Bandits in Auctions (& more)

Vianney Perchet joint work with P. Rigollet (MIT) and J. Weed (MIT) CEMRACS 2017 July 20 2017

CMLA, ENS Paris-Saclay & Criteo Research

Motivations & Objectives

Classical Examples of Bandits Problems

- Size of data: *n* patients with some proba of getting cured
- Choose one of two treatments to prescribe

- Patients cured ♡or dead 😪

Inference: Find the best treatment between the red and blue
 Cumul: Save as many patients as possible

Classical Examples of Bandits Problems

- Size of data: *n* banners with some proba of click
- Choose one of two ads to display

- Banner clicked or ignored

Inference: Find the best ad between the red and blue
 Cumul: Get as many clicks as possible

Ad slot sold by lemonde.fr. **2nd-price auctions**

- Several (marketing) companies places bids
- Highest bid wins (...), say criteo, pays to lemonde 2nd bid (...)
- criteo chooses ad of a client, Microsoft or Cdiscount or Booking
- · criteo gets paid by the client if the user clicks on the ad

Main Problem: Repeated auctions with unknown private valuation Learn valuations, find which ad to display & good strategies

				Inter
1plust	02.0	Active Colsective	0	Ψ.
33Across	ed a	Activé Odsactivé	0	×.
4W MARKETPLACE SRL		O Activé C Désectivé	0	Ψ.
Accordant Necla	22.0	Active Obsective	0	¥.
Apriom	edia	Advé Odskové	0	×.
ad4mat	ed a	O Activé C Désectivé	0	
ADARA		Activé Odsectivé	0	×
Adbrain LTD	ed a	O Activé 🔿 Désectivé	0	Ŧ
AddThis (formerly Clearspring)	92 0	O Active Coleactive	0	¥.
ADEX	20 0	Activé Odésectivé	0	×
Adform	ed a	O Activé 🔿 Désactivé	0	¥.
ADITION	22 0	Active Colsective	0	×.
AdLantic		Activé Odésectivé	0	Ψ.
Admedo		O Activé C Désectivé	0	
Adobe	22 0	O Activé C Désectivé	0	×
AdRol	ed a	O ALTIVÉ C DÉSALTIVÉ	0	Ŧ
AdServerPub		O Active Coleactive	0	Ψ.
Aditation	22 0	Activé Odsactivé	0	Υ.
Adux	ed a	O Activé 🔿 Désactivé	0	¥.
Mectv	edia	O Activé ⊖ Désectivé	0	
ffliost	69.0	Active Oblastive	0	
AggrogateKnowledge	22.9	O Activé ⊖ Désectivé	0	
Amazon Ad System		O Activé ⊖ Désectivé	0	*
VOL.	65.0	Active Oblastive	0	*
Viles Solutions, LLC		■Activé ○Désectivé	0	*
VudienceScience	edaa	O Activé ⊖ Désectivé	0	*
lannerConnect		Active Colsective	0	*
SlueKel	22.0	Activé Obisectivé	0	*
Brandorumb		O Activé ⊖ Désectivé	0	*
Captify	65 0	Active Colsective	0	*
Dorwensant	2010	O Activé ○ Désectivé	0	
Drimtan	ed a	Activé O bésectivé	0	*
Cribeo	65.0	Active Colsective	0	
DetaXu, Inc.	22 0	Activé Obésectivé	0	Ψ.
Delta Projects	edaa	O Activé 🔿 Désactivé	0	Ψ.
emetriq GmbH	6910	O Active C Desective	0	Ψ.
Xelate	22 0	Activé Obésectivé	0	Ψ.
Exponential Interactive	edia	O Activé ⊖ bésactivé	0	Ψ.
iyeota	65 0	Active Objective	0	Ψ.
Ezeloza		O Activé ⊖ Désectivé	0	Ψ.

