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Particle Systems in the Mean-field

@ Particle systems are a collection of coupled, usually identical
and simple, models that can be used to model complicated
phenomena.

e Molecular dynamics, Crowd simulation, Oscillators, ...
@ Certain stochastic particles systems have a mean-field limit

when the number of particles increase. Such limits can be
useful to understand their complicated phenomena.
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Main reference

This presentation is based on the manuscript

e "Multilevel and Multi-index Monte Carlo methods for the
McKean-Vlasov equation” by A. L. Haji Ali and R. Tempone.
arXiv:1610.09934, 2016. To appear in Statistics and Computing.

A McKean-Vlasov process is a stochastic process described by a
SDE whose coefficients depend on the distribution of the solution
itself. They relate to the Vlasov model for plasma evolution and
were first studied by Henry McKean in 1966. For 0 < t < T the
process X(t) solves

dX () =a(X(£), u(t))dW(t) + b(X(2), (1),
p(t) =L£(X(t))
and 1(0) given. Goal: approximate E[g(X(T))] for some given g.
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For particles X, p, p=1

KAUST
= PECEE]
define "shadow” particles

X

t
o) =g+ [ a

+ UWP( )

P, (evolving in a system of size P)
loo» (evolving in a system of oo size)

plP

P ZA p|P q|P( )) dt

oet) =8+ [ (2000 + [ A0 ) (0)00))
+ o Wp(t),

with 11 (t) the marginal distribution for X (t) for any p
Consistency: The initial values x), p=1
f150(0).

P, are i.i.d. from
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For t > 0, and all x, the pdf of the marginal distribution pi(t) of
the infinite size system satisfies a nonlinear Fokker Planck equation

Ot poo(t, X)+div (poo(t, x)(a(X) + poo(t, ) ¥ A(x, -)))
0?2
= Z jagpm(tax)

with a given initial condition ps (0, -) and suitable b.c.

Question: What about the rate of weak convergence?

E[g(Xpp(T)) = 8(Xpioo(T)] S -
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Forp=1,2,

P consider equally coupled oscillators with intrinsic
natural frequencies 9, that follow a system of 1t6 SDEs

dX,p(t) = ( Zsm( — Xqp(t ))) dt + od W, p(t)
Xpip(0) = xp/p

where we are interested in

1P 2 P
Total order = (P ; cos (X,p(T) ) (

2
E : Xolp(T ) ;
a real number between zero and one that measures the level of
synchronization of the coupled oscillators

TY Kuramoto, Chemical Oscillations, Waves, and Turbulence, Springer, Berlin, 1984
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Kuramoto oscillator model 7

For p=1,2,..., P consider equally coupled oscillators with intrinsic
natural frequencies 9, that follow a system of 1t6 SDEs

P
dXyp(t) = (19,, + % > sin(Xpp(t) — Xq|p(t))> dt + odWpp(t)
qg=1

Xpip(0) = xp/p

P
1
where we are interested in: op =5 > cos (X, p(T))
p=1
Mean-field limit: ¢p — ¢oo = E [cos(Xpjoo(T))] as P71 oo

dXpjo0 = (ﬁp + /Rsin(Xmoo(t) - y)uoc(tydy)) dt + ad W, p(t)

TY. Kuramoto, Chemical Oscillations, Waves, and Turbulence, Springer, Berlin, 1984.
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Kuramoto oscillator model T, Euler-Maruyama

For p=1,2,..., P consider equally coupled oscillators with intrinsic
natural frequencies ¥, that follow a system of 1t6 SDEs

Xn|N . Xn—l\N .

1< T
. n|N n|N
olP P = (19P+PZsm(X — X" ))
q=1

n|N
plP alP’ | N +UAWP\P
XO\N: 0

p|P pIP

P
1
. . N _ N|N

where we are interested in: ¢p = 5 Zcos (XP|P ) ,

p=1

Mean-field limit: ¢p — ¢oo = E [cos(Xp|Oo(T))} as P7Too
dXpe0 = <z9,, + / sin(Xpjoo(t) — ¥ )1oo(t, dy)) dt + odW,p(t)
R

TY. Kuramoto, Chemical Oscillations, Waves, and Turbulence, Springer, Berlin, 1984.
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Our objective is to build an estimator A = ¢o, with minimal work
where

