1}} \right) + \phi_{P_{\ell-1}}^{N_{\ell-1}} \left(\left(\omega_{p}^{\ell,m} \right)_{p=1+P_{\ell-1}}^{P_{\ell}} \right) \right)$$

• $P_{\ell}=2^{\ell}$ and $N_{\ell}=2^{\ell}$.

$$w = 1, s = 2$$

• $P_{\ell}=2^{\ell}$ and $N_{\ell}=2^{\ell}$.

- $P_{\ell} = 2^{\ell}$ and $N_{\ell} = 2^{\ell}$.
- **Summary:** $w = 1, s = 2, \gamma = 3$
- The optimal work of asymptotically unbiased MLMC is

$$\mathcal{O}\left(\mathrm{TOL}^{-3}\right) = \mathcal{O}\left(\mathrm{TOL}^{-\left(2 + \frac{\gamma - s}{w}\right)}\right).$$

• The number of particles is not helping. Can we do better?

Summary

Method	Work complexity
Monte Carlo	
MLMC in N	$\mathcal{O}\left(\mathrm{TOL^{-3}}\right)$
MLMC in P	$\mathcal{O}\left(\mathrm{TOL}^{-4}\right)$
MLMC in P , partitioning	$\mathcal{O}\left(\mathrm{TOL}^{-3}\mathrm{log}(\mathrm{TOL}^{-1})^2\right)$
MLMC in P and N	$\mathcal{O}\left(\mathrm{TOL}^{-4}\right)$
MLMC in P and N , partitioning	$\mathcal{O}\left(\mathrm{TOL^{-3}}\right)$

Variance reduction: MLMC

Variance reduction: Further potential

MIMC Estimator¶

For $\alpha=(\alpha_1,\alpha_2)\in\mathbb{N}^2$, let $P_{\alpha_1}=2^{\alpha_1}$ and $N_{\alpha_2}=2^{\alpha_2}$. Define the first order mixed difference

$$\begin{split} & \boldsymbol{\Delta}_{\boldsymbol{\alpha}} \phi = \boldsymbol{\Delta}_{1,\boldsymbol{\alpha}} (\boldsymbol{\Delta}_{2,\boldsymbol{\alpha}} \phi) \\ & = (\phi_{P_{\alpha_1}}^{N_{\alpha_2}} - \phi_{P_{\alpha_1}}^{N_{\alpha_2-1}}) - (\varphi_{P_{\alpha_1}-1}^{N_{\alpha_2}} - \varphi_{P_{\alpha_1}-1}^{N_{\alpha_2-1}}). \end{split}$$

[¶]A.-L. Haji-Ali, F. Nobile, and R. Tempone. "Multi-Index Monte Carlo: When Sparsity Meets Sampling". Numerische Mathematik, 1-40, (2015)

MIMC Estimator¶

For $\alpha=(\alpha_1,\alpha_2)\in\mathbb{N}^2$, let $P_{\alpha_1}=2^{\alpha_1}$ and $N_{\alpha_2}=2^{\alpha_2}$. Define the first order mixed difference

$$\begin{split} \mathbf{\Delta}_{\alpha}\phi &= \Delta_{1,\alpha}(\Delta_{2,\alpha}\phi) \\ &= (\phi_{P_{\alpha_1}}^{N_{\alpha_2}} - \phi_{P_{\alpha_1}}^{N_{\alpha_2-1}}) - (\varphi_{P_{\alpha_1}-1}^{N_{\alpha_2}} - \varphi_{P_{\alpha_1}-1}^{N_{\alpha_2-1}}). \end{split}$$

Then the MIMC estimator can be written as

$$\mathcal{A}_{\mathsf{MIMC}} = \sum_{\alpha \in \mathcal{I}} \frac{1}{M_{\alpha}} \sum_{m=1}^{M_{\alpha}} \mathbf{\Delta}_{\alpha} \phi(\omega_{\alpha,m})$$

for some *properly chosen* index set $\mathcal{I} \subset \mathbb{N}^2$ and optimal number of samples M_{α} for every $\alpha \in \mathcal{I}$.

 $[\]P$ A.-L. Haji-Ali, F. Nobile, and R. Tempone. "Multi-Index Monte Carlo: When Sparsity Meets Sampling". Numerische Mathematik, 1-40, (2015)

MIMC optimal work complexity

Bias: $|E[\Delta_{\alpha}\phi]| = \mathcal{O}(\exp(-w_1\alpha_1 - w_2\alpha_2)),$

Variance: $\operatorname{Var}[\Delta_{\alpha}\phi] = \mathcal{O}(\exp(-s_1\alpha_1 - s_2\alpha_2)),$

Work: Work[$\Delta_{\alpha}\phi$] = $\mathcal{O}(\exp(\gamma_1\alpha_1 + \gamma_2\alpha_2))$.

MIMC optimal work complexity

Bias:
$$|E[\Delta_{\alpha}\phi]| = \mathcal{O}(\exp(-w_1\alpha_1 - w_2\alpha_2)),$$

Variance:
$$\operatorname{Var}[\Delta_{\alpha}\phi] = \mathcal{O}(\exp(-s_1\alpha_1 - s_2\alpha_2)),$$

Work: Work[
$$\Delta_{\alpha}\phi$$
] = $\mathcal{O}(\exp(\gamma_1\alpha_1 + \gamma_2\alpha_2))$.

