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Motivations & Objectives



Classical Examples of Bandits Problems

– Size of data: n patients with some proba of getting cured
– Choose one of two treatments to prescribe

or
– Patients cured or dead

1) Inference: Find the best treatment between the red and blue
2) Cumul: Save as many patients as possible
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Classical Examples of Bandits Problems

– Size of data: n banners with some proba of click
– Choose one of two ads to display

or
– Banner clicked or ignored

1) Inference: Find the best ad between the red and blue
2) Cumul: Get as many clicks as possible
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Example of Repeated Auctions

Ad slot sold by lemonde.fr. 2nd-price auctions

• Several (marketing) companies places bids
• Highest bid wins (...), say criteo, pays to lemonde 2nd bid (...)
• criteo chooses ad of a client, Microsoft or Cdiscount or Booking
• criteo gets paid by the client if the user clicks on the ad

Main Problem: Repeated auctions with unknown private valuation
Learn valuations, find which ad to display & good strategies
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Example of Repeated Auctions

Some companies whose cookies can be controlled
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Back to Classical Examples of Bandits Problems

– Size of data: n mails with some proba of spam
– Choose one of two actions: spam or ham

or
– Mail correctly or incorrectly classified

1) Inference: Find the best between the red and blue
2) Cumul: Minimize number of errors as possible
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Back to Classical Examples of Bandits Problems
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Back to Classical Examples of Bandits Problems

– Size of data: n patients with some proba of getting cured
– Choose one of two

or
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Two-Armed Bandit

– Patients arrive and are treated sequentially.

– Save as many as possible.
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Two-Armed Bandit

– Patients arrive and are treated sequentially.
– Save as many as possible.
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A bit of theory

7



Stochastic Multi-Armed Bandit



K-Armed Stochastic Bandit Problems

– K actions i ∈ {1, . . . , K}, outcome Xit ∈ R (sub-)Gaussian,
bounded

Xi1, Xi2, . . . ,∼ N
(
µi, 1

)
i.i.d.

– Non-Anticipative Policy: πt
(
Xπ11 , Xπ22 , . . . , Xπt−1

t−1

)
∈ {1, . . . , K}

– Goal: Maximize expected reward
∑T

t=1EX
πt
t =

∑T
t=1 µ

πt

– Performance: Cumulative Regret

RT = max
i∈{1,...,K}

T∑
t=1

µi −
T∑
t=1

µπt = ∆i

T∑
t=1

1
{
πt = i ̸= ⋆

}
with ∆i = µ⋆ − µi, the “gap” or cost of error i.
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Most Famous algorithm [Auer, Cesa-Bianchi, Fisher, ’02]

• UCB - “Upper Confidence Bound”

πt+1 = argmax
i

{
Xit +

√
2 log(t)
Ti(t)

}
,

where Ti(t) =
∑t

t=1 1{πt = i} and Xit = 1
Tit

∑
s:is=i X

i
s.

Regret:

ERT ≲
∑

k
log(T)
∆k

Worst-Case:

ERT ≲ sup
∆
K log(T)

∆
∧ T∆

≂
√
KT log(T)
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Ideas of proof πt+1 = argmaxi
{
Xit +

√
2 log(t)
Ti(t)

}
• 2-lines proof:

πt+1 = i ̸= ⋆ ⇐⇒ X⋆t +

√
2 log(t)
T⋆(t) ≤ Xit +

√
2 log(t)
Ti(t)

“ =⇒ ”∆i ≤

√
2 log(t)
Ti(t)

=⇒ Ti(t) ≲ log(t)
∆2
i

• Number of mistakes grows as log(t)
∆2
i
; each mistake costs ∆i.

Regret at stage T ≲
∑

i
log(T)
∆2
i

×∆i ≂
∑

i
log(T)
∆i

• “ =⇒ ” actually happens with overwhelming proba
• “optimal”: no algo always has a regret smaller than

∑
i
log(T)
∆i
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Other Algos

• ETC [Perchet,Rigollet]. pull in round-robin then eliminate

RT ≲
∑

k
log(T∆k)

∆k , worst case RT ≤
√
T log(K)K

• Other algo, MOSS [Audibert, Bubeck], variants of UCB

RT ≲ K log(T∆
min/K)

∆min , worst case RT ≤
√
TK

• Infinite number of actions x ∈ [0, 1]d with ∆(x) 1 Lipschitz.
Discretize + UCB gives

RT ≲ Tε+
√

T
ε ≤ T2/3
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Adversarial Multi-Armed Bandit



K-Armed Adversarial Bandit Problems

• K actions i ∈ [K] = {1, . . . , K}, outcome Xit ∈ R bounded in [0, 1]

No assumption on Xi1, Xi2, . . .