Flashtalking		O Activé ⊖ Désectivé	0	۲
Fonecta Oy	edia	O ACEVE O Désective	0	
Gamned	ed o	O Activé 🔿 Désactivé	0	
Google	92 9	Activé Oblascivé	0	٠
Gungun	<u>ed o</u>	Active Oblascove	0	٠
IgnitionOne	22 0	Activé Oblastivé	0	
Infectious Media	22 0	Activé Oblastivé	0	
Intent Media, Inc.	<u>ed o</u>	Activé Objectivé	0	T
iotec	ed o	Activé Objektivé	0	
iPromote	ed o	O Activé ⊖ Désectivé	0	
Knorek	edgo	O Activé ⊡ Désactivé	0	۲
Lagardere Publicite		O Activé O Désactivé	0	٠
Leiki	<u>ed o</u>	Active Oblascove	0	٠
Ligetus	60.0	Active Oblascove	0	٠
Light Reaction		O Activé O Désectivé	0	
LinkedIn	22 0	O Activé O Désectivé	0	
Lotame	<u>ed o</u>	Activé Obésectivé	0	
Марр	edia	Q Activé ⊖ Désettivé	0	
MaxPoint Interactive, Inc.	edito	O Activé O Désactivé	0	
MEDIA IQ	edito	O Activé 🔿 Désactivé	0	
HediaMath	edito	Activé Oblanctivé	0	
Mediascale GmbH & Co Kg.	60.0	Active Objective	0	
Netripo	edga	Active Desactive	0	i,
Nicrosoft Advertising	edea	Attive Disactive		H
mobile.de GmbH	ediro	Active Disactive	ő	÷
mPlatform, Inc.		Active Disactive	ä	÷
myThings	edgo	Active Desective	0	÷
Nano Interactive	edea	Active Desective	0	÷
NEORY	edea	Active Objective	0	H
Netmining	edga	Advé Désetvé	0	÷
NextPerformance	edga	Adve Descove	0	H
nuos.ad	edea	Attive Descrive	0	÷
OpenX	edea	Active Descrive	ě	÷
Platform161	ed o	Active Disactive	ő	÷
Plista	ediro	Active Disactive	ő	÷
Programattik	ediro	Active Disactive	0	÷
Programatik Public-Idees	edigo	Active Desective	0	H
Publicis Media	edga	Active Desective	0	÷
Publicis Hebia	edea	Active Desective	0	÷
	edga		ő	H
RadiumOne	edga		ő	Ľ
Rocket Fuel	edga		0	÷
Rubicon Project	an 10	Active Desactive Active Desactive	0	÷
	edga	Active Desactive	0	÷
Scoota		Allow Ubitactive	v	4

Semasio GmbH	ed a	O Activé ○ Désectivé	0	Ψ.
Sizmek Inc.	ed a	O Activé ⊖ Désectivé	0	
Skimlinks	ed a	Activé C Désactivé	0	
Smart AdServer	ed 0	Activé Oblactivé	0	Ψ.
Sociemantic	00 0	Active Coleactive	0	Ψ.
Sojern	92 0	Active Coleective	0	Ψ.
Stallamedia AG	000	Odsectivé C Désectivé	0	×.
Switch Concepts Ltd		Activé C Désectivé	0	
Taboola Europe Limited		■ Activé ○ Désectivé	0	
beqsT	ed a	■ Activé ○ Désectivé	0	
Temelio	ed a	O Activé ○ Désectivé	0	Ψ.
The Trade Desk	ed a	O Activé ⊖ Désactivé	0	
TubeMogul		O Activé C Désactivé	0	Ψ.
TURBO	<u>ed 0</u>	Activé Coleactivé	0	
Turn	<u>00</u> 0	Active Coleactive	0	
twyn group	0000	Active Colsective	0	×.
Undertone	000	Activé C Désectivé	0	
United Internet Media GmbH	22 0	O Activé ⊂ Désectivé	0	
Varick Media Management		O Activé ⊖ Désectivé	0	
Ve Global	ed a	O Activé ⊂ Désectivé	0	
Viant	ed a	O Activé ○ Désectivé	0	
Vibrant Image	ed a	O VCIN€ ⊂ Deletative	0	

Some companies whose cookies can be controlled

Back to Classical Examples of Bandits Problems

- Size of data: *n* mails with some proba of spam
- Choose one of two actions: spam or ham

- Mail correctly or incorrectly classified

Inference: Find the best between the red and blue
 Cumul: Minimize number of errors as possible

Back to Classical Examples of Bandits Problems

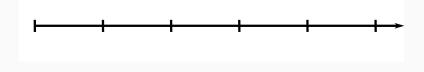
Back to Classical Examples of Bandits Problems

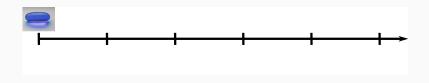
- Size of data: *n* patients with some proba of getting cured
- Choose one of two

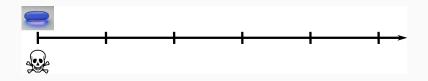
– Patients cured \heartsuit or dead 😪

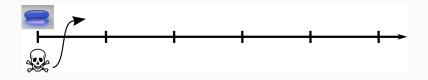
Inference: Find the best treatment between the red and blue
 Cumul: Save as many patients as possible