The optimal set ${\mathcal I}$

$$\mathcal{I}(L) = \left\{ (\alpha_1, \alpha_2) \in \mathbb{N}^2 : \\ (2w_1 + \gamma_1 - s_1) \alpha_1 + (2w_2 + \gamma_2 - s_2) \alpha_2 \le L \right\}$$

MIMC optimal work complexity

Bias:
$$|E[\Delta_{\alpha}\phi]| = \mathcal{O}(\exp(-w_1\alpha_1 - w_2\alpha_2)),$$

Variance:
$$Var[\Delta_{\alpha}\phi] = \mathcal{O}(\exp(-s_1\alpha_1 - s_2\alpha_2)),$$

Work: Work
$$[\Delta_{\alpha}\phi] = \mathcal{O}\left(\exp(\gamma_1\alpha_1 + \gamma_2\alpha_2)\right)$$
.

The optimal set ${\mathcal I}$

$$\mathcal{I}(L) = \left\{ (\alpha_1, \alpha_2) \in \mathbb{N}^2 : (2w_1 + \gamma_1 - s_1) \alpha_1 + (2w_2 + \gamma_2 - s_2) \alpha_2 \le L \right\}$$

Letting $\zeta = \max\left(\frac{\gamma_1 - s_1}{2w_1}, \frac{\gamma_2 - s_2}{2w_2}\right)$, then the optimal work of MIMC is

$$\mathcal{O}\left(\mathrm{TOL}^{-2(1+\mathsf{max}(0,\zeta))}\log\left(\mathrm{TOL}^{-1}\right)^{\mathfrak{p}}\right)$$

for $\mathfrak{p} > 0$.

Optimal choice of \mathcal{I} : Total degree set

- Let $P_{\alpha_1}=2^{\alpha_1}$ and $N_{\alpha_2}=2^{\alpha_2}$.
- Build correlated samples by
 - Sampling 2^{α_1} and sub-sampling two identically-distributed, independent groups of 2^{α_1-1} particles out of them.
 - At the same time, by using the same Brownian paths discretized with different meshes 2^{α_2} and 2^{α_2-1} .
 - Use MIMC levels: Mixed differences!

$$w_1, w_2 = 1, s_1 = s_2 = 2$$

Notice higher rates for mixed difference.

• Let $P_{\alpha_1}=2^{\alpha_1}$ and $N_{\alpha_2}=2^{\alpha_2}$.

$$\gamma_1 = 2, \gamma_2 = 1$$

- Let $P_{\alpha_1}=2^{\alpha_1}$ and $N_{\alpha_2}=2^{\alpha_2}$.
- Summary:

$$\begin{cases} w_1 = w_2 = 1 \\ s_1 = s_2 = 2 \\ \gamma_1 = 2\gamma_2 = 2 \end{cases} \Longrightarrow \zeta = \max\left(\frac{\gamma_1 - s_1}{2w_1}, \frac{\gamma_2 - s_2}{2w_2}\right) = 0$$

The optimal set

$$\mathcal{I}(L) = \left\{ (\alpha_1, \alpha_2) \in \mathbb{N}^2 : 2\alpha_1 + 3\alpha_2 \le L \right\}$$

The optimal work of the asymptotically unbiased MIMC is

$$\mathcal{O}\left(\mathrm{TOL^{-2}\log\left(\mathrm{TOL^{-1}}\right)^{2}}\right)$$

Summary

Method	Work complexity
Monte Carlo	$\mathcal{O}\left(\mathrm{TOL}^{-4}\right)$
MLMC in N	$\mathcal{O}\left(\mathrm{TOL^{-3}}\right)$
MLMC in P	
MLMC in P , partitioning	$\mathcal{O}\left(\mathrm{TOL^{-3} log}(\mathrm{TOL^{-1}})^2\right)$
MLMC in P and N	$\mathcal{O}\left(\mathrm{TOL^{-4}}\right)$
MLMC in P and N , partitioning	$\mathcal{O}\left(\mathrm{TOL^{-3}}\right)$
MIMC	$\mathcal{O}\left(\mathrm{TOL^{-2}\log\left(\mathrm{TOL^{-1}}\right)^{2}}\right)$

$$X_{p|P}^{n|N} - X_{p|P}^{n-1|N} = \left(\vartheta_p + \frac{0.4}{P} \sum_{q=1}^{P} \sin(X_{p|P}^{n|N} - X_{q|P}^{n|N})\right) \frac{T}{N} + 0.4\Delta W_{p|P}^{n|N}$$
$$X_{p|P}^{0|N} \sim \mathcal{N}(0, 0.2)$$

where $\vartheta_p \sim \mathcal{U}(-0.2, 0.2)$. The quantity of interest is

$$\phi_P^N = \frac{1}{P} \sum_{p=1}^P \cos\left(X_{p|P}^{N|N}\right).$$

Conclusions

- MLMC applied to particle systems in the mean-field limit is not trivial since the variance of the quantity of interest depends on the number of particles, P.
- The partitioning estimator achieves much better L² convergence rate w.r.t. P.
- Considerable computational saving by using MIMC, from TOL⁻⁴ to TOL⁻² log²(TOL).
- Other applications: higher dimension particle systems (e.g. crowd flow).
- MLMC and MIMC Theory: working on estimates on mixed differences.