P(IA — ¢oo| < TOL) >1—¢

for a given accuracy TOL and a given confidence level determined
by 0 < e 1.
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Our objective is to build an estimator A = ¢o, with minimal work
where

P(IA — ¢oo| < TOL) >1—¢

for a given accuracy TOL and a given confidence level determined
by 0 < e < 1. We instead impose the following, more restrictive,
two constraints:

Bias constraint:

[B[A] - 60| < TOL/3,
Statistical constraint:

P (JA - E[A]| > 2TOL/3)
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Objective
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Our objective is to build an estimator A = ¢o, with minimal work
where

P(IA — ¢oo| < TOL) >1—¢

for a given accuracy TOL and a given confidence level determined
by 0 < e < 1. We instead impose the following, more restrictive,
two constraints:

Bias constraint: |E[A] — ¢o| < TOL/3,
Variance constraint: Var[A] < (2TOL/3C.)?.
assuming (at least asymptotic ?) normality of the estimator, .A.

Here, 0 < C is such that ®(C.) =1 — 5, where ® is the c.d.f. of a
standard normal random variable.

°N. Collier, A.-L. Haji-Ali, E. von Schwerin, F. Nobile, and R. Tempone. “A continuation
multilevel Monte Carlo algorithm”. BIT Numerical Mathematics, 55(2):399-432, (2015).
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Monte Carlo

The simplest (and most popular) estimator is the Monte Carlo
estimator

1 M
N¢, .m
Amc = MmE_l ¢P(wp).

For a given P, N and M that we can choose to satisfy the error

constraints and minimize the work. Here wf = (w,’}’) le and for
each particle, wy' denotes the independent, identically distributed
(i.i.d.) samples of the set of underlying random variables that are

used in calculating Xf:\III"N’ 1<p<P.
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Monte Carlo work complexity
In our 1D example, we can check (at least numerically) that
Minimize total work: Work(Amc),
TOL
such that: Bias(Amc) = ’gzboo -E [gﬁg} ‘ < =3

N 2
and:  Var[Auc] = VarA[jP] < (2§?L>
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Monte Carlo work complexity
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In our 1D example, we can check (at least numerically) that

Minimize total work: Work(Awc) = O (MNP?)
such that:  Bias(Auc) = O (N} +O (P71 <
and:

) TOL
3
o (Pt
Var[Amc] = ( ) < L

2TOL\ 2
M =\ 3C
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Monte Carlo work complexity
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In our 1D example, we can check (at least numerically) that

Minimize total work: Work(Awc) = O (MNP?)
such that:

Bias(Auc) = O (N71) + O (P71) <
and:

) TOL
3
o (Pt
Var[Amc] = ( ) < L

2TOL\?
] <
In this case, we choose

3C,
P =0 (TOL™),

N=0(TOL™?"), M=0(TOL ')
and the total cost of a naive Monte Carlo is O (TOL_4).

Observe: The cost of a “single cloud” naive method with M =1
is O (TOL™)
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Following (Heinrich, 2001) and (Giles, 2008), For a given L € N,
define two hierarchies {Ng}ézl and {Pg}lf:1 satisfying Py_1 < P,
and Ny_1 < N, for all £.

Recall the telescopic decomposition

L

oo = B[oft] = Bofft] + 3B [on - o]

(=1
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Following (Heinrich, 2001) and (Giles, 2008), For a given L € N,
define two hierarchies {Ng}ézl and {Pg}lf:1 satisfying Py_1 < P,
and Ny_1 < N, for all £.

Recall the telescopic decomposition

L L
Ny_
b ~E|0pt]| = B[R] + DB |0} —¢p ] = Y ElAwl,
=1 (=0
PN if £ =0,
where  Ayp = { % N
Opt —pp, . ifL>0.

Here, we assume that the auxiliary estimator ¢ satisfies
Ne—1| _ Ng—q
efotc] - e[t
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Then, using Monte Carlo to approximate each level independently,
the MLMC estimator can be written as

AmLmc = Z Z Ago( wpz

where Mj is optimally chosen. High correlation is crucial
(between the pairs (Np, Ny_1)? (Pg, Pi—1)?) to ensure that

Var[A¢]

goes to zero sufficiently fast.
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Recall:
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Var[Amc] = chu [SL]-

Var[Amimc] =

L
1 1
—Var|§ —i—g —Var|[A,S
Mo [So] M, [£e3]

Main point: MLMC reduces the variance of the deepest level
using samples on coarser (less expensive) levels!