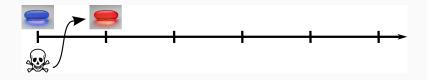
Two-Armed Bandit

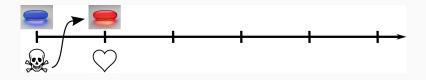


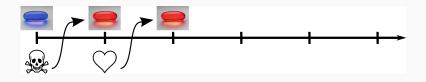


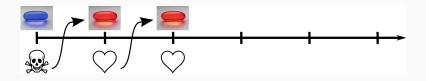


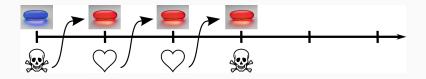


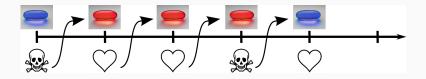


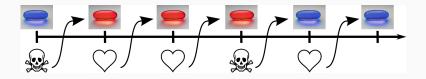


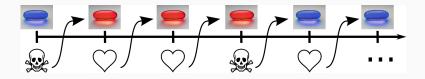


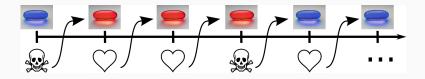












- Patients arrive and are treated sequentially.
- Save as many as possible.

A bit of theory

Stochastic Multi-Armed Bandit

K-Armed Stochastic Bandit Problems

- K actions $i \in \{1, ..., K\}$, outcome Xⁱ_t ∈ ℝ (sub-)Gaussian, bounded

$$X_1^i, X_2^i, \ldots, \sim \mathcal{N}(\mu^i, 1)$$
 i.i.d.

- Non-Anticipative Policy: $\pi_t(X_1^{\pi_1}, X_2^{\pi_2}, \dots, X_{t-1}^{\pi_{t-1}}) \in \{1, \dots, K\}$
- Goal: Maximize expected reward $\sum_{t=1}^{T} \mathbb{E} X_t^{\pi_t} = \sum_{t=1}^{T} \mu^{\pi_t}$
- Performance: Cumulative Regret

$$R_{T} = \max_{i \in \{1,...,K\}} \sum_{t=1}^{T} \mu^{i} - \sum_{t=1}^{T} \mu^{\pi_{t}} = \Delta_{i} \sum_{t=1}^{T} \mathbb{1} \{ \pi_{t} = i \neq \star \}$$

with $\Delta_i = \mu^* - \mu^i$, the "gap" or cost of error *i*.

• UCB - "Upper Confidence Bound"

$$\pi_{t+1} = \arg\max_{i} \Big\{ \overline{X}_{t}^{i} + \sqrt{\frac{2\log(t)}{\overline{T}^{i}(t)}} \Big\},$$

where
$$T^i(t) = \sum_{t=1}^t \mathbb{1}\{\pi_t = i\}$$
 and $\overline{X}^i_t = \frac{1}{\overline{T}^i_t} \sum_{s:i_s=i} X^i_s$.

Regret:

 $\mathbb{E} R_T \lesssim \sum_k \frac{\log(T)}{\Delta_k}$

Worst-Case:

$$\mathbb{E} R_T \lesssim \sup_{\Delta} K \frac{\log(T)}{\Delta} \wedge T\Delta$$

$$\approx \sqrt{KT \log(T)}$$

Ideas of proof
$$\pi_{t+1} = \arg \max_i \left\{ \overline{X}_t^i + \sqrt{\frac{2 \log(t)}{T^i(t)}} \right\}$$

• 2-lines proof:

$$\pi_{t+1} = i \neq \star \iff \overline{X}_t^\star + \sqrt{\frac{2\log(t)}{T^\star(t)}} \le \overline{X}_t^i + \sqrt{\frac{2\log(t)}{T^i(t)}}$$

$$"\implies "\Delta_i \le \sqrt{\frac{2\log(t)}{T^i(t)}} \Longrightarrow T^i(t) \lesssim \frac{\log(t)}{\Delta_i^2}$$

• Number of mistakes grows as $\frac{\log(t)}{\Delta_i^2}$; each mistake costs Δ_i .