• Non-Anticipative Policy: πt
(
Xπ11 , Xπ22 , . . . , Xπt−1

t−1

)
∈ [K]

• Performance: Cumulative Regret

RT = max
i∈[K]

T∑
t=1

Xit −
T∑
t=1

Xπtt

• Convex optimization of p 7→ Ep
∑T

t=1 Xit, from ∆([K]) to [0, 1]
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EXP-algo

• Main insight: πt ∼ pt ∈ ∆([K]), more weights on best actions

pit =
eη

∑t−1
s=1 X

i
s∑

j∈[K] eη
∑t−1

s=1 X
j
s
, η is a parameter

• Only Xπtt is observed, not Xt. Estimate Xt by X̂t

X̂it = 1−
(1− Xit

pit

)
1{πt = i} and run EXP on X̂t

• EX̂it = 1− (1− pit).0+ pit
1−Xit
pit

= Xit, unbiased estimator

• E
∑

i∈K p
i
t(X̂it)2 ≤ 1+

∑
i∈[K] p

i
t

(
1−Xit
pit

)2
pit ≤ K+ 1 bounded variance

• Using this estimate we obtain that

ERT ≤ log(K)
η

+ η(K+ 1)T ≤ 3
√
log(K)KT
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Bandits & Repeated Auctions



Back to Repeated Auctions

Ad slot sold by lemonde.fr. 2nd-price auctions

• Several (marketing) companies places bids
• Highest bid wins (...), say criteo, pays to lemonde 2nd bid (...)
• criteo chooses ad of a client, Microsoft or Cdiscount or Booking
• criteo gets paid by the client if the user clicks on the ad

Main Problem: Repeated auctions with unknown private valuation
Learn valuations, find which ad to display & good strategies
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2nd price Auctions

• A good is sold on second price auctions auction.
• Each buyer, with valuation v(i), puts a bet b(i)

• The highest bidder wins and pays second highest bid
b♯ = maxi̸=argmax b(i) (ties broken arbitrarily)

Truthful auctions
optimal strategy bid its own valuation b(i) = v(i)

• Utility of bidder :
(
v(i) − b♯

)
1{b(i) ≥ b♯}

• if b(i) > v(i) might only pay too much
• if b(i) > v(i) might loose the auction
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Reserve price

• Utility of highest value: v⋆ − b♯

• Utility of seller (value v0): b♯ − v0, can be negative !

Reserve price
A threshold c: if b∗ ≥ c; price max{b♯, c} otherwise not sold

• Still truthful: c is a bid
• Optimal reserve price c∗ max. E(max{v♯, c} − v0)1{v∗ ≥ c}
• Depends on the (actually unknown) distributions of value.
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Main model

• Learning optimal reserve price [Cesa-Bianchi, Gentile, Mansour]

From the point of view of a bidder ?

• At round t = 1, . . . , T:
bidder bids bt ∈ [0, 1]
if bt > mt (maximum other bids & reserve price)

win good, observe value vt ∈ [0, 1]

• Total utility:
∑T

t=1(vt −mt)1{bt > mt}
• Total regret:

max
b∈[0,1]

T∑
t=1

(vt −mt)1{b > mt} −
T∑
t=1

(vt −mt)1{bt > mt}
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Data Assumptions - Stochastic vs Adversarial

• Stochastic: vt i.i.d. E[vt] = v ∈ [0, 1]
mt stochastic (i.i.d. E[mt] = m), indpt. of vt
mt adversarial (no assumptions), indpt. of vt

In both cases, expected regret attained at v.

T∑
t=1

(v−mt)1{v > mt} −
T∑
t=1

(v−mt)1{bt > mt}

• Adversarial: no assumptions at all on vt and mt

Tools that we will use
Variants of stochastic & adversarial multi-armed bandit
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Stochastic Repeated Auctions



Our policy: UCBid

• Auctions: infinite action space, but with a special structure.
• Round t+ 1 bid

bt+1 = min
(
vωt +

√
3 log(t)
2ωt

, 1
)

where ωt number of auctions won.
• Our first main result

Theorem - Stochastic case
UCBid yields a regret bound of
ERT ≤ 3+ 12 log(T)∆ ∧ 5

√
T log(T)

where ∆ is such that no bid mt is in the interval (v, v+∆)
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Fully stochastic case: UCBid

• If mt ∼ µ satisfies margin condition, parameter α (unknown):
Definition - margin condition

∀u > 0, µ{(v, v+ u)} ≤ Cuα for some constant C.