\/
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Recall: MLMC optimal work complexity *
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Bias: |E[A¢S]] = O (exp(—w)),
Variance:  Var[AS] = O (exp(—st)),
Work:

Work[A;S] = O (exp(+¥)).

random coefficients” (2011).

iCIiffe, K.A. and Giles, M.B. and Scheichl, R. and Teckentrup, A. Computing and
Visualization in Science, “Multilevel Monte Carlo methods and applications to elliptic PDEs with

§Giles, Acta Numerica 2015.
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Bias: |E[A¢S]] = O (exp(—w)),
Variance:  Var[AS] = O (exp(—st)),

Work: Work[A;S] = O (exp(7¥))

The optimal work of MLMC is

O (TOL™?)

O (TOL?) (log (TOL1))? z = Z

O (TOL*2JZS>

s <7
Recall the total cost of Monte Carlo is

O (TOL*%%)

iCIiffe, K.A. and Giles, M.B. and Scheichl, R. and Teckentrup, A. Computing and
random coefficients” (2011).

Visualization in Science, “Multilevel Monte Carlo methods and applications to elliptic PDEs with
§Giles, Acta Numerica 2015.
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@ In the following, we look at different settings in which either

Py or Ny depends on £ while the other parameter is constant
for all /.

@ We begin by recalling the optimal convergence rates of
MLMC when applied to a generic real valued random variable,
Y, for the case when there are two discretization parameters:

e /, that is a function of the level,
o [, that is fixed for all levels.
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Corollary (Optimal MLMC complexity)

Let Yy ¢ be an approximation of Y for every (£,() € N?. Consider
the MLMC estimator

L M,
1
Amimc(L, L) = § I § (Yee— Yoi-1)
=0 —1

with Y, _1 = 0 and assume the following
1. !E [Y — Y ‘ < exp(—wL) + exp(—w¥)
2. Var[YL,g — YLyg_l} < exp(—cL) exp(—s¥)
3. WY — Y1 S exp(74) exp(74).

The optimal work of MLMC in this setting is

TOL-(2-9-3 ifs >,
W(Ammc) S { TOL-C-9% log (TOL™1)? ifs = 4,
TOL-(2-9-3-57° ifs <.
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MLMC in number of time-steps, N
4 Pg = P[_ and Ng = 26.
@ Build correlated samples by using the same Brownian paths
discretized with different meshes 2¢ and 2/~! (Recall that we

are using Euler-Maruyama discretization).

Ne_1, &, Ne—i, £,
ep, (wp") = ¢p, (W)
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MLMC in number of time-steps, N

4 Pg: P[_ and NgZQZ.

1 Expectation _a Variance

10 T T T T T T T T 10 O O Y T — VS S Y

L e A e

10'L 1
o
 Nip—
‘?1\1 o
0 (27
02

Bias, w =1,s =2
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MLMC in number of time-steps, N

4 Pg: P[_ and NgZQZ.

107! ‘ — — ‘ ‘

1072}

10734

Seconds

T 107t

10-6
0
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MLMC in number of time-steps, N

4 Pg: P[_ and NgZQZ.

e Summary: w=1,5s=2~v=1
e Fixing Py, the optimal work of biased MLMC is O (TOL_Q).
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MLMC in number of time-steps, N

4 Pg: P[_ and Ng:2€.

e Summary: w=1,5s=2~v=1
e Fixing Py, the optimal work of biased MLMC is O (TOL_Q).

@ To control bias O (PL_I), choose PL = O (TOLfl)
o Cost per sample: O (PZN,)
° VaHance:C)(P[lAQJ)
e Summary: w=1,¢=15=2
then the total cost becomes

O (TOL™) = 0 (TOL- 94 ),
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MLMC in number of particles, P
4 Pg = 2£ and Ng = NL.
@ Build correlated samples by sampling 2¢ and sub-sampling
2¢=1 particles out of them (e.g. the first 2¢71). Use the same

initial conditions, Brownian paths or any other random
variables associated to a particle.