Regret at stage T
$$\lesssim \sum_{i} \frac{\log(T)}{\Delta_{i}^{2}} \times \Delta_{i} \approx \sum_{i} \frac{\log(T)}{\Delta_{i}}$$

- \cdot " \Longrightarrow " actually happens with overwhelming proba
- "optimal": no algo always has a regret smaller than $\sum_{i} \frac{\log(T)}{\Delta_i}$

• ETC [Perchet,Rigollet]. pull in round-robin then eliminate

$$R_T \lesssim \sum_k \frac{\log(T\Delta^k)}{\Delta^k}$$
, worst case $R_T \leq \sqrt{T\log(K)K}$

• Other algo, MOSS [Audibert, Bubeck], variants of UCB

$$R_T \lesssim K \frac{\log(T\Delta^{\min}/K)}{\Delta^{\min}}$$
, worst case $R_T \leq \sqrt{TK}$

• Infinite number of actions $x \in [0, 1]^d$ with $\Delta(x)$ 1 Lipschitz. Discretize + UCB gives

$$R_T \lesssim T\varepsilon + \sqrt{\frac{T}{\varepsilon}} \leq T^{2/3}$$

Adversarial Multi-Armed Bandit

K-Armed Adversarial Bandit Problems

• *K* actions $i \in [K] = \{1, \dots, K\}$, outcome $X_t^i \in \mathbb{R}$ bounded in [0,1]

No assumption on X_1^i, X_2^i, \ldots

- Non-Anticipative Policy: $\pi_t \left(X_1^{\pi_1}, X_2^{\pi_2}, \dots, X_{t-1}^{\pi_{t-1}} \right) \in [K]$
- Performance: Cumulative Regret

$$R_{T} = \max_{i \in [K]} \sum_{t=1}^{T} X_{t}^{i} - \sum_{t=1}^{T} X_{t}^{\pi_{t}}$$

• Convex optimization of $p \mapsto \mathbb{E}_p \sum_{t=1}^T X_t^i$, from $\Delta([K])$ to [0, 1]

EXP-algo

• Main insight: $\pi_t \sim p_t \in \Delta([K])$, more weights on best actions

$$p_t^i = \frac{e^{\eta \sum_{s=1}^{t-1} X_s^i}}{\sum_{j \in [K]} e^{\eta \sum_{s=1}^{t-1} X_s^j}}, \quad \eta \text{ is a parameter}$$

• Only $X_t^{\pi_t}$ is observed, not X_t . Estimate X_t by \widehat{X}_t

$$\widehat{X}_{t}^{i} = 1 - \left(\frac{1 - X_{t}^{i}}{p_{t}^{i}}\right) \mathbb{1}\left\{\pi_{t} = i\right\}$$
 and run EXP on \widehat{X}_{t}

- $\mathbb{E}\widehat{X}_{t}^{i} = 1 (1 p_{t}^{i}).0 + p_{t}^{i} \frac{1 X_{t}^{i}}{p_{t}^{i}} = X_{t}^{i}$, unbiased estimator
- $\mathbb{E} \sum_{i \in K} p_t^i (\widehat{X}_t^i)^2 \le 1 + \sum_{i \in [K]} p_t^i \left(\frac{1 X_t^i}{p_t^i}\right)^2 p_t^i \le K + 1$ bounded variance
- Using this estimate we obtain that

$$\mathbb{E}R_{T} \leq \frac{\log(K)}{\eta} + \eta(K+1)T \leq 3\sqrt{\log(K)KT}$$

Bandits & Repeated Auctions

Back to Repeated Auctions

Ad slot sold by lemonde.fr. 2nd-price auctions

- Several (marketing) companies places bids
- Highest bid wins (...), say criteo, pays to lemonde 2nd bid (...)
- criteo chooses ad of a client, Microsoft or Cdiscount or Booking
- · criteo gets paid by the client if the user clicks on the ad

Main Problem: Repeated auctions with unknown private valuation Learn valuations, find which ad to display & good strategies

2nd price Auctions

- A good is sold on second price auctions auction.
- Each buyer, with valuation $v^{(i)}$, puts a bet $b^{(i)}$
- The highest bidder wins and **pays second highest bid** $b^{\sharp} = \max_{i \neq \operatorname{argmax}} b^{(i)}$ (ties broken arbitrarily)

Truthful auctions

optimal strategy bid its own valuation $b^{(i)} = v^{(i)}$

- Utility of bidder : $(v^{(i)} b^{\sharp}) \mathbb{1} \{ b^{(i)} \ge b^{\sharp} \}$
 - if $b^{(i)} > v^{(i)}$ might only pay too much
 - if $b^{(i)} > v^{(i)}$ might loose the auction

- Utility of highest value: $v^* b^{\sharp}$
- Utility of seller (value v_0): $b^{\sharp} v_0$, can be negative !

