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Introduction to Optimal Quantization(s) ~ History

What is Vector Quantization?

@ Has its origin in the fields of signal processing in the late 1940's

@ Describes the discretization of a random signal and analyses its
recovery/reconstruction from the discretized one.

Examples: Pulse-Code-Modulation (PCM), JPEG-Compression

Signal: Learning Vector Quantization Extensive Survey about the IEEE-History:
Gersho & Gray [GN98], 1998.

Probability Theory: Foundation of Quantization for Probability Distributions: S.
Graf & H. Luschgy in [GL00], 2000.

and (survey, G.P.) Optimal Vector Quantization and Application to Numerics, in
ESAIM Proc&Survey ([Pagl5]), 2015.

Statistics: unsupervised learning, clustering (k-means, nuées dynamiques), Mc
Queen (CLVQ [Mac67], 1967), S.P. Lloyd (Lloyd I [LI082], 1982 but...)

©
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Introduction to Optimal Quantization(s) = Voronoi Quantizer

At the beginning was rough quantization
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At the beginning was rough quantization

> Let X : (Q,S,P) — (R?, Bor(R9),| - |) be a random vector such that

E|X|? < 400 for some p € (0, +00).
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> Aim: Discretize (spatially) X i.e. replace X by a r.v. taking finitely many values close
to X in some sense.
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Introduction to Optimal Quantization(s) = Voronoi Quantizer

At the beginning was rough quantization

> Let X : (Q,S,P) — (R?, Bor(R9),| - |) be a random vector such that
E|X|? < 400 for some p € (0, +00).

> Aim: Discretize (spatially) X i.e. replace X by a r.v. taking finitely many values close
to X in some sense.

> Let g : R — T C R? be a Borel function, I a finite subset of R? (grid).

X = q(X)
is called a quantization of X.
> Example: if X is [0, 1]-valued, one may choose a mid-point quantization

2%k — 1 k-1 k
9 ==y - =x=<

x€ [0,1].
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At the beginning was rough quantization

> Let X : (Q,S,P) — (R?, Bor(R9),| - |) be a random vector such that
E|X|? < 400 for some p € (0, +00).

> Aim: Discretize (spatially) X i.e. replace X by a r.v. taking finitely many values close
to X in some sense.

> Let g : R — T C R? be a Borel function, I a finite subset of R? (grid).

X = q(X)
is called a quantization of X.
> Example: if X is [0, 1]-valued, one may choose a mid-point quantization

2k — 1 k—1 k
90 ==y - sx=p
> LP-mean quantization error induced by g:

x€ [0,1].

epn(X:0) = | X = a(X)||, = [EIX — q(X)"]»
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Introduction to Optimal Quantization(s) = Voronoi Quantizer

Voronoi Quantization (from Signal transmission to Numerical probability)

> Geometric optimization: For a fixed grid T,
IX — q(X)| > dist(X,T).

Can this inequality hold as an equality for an appropriate g : RY — I ?
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Introduction to Optimal Quantization(s) = Voronoi Quantizer

Voronoi Quantization (from Signal transmission to Numerical probability)

> Geometric optimization: For a fixed grid T,
IX — q(X)| > dist(X,T).

Can this inequality hold as an equality for an appropriate g : RY — I ?
> Given a (finite) “grid” T = {x1,%,...,x,} C R?, we define a (Borel) Nearest
Neighbor projection.

o Let (Gi(IN)

. o d .
1<i<N be a Voronoi partition of R® generated by I, i.e. such that

G(r)c {z €R?:|z—x| < min |z—xJ-|}.
1<j<N
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Introduction to Optimal Quantization(s) = Voronoi Quantizer

Voronoi Quantization (from Signal transmission to Numerical probability)

> Geometric optimization: For a fixed grid T,
IX — q(X)| > dist(X,T).
Can this inequality hold as an equality for an appropriate g : RY — I ?

> Given a (finite) “grid” T = {x1,%,...,x,} C R?, we define a (Borel) Nearest
Neighbor projection.

o Let (Gi(IN)

. o d .
1<i<N be a Voronoi partition of R® generated by I, i.e. such that

G(r)c {z €R?:|z—x| < min |z—xJ-|}.
1<j<N

o Let mir : RY — T the induced I'-Nearest Neighbor projection,

N
§— inlc,(r)(§)~
i=1

so that
€ = mr(€)] = dist(&,T)
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Introduction to Optimal Quantization(s)  Voronoi Quantizer

= We define the Voronoi Quantization of the random vector X as
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Introduction to Optimal Quantization(s) = Voronoi Quantizer

Starting with (optimal) quantization theory (Signal/probability)

> Quantization Theory starts when getting interested to the L”-mean of this pointwise
error

list(X, D[, = Edist(X,T) or [|dist(X, )], = [Edist(X, r)2]% :
&> Why? If F is Lipschitz continuous
[EF(X) —EF(X")| < [Flup||X = X"||, = [[dist(X, NI,
and, since & > dist(¢, ') is 1-Lipschitz, one has

sup |EF(X) —EF(X")| = ||X — )A<r||1 = ||dist(X, )|

[FlLip<1 !

hence
[[dist(X, T)||, = Wa(£(X), Pr)

i.e. the L'-Wasserstein distance between £(X) and the set Pr of I-supported
distributions.