The bigger α, the easier.
Theorem - Fully stochastic case

ERT ≤


cαT

1−α
2 log

1+α
2 (T) if α < 1

cαlog2(T) if α = 1
cαlog(T) if α > 1

• Almost matching lower bound

ERT ≥

{
cαT

1−α
2 if α < 1

cαlog(T) if α ≥ 1
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Adversarial Repeated Auctions



Our policy: EXPTree

max
b∈[0,1]

T∑
t=1

(vt −mt)1{b > mt} −
T∑
t=1

(vt −mt)1{bt > mt}

• Main idea: Nested partitions Pt of [0, 1]
• Pt = {[m(s),m(s+1)), s = 0, . . . , t− 1}
• mt ∈ [m(s∗),m(s∗+1)): split it into [m(s∗),mt) and [mt,m(s∗+1))

• Weights of interval I is ωI = eη
∑

t X̂
s
t where X̂st+1 is unbiased est.

of the value of a bid in I or in a parent of I .
• At round t+ 1, pick an interval It+1 in Pt+1 with proba
proportional to |It+1|ωt+1.

• Finally, bid bt+1 uniform in It+1
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Performances of EXPTree

Theorem – Upper-bound
EXPTree yields a regret bounded as

ERT ≤ 4
√
T log(1/∆◦)

with ∆◦ the width of interval contains the best fixed bid.

Is the dependency in ∆◦ necessary ? yes

Theorem – Lower-bound
For any algo, there exists a sequence of mt and vt s.t.

ERT ≥ 1
32
√
T⌊log2(1/2∆◦)⌋
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Summary

maxb∈[0,1]
∑T

t=1(vt −mt)1{b > mt} −
∑T

t=1(vt −mt)1{bt > mt}

• vt stochastic, mt stochastic: variant of UCB
– RT ≲ T

1−α
2 log(T) 1+α

2

– Interpolate between log(T) regret (easy pb), and
√
T (hard pb)

• vt stochastic, mt adversarial: variants of UCB
– RT ≲ min

{√
T log(T), log(T)

∆

}
– Logarithmic regret, even if parts of data are adversarial !

• vt adversarial, mt adversarial: variant of Exponential weights
– RT ≲

√
T log(1/∆◦)

– Same rates as with ∆◦-discretization and full info !
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Very (quite ?) interesting....
useful as it is?
not really...

Here is a list of reasons
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On the basic assumptions

1. Stochastic: Data are not iid, patients are different
ill-posedness, feature selection/model selection

2. Different Timing: several actions for one reward
pomdp, learn trade bias/variance

3. Delays: Rewards not received instantaneously
grouping, evaluations

4. Combinatorial: Several decisions at each stage
combinatorial optimization, cascading

5. Non-linearity: concave gain, diminishing returns, etc

30



Few announcements

• Tim Roughgarden (Stanford) is giving a 10h lecture series on
Data-Driven Optimal Auction Theory

September 14-21, Polytechnique
• Criteo is organising

Machine Learning in the Real World #3
End of November (21 ?), Paris

• For both events (or any other info) do not hesitate !
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Investigating (past/present/futur) them

32



Patients are different

• We assumed (implicitly ?) that all patients/users are identical
• Treatments efficiency (proba of clicks) depend on age, gender...
• Those covariates or contexts are observed/known before taking
the decision of blue/red pill
The decision (and regret...) should ultimately depend on it

33



General Model of Contextual Bandits

• Covariates: ωt ∈ Ω = [0, 1]d, i.i.d., law µ (equivalent to) λ
The cookies of a user, the medical history, etc.

• Decisions: πt ∈ {1, .., K}
The decision can (should) depend on the context ωt

• Reward: Xkt ∈ [0, 1] ∼ νk(ωt), E[Xk|ω] = µk(ω)

The expected reward of action k depend on the context ω
• Objectives: Find the best decision given the request

Minimize regret RT :=
∑T

t=1 µ
π⋆(ωt)(ωt)− µπt(ωt)
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Regularity assumptions

1. Smoothness of the pb: Every µk is β-hölder, with β ∈ (0, 1]:

∃ L > 0, ∀ω, ω′ ∈ X , ∥µ(ω)− µ(ω′)∥ ≤ L∥ω − ω′∥β

2. Complexity of the pb: (α-margin condition) ∃C0 > 0,

PX

[
0 <

∣∣∣µ1(ω)− µ2(ω)
∣∣∣ < δ

]
≤ C0δα

where µ⋆(ω) = maxk µk(ω) is the maximal µk and
µ♯(ω) = max

{
µk(ω) s.t. µk(ω) < µ⋆(ω)

}
is the second max.