Reserve price

A threshold c: if $b^* \ge c$; price max{ b^{\sharp}, c } otherwise not sold

- Still truthful: c is a bid
- Optimal reserve price $c^* \max$. $\mathbb{E}(\max\{v^{\sharp}, c\} v_0)\mathbb{1}\{v^* \ge c\}$
- Depends on the (actually unknown) distributions of value.

Main model

• Learning optimal reserve price [Cesa-Bianchi, Gentile, Mansour]

From the point of view of a bidder ?

• At round $t = 1, \ldots, T$:

bidder bids $b_t \in [0, 1]$ if $b_t > m_t$ (maximum other bids & reserve price) win good, observe value $v_t \in [0, 1]$

- Total utility: $\sum_{t=1}^{T} (v_t m_t) \mathbb{1}\{b_t > m_t\}$
- Total regret:

$$\max_{b \in [0,1]} \sum_{t=1}^{T} (v_t - m_t) \mathbb{1}\{b > m_t\} - \sum_{t=1}^{T} (v_t - m_t) \mathbb{1}\{b_t > m_t\}$$

Data Assumptions - Stochastic vs Adversarial

• Stochastic: v_t i.i.d. $\mathbb{E}[v_t] = v \in [0, 1]$

 m_t stochastic (i.i.d. $\mathbb{E}[m_t] = m$), indpt. of v_t m_t adversarial (no assumptions), indpt. of v_t

In both cases, **expected** regret attained at *v*.

$$\sum_{t=1}^{T} (\mathbf{v} - m_t) \mathbb{1}\{\mathbf{v} > m_t\} - \sum_{t=1}^{T} (\mathbf{v} - m_t) \mathbb{1}\{b_t > m_t\}$$

• Adversarial: no assumptions at all on v_t and m_t

Tools that we will use

Variants of stochastic & adversarial multi-armed bandit

Stochastic Repeated Auctions

- Auctions: infinite action space, but with a special structure.
- Round t + 1 bid

$$b_{t+1} = \min\left(\overline{v}_{\omega_t} + \sqrt{\frac{3\log(t)}{2\omega_t}}, 1\right)$$

where ω_t number of auctions won.

• Our first main result

```
Theorem - Stochastic case

UCBid yields a regret bound of

\mathbb{E}R_T \leq 3 + 12 \frac{\log(T)}{\Delta} \wedge 5\sqrt{T\log(T)}

where \Delta is such that no bid m_t is in the interval (v, v + \Delta)
```

Fully stochastic case: UCBid

• If $m_t \sim \mu$ satisfies margin condition, parameter α (unknown):

Definition - margin condition

 $\forall u > 0, \ \mu\{(v, v + u)\} \le Cu^{\alpha} \text{ for some constant } C.$

The bigger α , the easier.

Theorem - Fully stochastic case

$$\mathbb{E}R_{T} \leq \begin{cases} c_{\alpha}T^{\frac{1-\alpha}{2}}\log^{\frac{1+\alpha}{2}}(T) & \text{if } \alpha < 1\\ c_{\alpha}\log^{2}(T) & \text{if } \alpha = 1\\ c_{\alpha}\log(T) & \text{if } \alpha > 1 \end{cases}$$

• Almost matching lower bound

$$\mathbb{E}R_T \geq \begin{cases} c_{\alpha}T^{\frac{1-\alpha}{2}} & \text{if } \alpha < 1\\ c_{\alpha}\log(T) & \text{if } \alpha \ge 1 \end{cases}$$

Adversarial Repeated Auctions

Our policy: EXPTree

$$\max_{b \in [0,1]} \sum_{t=1}^{T} (v_t - m_t) \mathbb{1}\{b > m_t\} - \sum_{t=1}^{T} (v_t - m_t) \mathbb{1}\{b_t > m_t\}$$

• Main idea: Nested partitions \mathcal{P}_t of [0, 1]

•
$$\mathcal{P}_t = \{ [m^{(s)}, m^{(s+1)}), s = 0, \dots, t-1 \}$$

- $m_t \in [m^{(s^*)}, m^{(s^*+1)})$: split it into $[m^{(s^*)}, m_t)$ and $[m_t, m^{(s^*+1)})$
- Weights of interval \mathcal{I} is $\omega^{\mathcal{I}} = e^{\eta \sum_{t} \widehat{X}_{t}^{s}}$ where \widehat{X}_{t+1}^{s} is unbiased est. of the value of a bid in \mathcal{I} or in a parent of \mathcal{I} .
- At round t + 1, pick an interval \mathcal{I}_{t+1} in \mathcal{P}_{t+1} with proba proportional to $|\mathcal{I}_{t+1}| \omega_{t+1}$.
- Finally, bid b_{t+1} uniform in \mathcal{I}_{t+1}

```
Theorem - Upper-bound
```

EXPTree yields a regret bounded as

 $\mathbb{E}R_T \leq 4\sqrt{T\log(1/\Delta^\circ)}$

with Δ° the width of interval contains the best fixed bid.