> Signal Transmission: ||dist(X, F)H1 , Measures the mean error transmission of the

signal.

7/
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Introduction to Optimal Quantization(s) = Voronoi Quantizer

Classification point of view (Clustering/Unsupervised learning)

o Dataset (&k)k=1,....n-
@ The random variable X models the sampling of one data uniformly at random in the
dataset i.e.
1 n
Py = n Z O¢,
k=1
o [ is a set of prototypes (codewords, elementary quantizers, ...) of size N < n.

@ The above L'-mean error the reads

n

. 1 .
Hdlst(X7 l_)H1 = 2129\/ |§k - Xi|

as a measure of how the set of prototypes I' “sums up” (&x)k=1,...,n-

@ |dem in the quadratic sense with

n

. 1 .
ldist(X, DF = -3 min [& —x[°
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Introduction to Optimal Quantization(s) = Voronoi Quantizer

Clustering of a (small) dataset

)rk. ¥,
X
i

Codewords Viectors

Voronoi -
Region

Figure: o Codewords/prototypes/elementary quantizers X data.
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Introduction to Optimal Quantization(s) LP-mean auantization error

LP-mean quantization error

> What about “Optimal”? Is there an optimal way to select the grid/N-quantizer to
classify the data? In data analysis optimal clustering ?
> The LP-mean quantization error

Definition

The LP-mean quantization error induced by a grid I € R? with size |[| < N, N € N
ep(X; T) = ||dist(X, 1), = H Teip|x—x\Hp (1)

(only depends on the distribution = P, of X).
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LP-mean quantization error

> What about “Optimal”? Is there an optimal way to select the grid/N-quantizer to
classify the data? In data analysis optimal clustering ?
> The LP-mean quantization error

Definition

The LP-mean quantization error induced by a grid I € R? with size |[| < N, N € N
ep(X; T) = ||dist(X, 1), = H Teip|x—x\Hp (1)

(only depends on the distribution = P, of X).

> The optimal LP-mean quantization problem consists in minimizing (1) over all grids of
size || < N.

We define the LP-optimal mean quantization error at level N as

epn(X) = inf{H min |X — X|HP T CRY M < N}.
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Introduction to Optimal Quantization(s) LP-mean auantization error

Voronoi Quantization

> Noting that
X (w) = Z()| > dist (X (@), Z(Q)) = [X(w) = X=@|
one derives the more general optimality result

epn(X) = inf{|X — Z||, : € LP(RY), Card(Z(Q)) < N} = W,(By, Py).
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= Voronoi Quantization b provides an optimal LP-mean discretization of X by
-valued random variables for every p& (0, +00).
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Introduction to Optimal Quantization(s) LP-mean auantization error

Voronoi Quantization

> Noting that
X (w) — Z(@)] = dist(X(w), 5(Q) = [X(w) - X=?)]
one derives the more general optimality result
epn(X) = inf{[| X = Z||, : =€ LP(RY), Card(Z(Q)) < N} = W,(Py, P,).

= Voronoi Quantization b provides an optimal LP-mean discretization of X by
-valued random variables for every p& (0, +00).

= The Nearest Neighbor projection is the coding rule, which yields the smallest
LP-mean approximation error for X.

Theorem (Kieffer, Cuesta-Albertos, (P.), Graf-Luschgy)

(a) Let pe (0,+00), X € LP. For every level N > 1, there exists (at least) one
LP-optimal quantization grid TV at level N and

N+— e, n(X) |0 (vanishes if supp(X) is finite, | | O otherwise)

(b) Ifp=2, IE(X | )A<rN'*) =X™" as. (stationarity /self-consistency).

V.
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Introduction to Optimal Quantization(s) LP-mean auantization error

Sketch of proof (p > 1)

(a) We proceed by induction

o N=1: & || X —&||p is convex and coercive and atteins its minmum at an
LP-median.

o N = N+1: Let £€ supp(X) \ ™", IV LP-optimal at levelN.
Crir = ep(X, TN U{ED)P < ep(X, TN = e, n(X)?
so that

K= {TCRY |1 = N +1, e(X.1) < i | # O.closed ...

...and bounded (send one component or more to infinity and use Fatou's Lemma).

@ Then I — e,(X, M) attains a global minimum over K™.