Pe_1
N ‘
SDPE 1( ) PZL 1 <<wp m) p=1 )
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MLMC in number of particles,

4 Pg:2£ and Ng: NL.

()
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P

1 Expectation _a Variance
10 T T T T T T T T 10 O S P P YO— S N N
100 & o o & & & o
88— 00660 &

4Ne
ry

o —om
OF = Ph.
o)
0 (27%)
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MLMC in number of particles, P

4 Pg:2€ and Ng: NL.

10° T T T T — r T
107!
102 ; v
o —on !
= No _ =No
1 oo —
§ 104 Py ¥YPy
B 0(2")
10 o)
O <2:5F)
107°
10—4?
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MLMC in number of particles, P
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4 Pg:2£ and Ng: NL.

@ Summary: w=1,s=1vy=2
e Fixing N, the optimal work of biased MLMC is O (TOL_3).
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MLMC in number of particles, P
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4 Pg:2£ and Ng: NL.

@ Summary: w=1,s=1vy=2
e Fixing N, the optimal work of biased MLMC is O (TOL_3).
@ To control bias O (NL_I), choose N; = O (TOLfl)

o Cost per sample: O (N Py)

o Variance: O (P;!)

e Summary: w=1,=0,=1

then the total cost becomes
O (TOL™) = 0 (TOL 1),

@ No advantage of MLMC over MC? Need a more correlated
estimator!
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Method ‘ Work complexity

KAUST

Monte Carlo | O (TOL™*)
MLMC in N | O (TOL™?)
MLMC in P | O (TOL™*)
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Reducing the variance w.r.t P; partitioning sampler

@ The crucial element is how fast Var[A¢y] goes to zero
compared to how much it costs to compute Agy.

@ Better choice of ¢(+) to reduce Var[A,q].
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Reducing the variance w.r.t P; partitioning sampler

@ The crucial element is how fast Var[A¢y] goes to zero
compared to how much it costs to compute Agy.
@ Better choice of ¢(-) to reduce Var[A,¢].

e If P,_1 = P;/2, then given a group of P, particles, we can
subsample two identically-distributed, independent groups
that have P;_; particles and average the Qol

SOPL, 1(wf>[m) = ((bPe 1 (( )PL] 1) + ¢P@ 1 (( ),F:il+Pz,1))
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MLMC in number of particles P, with partitioning samplers

(@

4 Pg:2£ and Ng: NL.

o Build correlated samples by sampling 2¢ and sub-sampling two
identically-distributed, independent groups of 2¢~1 particles
out of them. Use the same initial conditions, Brownian paths
or any other random variables associated to a particle.

wﬁ;l(wﬁf’) = (¢P2 1 (( )PZ 1) + ¢Pe 1 (( ),I:Z:lJer,l))
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MLMC in number of particles P, with partitioning samplers

(0

((

4 Pg:2£ and Ng: NL.

1 Expectation _a Variance
10 T T T T T T T T 10 S S FS— S————
100 & & o O & & & &
—6—6—8 066 &

N

10} 1 2
N
o
N Ny
bpy — Op
+ No —=No
Op —Pr.,
N SN
o -,
027
o (27%)

Bias, w =1,s =2
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MLMC in number of particles P, with partitioning samplers

G

4 Pg:2€ and Ng: NL.

100

10°1

1072

10731

Seconds

10741
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MLMC in number of particles P, with partitioning samplers

(.

4 Pg:2€ and Ng: NL.

e Summary: w=1s5s=2y=2
e Fixing N, the optimal work of biased MLMC is O (TOL_3).
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MLMC in number of particles P, with partitioning samplers
] Pg = 2£ and Ng = NL.

e Summary: w=1,5s=2y=2
e Fixing N, the optimal work of biased MLMC is O (TOL_3).

@ To control bias O (NL_I), choose N; = O (TOLfl)
o Cost per sample: O (N Py)
o Variance: O (P;!)
e Summary: w=1,=0,=1

then the total cost becomes
O (TOL_3 (log TOL)z) = 0 (TOL™2"% log (TOL™1)?).

@ Can we do better?
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Summary

Method ‘ Work complexity

Monte Carlo | O (TOL™*)
MLMC in N | O (TOL™3)
MLMC in P | O (TOL™*)
MLMC in P, partitioning | O (TOL™3log(TOL™*)?)
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MLMC in P and N, with partitioning samplers
] Pg = 2£ and Ng = 2E.