Is the dependency in Δ° necessary ? yes

Theorem – Lower-bound For any algo, there exists a sequence of m_t and v_t s.t. $\mathbb{E}R_T \ge \frac{1}{32}\sqrt{T\lfloor \log_2(1/2\Delta^\circ) \rfloor}$

$$\max_{b \in [0,1]} \sum_{t=1}^{T} (v_t - m_t) \mathbb{1}\{b > m_t\} - \sum_{t=1}^{T} (v_t - m_t) \mathbb{1}\{b_t > m_t\}$$

- vt stochastic, mt stochastic: variant of UCB
 - $R_T \lesssim T^{\frac{1-\alpha}{2}} \log(T)^{\frac{1+\alpha}{2}}$
 - Interpolate between log(T) regret (easy pb), and \sqrt{T} (hard pb)
- v_t stochastic, m_t adversarial: variants of UCB
 - $-R_T \lesssim \min\left\{\sqrt{T\log(T)}, \frac{\log(T)}{\Delta}\right\}$
 - Logarithmic regret, even if parts of data are adversarial !
- *v_t* adversarial, *m_t* adversarial: variant of Exponential weights
 - $R_T \lesssim \sqrt{T \log(1/\Delta^\circ)}$
 - Same rates as with $\Delta^\circ\text{-discretization}$ and full info !

Very (quite ?) interesting.... useful as it is? not really... Here is a list of reasons

- 1. Stochastic: Data are not iid, patients are different ill-posedness, feature selection/model selection
- 2. Different Timing: several actions for one reward pomdp, learn trade bias/variance
- 3. Delays: Rewards not received instantaneously

grouping, evaluations

- 4. Combinatorial: Several decisions at each stage combinatorial optimization, cascading
- 5. Non-linearity: concave gain, diminishing returns, etc

• Tim Roughgarden (Stanford) is giving a 10h lecture series on Data-Driven Optimal Auction Theory

September 14-21, Polytechnique

Criteo is organising

Machine Learning in the Real World #3

End of November (21 ?), Paris

• For both events (or any other info) do not hesitate !

Investigating (past/present/futur) them

- We assumed (implicitly ?) that all patients/users are identical
- Treatments efficiency (proba of clicks) depend on age, gender...
- Those covariates or contexts are observed/known before taking the decision of blue/red pill

The decision (and regret...) should ultimately depend on it

General Model of Contextual Bandits

- Covariates: $\omega_t \in \Omega = [0, 1]^d$, i.i.d., law μ (equivalent to) λ The cookies of a user, the medical history, etc.
- Decisions: $\pi_t \in \{1, .., K\}$

The decision can (should) depend on the context ω_t

• Reward: $X_t^k \in [0, 1] \sim \nu^k(\omega_t)$, $\mathbb{E}[X^k | \omega] = \mu^k(\omega)$

The expected reward of action k depend on the context ω

• **Objectives:** Find the best decision given the request

Minimize regret $R_T := \sum_{t=1}^{T} \mu^{\pi^*(\omega_t)}(\omega_t) - \mu^{\pi_t}(\omega_t)$

1. Smoothness of the pb: Every μ^k is β -hölder, with $\beta \in (0, 1]$:

 $\exists L > 0, \ \forall \omega, \omega' \in \mathcal{X}, \ \|\mu(\omega) - \mu(\omega')\| \le L \|\omega - \omega'\|^{\beta}$

2. Complexity of the pb: (α -margin condition) $\exists C_0 > 0$,

$$\mathbb{P}_{X}\left[0 < \left|\mu^{1}(\omega) - \mu^{2}(\omega)\right| < \delta\right] \leq C_{0}\delta^{\alpha}$$

1. Smoothness of the pb: Every μ^k is β -hölder, with $\beta \in (0, 1]$:

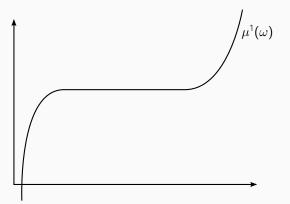
 $\exists L > 0, \forall \omega, \omega' \in \mathcal{X}, \|\mu(\omega) - \mu(\omega')\| \le L \|\omega - \omega'\|^{\beta}$