With K > 2: µ⋆ is β-Hölder but µ♯ is not continuous.
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Regularity: an easy example (α big)

µ1(ω)
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Regularity: a hard example (α small)

µ1(ω)
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Binned policy
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Binned policy
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Binned Successive Elimination (BSE)

Theorem [P. and Rigollet (’13)]

If α < 1, E[RT(BSE)] ≲ T
(
K log(K)

T

) β(1+α)
2β+d , bin side

(
K log(K)

T

) 1
2β+d .

For K = 2, matches lower bound: minimax optimal w.r.t. T.

• Same bound with full monit [Audibert and Tsybakov, ’07]

• No log(T): difficulty of nonparametric estimation washes away
the effects of exploration/exploitation.

• α < 1: cannot attain fast rates for easy problems.
• Adaptive partitioning ! 

39



Suboptimality of (BSE) for α ≥ 1

µ1(ω)

µ2(ω)

µ3(ω)
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Adaptive BSE (ABSE)

Theorem [P. and Rigollet (’13)]

For all α, E[RT(ABSE)] ≲ T
(
K log(K)

T

) β(1+α)
2β+d .

For K = 2, matches lower bound: minimax optimal w.r.t. T.

• Same bound than (BSE) even for easy problems α ≥ 1.
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This is not the solution

1. dimensions dependent bound: T1−
β

2β+d

d = +∞ and β = 0, lots of contexts, no regularity
Online selection of models ?
Ill-posed pb µ(·) not β-holder

Estimation/Approx errors
Performance = Approx Error + Regret(β, d, T)

2. Non-stationarity of arms: Value are not i.i.d., evolve with time.
Ex. ads for movies.

Cumulative objectives clearly not the solution.
Discount ? How, why, at which speeds ?

3. Non-stationarity of sets of arms:
Arms arrive and disappears

How incorporate a new arm ? which index ?
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This was really not the solution

1. Non-stationarity of sets of arms:
Arms arrive and disappears

How incorporate a new arm ? which index ?
2. Contexts (covariates) are not in Rd

Rather descriptions, texts, id, images...How to embed ?
training set is influenced by algorithms...
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Different Timing
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Example of Repeated Auctions

Ad slot sold by lemonde.fr. 2nd-price auctions

• Several (marketing) companies places bids
• Highest bid wins (...), say criteo, pays to lemonde 2nd bid (...)
• criteo chooses ad of a client, Microsoft or Cdiscount or Boooking
• criteo paid by the client if the user clicks on the ad

Main Problem: Repeated auctions with unknown private valuation
Learn valuations, find which ad to display & good strategies
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Repeated auctions

1. Can be modeled as a bandit pb with Extra Structure
2. Actually, Criteo (Google, Facebook) paid if the user buys
something after the click

Needs several ”costly” auctions to seal a deal
Auctions lost can also help to seal deal (competitor

displays ad for free)
Optimal strategy in repeated auctions, learn it ? (POMDP ?)

Reward timing per user,
decision timing by opportunities
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Other examples - repeated A/B tests

• Companies test new technologies (algo, hardware, etc.) before
putting in productions. Sequences of AB tests
Timing of Decisions: each day, continue, stop or validate the
current AB test
Timing of Rewards: Total improvements of implemented techno.

• The longer AB test are, the more confident (reduces variance)
but less and less implementation

Online tradeoff risks/performances
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Delays
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Rewards are not observed immediately

• Clinical trials: have to wait 6 months to see results.
A trial length is 3 year : 6 phases
Regret is still

√
T

• Marketing (ad displays), only see if users buy
No feedback is either no sale (forever) or no sale yet
Build estimators with censured/missing data

Feasible with iid data... but they are not!
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Combinatorial Structure
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Large Decision spaces

• Choose not to display 1 ad, but 4, 6, 10...
• Paid if sales after click (even if unrelated)

Lots of correlations (between products, positions,
colors/style of banner, time, etc.)

Some products are seen, other are not (carrousels...)
• Too many possibilities of (almost) equal performances

Compete with the best RT ≤
√
KT

but at least top 5%, RT ≤
√
log(K) 1

5%T ??
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Bandit theory is quite neat

To be ”applied”, or relevant, need LOTS of work

Anybody is welcome to join & collaborate!

Model selection, Feature extractions, Missing Data, Censured Data,

Combinatorial Optimization, New techniques estimators..
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