@ Build correlated samples by

e Sampling 2¢ and sub-sampling two identically-distributed,
independent groups of 2! particles out of them. Use the
same initial conditions, Brownian paths or any other random
variables associated to a particle

o At the same time, by using the same Brownian paths
discretized with different meshes 2¢ and 2¢71.

om (i) = 5 (o8 (i) +ome (@ )
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MLMC in P and N, with partitioning samplers

] Pg:2£ and Ng:2g.

1 Expectation _a Variance
10 T T T T T T T T 10 O O S PO — —
100 & & o O & & & &
—6—6—8 066 &

oN

)
Vo

Pp,

JNe _ 41
P~
o

oy~ B

o - ol
027
o2
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MLMC in P and N, with partitioning samplers

] Pg:2€ and Ngzzz.

100

Seconds
-
<

H
9

10702
0
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MLMC in P and N, with partitioning samplers
4 Pg = 2€ and Ng = 26.

@ Summary: w=1s5s=2y=3
@ The optimal work of asymptotically unbiased MLMC is

O (TOL™) = 0 (TOL 27},

@ The number of particles is not helping. Can we do better?
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Summary
Method | Work complexity
Monte Carlo | O (TOL™*)
MLMC in N | O (TOL™3)
MLMC in P TOL™)

MLMC in P, partitioning
MLMC in P and N
MLMC in P and N, partitioning
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Variance reduction: MLMC
P
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¢
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Variance reduction: Further potential

P
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MIMC Estimator!

G

KAUST
For a = (a1, a) € N?, let Py,

= 2% and N,, = 2?2, Define the
first order mixed difference
a?b = A1 a(A2 a(b)
Na a ch (X
(¢pa12 — ¢p 12 ) - (90pa12_1 —¥p. )

a;—1

qTA L. Haji-Ali, F. Nobile, and R. Tempone. “Multi-Index Monte Carlo: When Sparsity Meets
Sampling”. Numerische Mathematik, 1-40, (2015)
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MIMC Estimator!

For a = (a1, az) € N2, let Py, = 2% and N, = 2°2. Define the

first order mixed difference

AaQb = A1 a(A2 a(b)

N, a N [
(¢Pa12_¢’ 27— (pp.2 _80P21)

[e%1 ag—1 a;—1

Then the MIMC estimator can be written as

Amimc = Z Z Ao d(Wa,m)

acl a

for some properly chosen index set 7 C N? and optimal number of

samples M, for every ¢ € 7.

qTA.—L. Haji-Ali, F. Nobile, and R. Tempone. “Multi-Index Monte Carlo: When Sparsity Meets

Sampling”. Numerische Mathematik, 1-40, (2015)

G
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MIMC optimal work complexity

O

KAUST
Bias: |E[Aq9]| = O (exp(—wra1 — waar)),
Variance:  Var[Ay,¢] = O (exp(—sia1 — s2a2)),
Work: Work[Aq¢] = O (exp(y101 + Y2002)).

26/34



Monte Carlo Methods for McKean-Vlasov [Haji-Ali, Tempone]
LMulti-lndex Monte Carlo - General Framework

MIMC optimal work complexity

G

KAUST
Bias:

[E[Aad]| = O (exp(—wia1 — waaz)),
Variance:

Var[Aq¢] = O (exp(—si01 — s2a2)),
Work: Work[Aq¢] = O (exp(y101 + Y2002)).
The optimal set 7

(L) = {(al,az) eN? .

2wr +v1 —s1)ar + 2w + 72 — )an < L}
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MIMC optimal work complexity

< KAUST
Bias: |E[Aq9]| = O (exp(—wia1 — waarp))
Variance:  Var[An¢] = O (exp(—sia1 — s2a2))
Work: Work[Aq¢]
The optimal set 7

(exp(y101 + Y2012))

(L) = {(al,az) eN? .

Y1—S1 72—S2
2W1

Cwi +71 —s1) a1 + (2we + 92 — )an < L}
Letting ¢ = max ( T

) then the optimal work of MIMC is
O (TOL20m(00) jog (TOL )"
forp > 0.
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Optimal choice of Z: Total degree set

Oi Zs(L)={aeN? : § - a <L}

0)
0)
0)
0)
0)
()
:
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(0

MIMC, with partitioning samplers

o Let Py, =2° and N,, = 2°2.