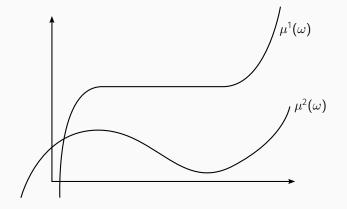
2. Complexity of the pb: (α -margin condition) $\exists C_0 > 0$,

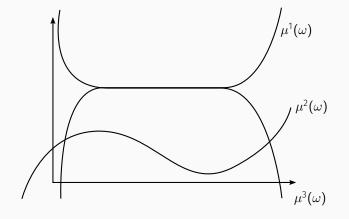
$$\mathbb{P}_{X}\left[0 < \left|\mu^{\star}(\omega) - \mu^{\sharp}(\omega)\right| < \delta\right] \leq C_{0}\delta^{\alpha}$$

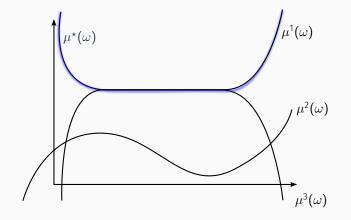
where $\mu^{*}(\omega) = \max_{k} \mu^{k}(\omega)$ is the maximal μ^{k} and $\mu^{\sharp}(\omega) = \max \{\mu^{k}(\omega) \text{ s.t. } \mu^{k}(\omega) < \mu^{*}(\omega)\}$ is the second max.

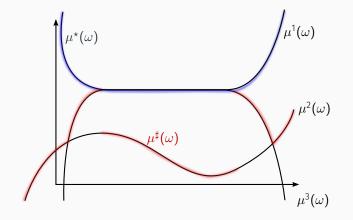
With K > 2: μ^* is β -Hölder but μ^{\sharp} is not continuous.

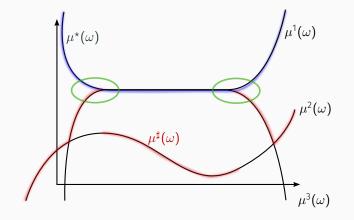


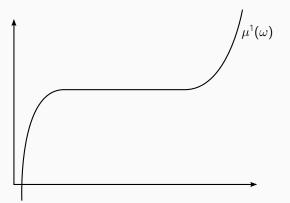


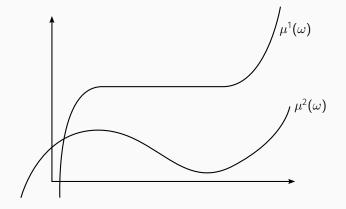


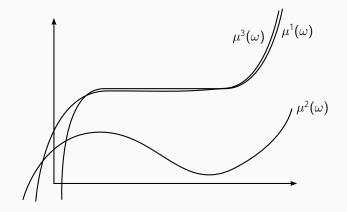


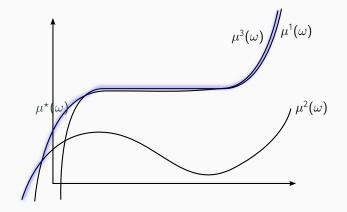


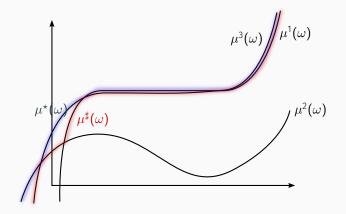


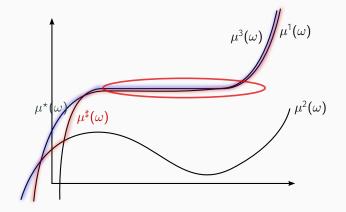




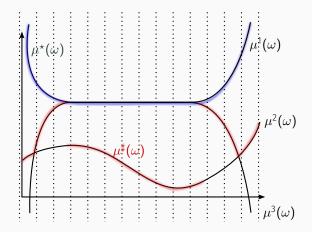




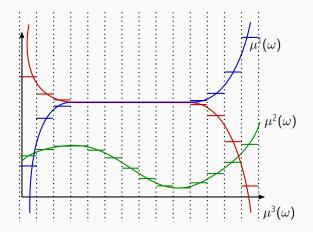




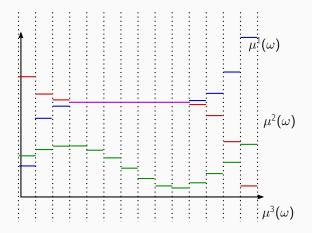
Binned policy

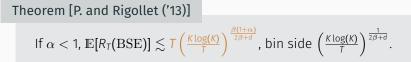


Binned policy



Binned policy

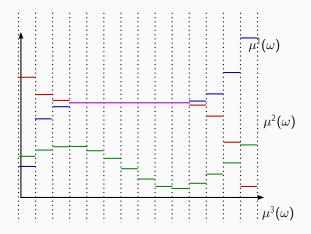




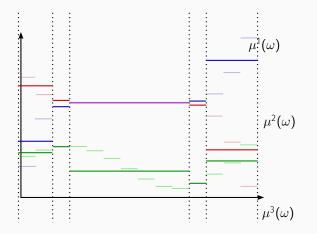
For K = 2, matches lower bound: minimax optimal w.r.t. T.

- Same bound with full monit [Audibert and Tsybakov, '07]
- No log(*T*): difficulty of nonparametric estimation washes away the effects of exploration/exploitation.
- + α < 1: cannot attain fast rates for easy problems.
- Adaptive partitioning !

Suboptimality of (BSE) for $\alpha \geq 1$



Suboptimality of (BSE) for $\alpha \geq 1$



Theorem [P. and Rigollet ('13)]

For all α , $\mathbb{E}[R_T(ABSE)] \lesssim T\left(\frac{K\log(K)}{T}\right)^{\frac{\beta(1+\alpha)}{2\beta+d}}$.

For K = 2, matches lower bound: minimax optimal w.r.t. T.

• Same bound than (BSE) even for easy problems $\alpha \geq$ 1.

This is not the solution

1. **dimensions** dependent bound: $T^{1-\frac{\beta}{2\beta+d}}$

 $d = +\infty$ and $\beta = 0$, lots of contexts, no regularity Online selection of models ? Ill-posed pb $\mu(\cdot)$ not β -holder Estimation/Approx errors

Performance = Approx Error + Regret(β , d, T)

2. Non-stationarity of **arms**: Value are not i.i.d., evolve with time. Ex. ads for movies.

Cumulative objectives clearly not the solution.

Discount ? How, why, at which speeds ?

3. Non-stationarity of **sets** of arms:

Arms arrive and disappears

How incorporate a new arm ? which index ?

1. Non-stationarity of **sets** of arms:

Arms arrive and disappears

How incorporate a new arm ? which index ?

2. Contexts (covariates) are not in \mathbb{R}^d

Rather descriptions, texts, id, images...How to embed ?

training set is influenced by algorithms...

Different Timing

Example of Repeated Auctions

Ad slot sold by lemonde.fr. 2nd-price auctions

- Several (marketing) companies places bids
- Highest bid wins (...), say criteo, pays to lemonde 2nd bid (...)
- criteo chooses ad of a client, Microsoft or Cdiscount or Boooking
- criteo paid by the client if the user clicks on the ad

Main Problem: Repeated auctions with unknown private valuation Learn valuations, find which ad to display & good strategies

- 1. Can be modeled as a bandit pb with Extra Structure
- 2. Actually, Criteo (Google, Facebook) paid if the user buys something after the click

Needs several "costly" auctions to seal a deal

Auctions lost can also help to seal deal (competitor displays ad for free)

Optimal strategy in repeated auctions, learn it ? (POMDP ?)

Reward timing per user, decision timing by opportunities • Companies test new technologies (algo, hardware, etc.) before putting in productions. Sequences of AB tests

Timing of Decisions: each day, continue, stop or validate the current AB test

Timing of Rewards: Total improvements of implemented techno.

• The longer AB test are, the more confident (reduces variance) but less and less implementation

Online tradeoff risks/performances

Delays

- Clinical trials: have to wait 6 months to see results. A trial length is 3 year : 6 phases Regret is still \sqrt{T}
- Marketing (ad displays), only see if users buy
 No feedback is either no sale (forever) or no sale yet
 Build estimators with censured/missing data
 Feasible with iid data... but they are not!

Combinatorial Structure

Large Decision spaces

- Choose not to display 1 ad, but 4, 6, 10...
- Paid if sales after click (even if unrelated)

Lots of correlations (between products, positions, colors/style of banner, **time**, etc.)

Some products are seen, other are not (carrousels...)

 $\cdot\,$ Too many possibilities of (almost) equal performances

Compete with the best $R_T \le \sqrt{KT}$ but at least top 5%, $R_T \le \sqrt{\log(K) \frac{1}{5\%}T}$??

Bandit theory is quite neat

To be "applied", or relevant, need LOTS of work

Anybody is welcome to join & collaborate!

Model selection, Feature extractions, Missing Data, Censured Data, Combinatorial Optimization, New techniques estimators..