@ Build correlated samples by

e Sampling 2%t and sub-sampling two identically-distributed,
independent groups of 2*1~ particles out of them.

o At the same time, by using the same Brownian paths discretized
with different meshes 222 and 29271,

o Use MIMC levels: Mixed differences!
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MIMC, with partitioning samplers
— _ o
o Let Py, =29 and N,, = 22,
100 Expectation Variance
—3 P
10! ] 1
102} ]y 1
103 1 107] )
104 —\ 4 1079 *=
L | iI II e
1074 1 101 | o=
- X o g
1075 F— |
107 ] o-ti
105} ] |
10790 1 1077 1
10-10 . L . . . S 10-19 . . L _ . ¥
0 6 9 12 15 18 21 24 0 3 6 9 12 15 18 21 24

w1, W = 1,51 = S =2
Notice higher rates for mixed difference.
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(0

¢

> KAUST

MIMC, with partitioning samplers

o Let Py, =2° and N,, = 2°2.

; Time
10? - >
10!
10°
1071 GO a=(i0)
*% a=(0,i)
1072 +— a=(ii)
- g
1073 2
231
1074
10-°
1(J’(’ n n L L
0 5 10 15 20 25

Mm=2,7=1
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MIMC, with partitioning samplers

O

KAUST

o Let Py, =2° and N,, = 2°2.

e Summary:

W1:W2:1

S1 :52:2 :>§:max (712_ 517’722_52> =0
w- 1%
N =27=2 ! 2

@ The optimal set

(L) = {(al,ag) eN? : 207 +3ap < L}

@ The optimal work of the asymptotically unbiased MIMC is

O (TOL2l0g (TOL™)?)
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Q\\z: KAUST
Summary
Method | Work complexity
Monte Carlo | O (TOL* )
MLMC in N | O (TOL™3)
MLMC in P | O (TOL"™ )
MLMC in P, partitioning | O (TOL™3log(TOL™)?)
MLMC in P and N | O (TOL™ 4)
MLMC in P and N, partitioning | O (TOL )
MIMC | O (TOL"2log (TOL™1)?)
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Numerical Example: MIMC vs. MLMC

()

KAUST

N n—1|N
X”| - X _
pIP pIP

n|N n\N n|N
¥ +7E Sln p|P_ CI|P) N+04AW|P
X3l ~ N(0,0.2)

where ¥, ~ U(—0.2,0.2). The quantity of interest is

Z COs ( N‘N>

p|P
for T =1.
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Numerical Example: MIMC vs. MLMC
for T=1.
107! :
-- TOL
10-2| x* s MIMC
ooo MLMC
1073} Lok i 1 g :
- H o . *
, ilee -
— “4 * *
. 1074} ' 81 g : ° . ]
S g o F R 4 4 *
&5 i ! ¥ * x . *
105 - LR BN * ® 1
e 4 *
//’ ' l § S S * ° *
- *
1076k~ : * o, k¥ * |
* ' * * ® ® *
* -2
* o
1077 1
o
-2
10—8 L L L L
1076 107 104 1073 1072 107!
TOL
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Numerical Example: MIMC vs. MLMC
for T=1.

101

) ,
=7
=]

KAUST

TOL2log(TOL™)?
TOL ™
MIMC
MLMC

1010

109}

T

108}

107}

106}

Work Estimate

10°F

104}

10°F

1072 1074 1073 1072 1071
TOL
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Numerical Example: MIMC vs. MLMC
for T =1.
10° . . .
- - TOL *log(TOL™1)?
1041 -- TOL™® |
= MIMC
¢—¢ MLMC
103}
T 107 1
»
é 101 [ 4
=
100} 4
1071 .
2 . . )
10 107° 1074 1073 1072 107!
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Conclusions

@ MLMC applied to particle systems in the mean-field limit is
not trivial since the variance of the quantity of interest
depends on the number of particles, P.

@ The partitioning estimator achieves much better L2
convergence rate w.r.t. P.

@ Considerable computational saving by using MIMC, from
TOL™* to TOL 2log?(TOL).

@ Other applications: higher dimension particle systems (e.g.
crowd flow).

@ MLMC and MIMC Theory: working on estimates on mixed
differences.
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