(b) The random variable XM - E(X | )A(FN’*) 112 (J()?FN’*)). Hence

%™

D= X - E(XTT) X B (X X2

Hence, uniqueness of conditional expectation yields

SN+

E(Xp?rN’*) = XM as.
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Introduction to Optimal Quantization(s) LP-mean auantization error

Applications

e Signal transmission: Let N = {x{,... x’}

o Pre-processing | : re-ordering the labels i so that i — p} := ]P’()?r*’N =x})is
decreasing.
e Pre-processing Il : encoding i ~» Code(i) see [CTO06].
o A who emits and B who receives both share the one-to-one bible.
x* <> Code(i)
e X is encoded, Code(/) is transmitted, then decoded.
o Naive encoding : dyadic coding of the labels i

N
Complexity = Z pi(1+ [logyi]) <1+ |log, NJ.
i=1
o Uniform signal X ~ U([0,1]) then [N = 25,1, i=1:N} and pr = % so that
1N
Complexity =1+ — log, i] ~ logy(N/e).
p Y N ,Z:;L 82 1] g2(N/e)

e On the way to Shannon’s Source coding theorem (see e.g. [Dembo-Zeitouni]). ..
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Introduction to Optimal Quantization(s) ~ LP-mean quantization error

@ Quantization for (Probability and) Numerics:
o What for? Cubature formulas for the computation of expectations.

N
EF(X) ~E(FX™")) =3 pr F(x?).
i=1

o What is needed? The distribution (x*, p}*)j—1,....n of X",
o How to perform grid optimization? Lloyd | (Lloyd, 1982) and CLVQ (Mc Queen,
further on).

o Conditional expectation approximation:

E(F(X)|Y) ~E(F(X"™|YT).
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Introduction to Optimal Quantization(s) ~ LP-mean quantization error

@ Quantization for (Probability and) Numerics:
o What for? Cubature formulas for the computation of expectations.

N
EF(X) ~E(FX™")) =3 pr F(x?).
i=1

SN
N of X",
o How to perform grid optimization? Llloyd | (Lloyd, 1982) and CLVQ (Mc Queen,
further on).
o Conditional expectation approximation:

E(F(X)|Y) ~E(F(X"™|YT).

o What is needed? The distribution (x*, p;‘),-zl B

o Clustering (unsupervised learning):
o What for? Unsupervised classification Mc Queen, 1957; (up to improvements like
Self-Organizing Kohonen Maps, Cottrell-Fort-P. 1998, among others).
o How to perform? Lloyd | (Lloyd, 1982) and CLVQ (Mc Queen, 1967, further on).
o A typical problem in progress:

o Distribution pn(w,d€) = 1377 O¢p(w) (EK)k>1 iid.

o [2-Optimal quantization grid 'Y (w) at a fixed level N > 1.

@ One has lim,_ o0 [ (w) = TN optimal grid at level N for o = L(&1).
@ At which rate?
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Introduction to Optimal Quantization(s) LP-mean auantization error

Extension and. ..
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Introduction to Optimal Quantization(s) LP-mean auantization error

Extension and. ..

> Generalization to infinite dimension
Still true in:

@ a separable Hilbert space,

@ even in a reflexive Banach space E (Cuesta-Albertos, PTRF, 1997) for a tight r.v.

(- xw) — || 1r<nii<nN|X _Xi|E||p is I.s.c. fro the product weak topology on EV

@ or even in a L' space (Graf-Luschgy-P., J. of Approx., 2005) using T-topology. . .
e but...not in (C([0, T],R), || - [lsup)-
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Extension and. ..

> Generalization to infinite dimension
Still true in:

@ a separable Hilbert space,

@ even in a reflexive Banach space E (Cuesta-Albertos, PTRF, 1997) for a tight r.v.

(- xw) — || 1r<nii<nN|X _Xi|E||p is I.s.c. fro the product weak topology on EV

@ or even in a L' space (Graf-Luschgy-P., J. of Approx., 2005) using T-topology. . .
e but...not in (C([0, T],R), || - [lsup)-

> Convergence to 0
epn(X)1l0 as N — 4oo.

Let (z)n>1 be an everywhere dense sequence in R?
P < P — H _ 5. |P
eon(X)? < ep(X, {z1,...,2,}) IELrSnI_?N|X zi ] 10 as N — 4oo.

by the Lebesgue dominated convergence theorem.

> But...at which rate? At least for the finite dimensional vector space.
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Introduction to Optimal Quantization(s) = Quantization Rates/Zador's Theorem

Theorem (Zador's Theorem, from 1963 (PhD) to 2000)
(a) SHARP ASYMPTOTIC (Zador, Kieffer, Bucklew & Wise, Graf & Luschgy in [GLOO]):

1
Let X € LPT(RY) with distribution Px = @.\? + v. Then

L JId (d+p)/d
lim N7 - e, n(X) = Qp,\w'(/ © /(d+p) dAd)
N— oo RrRd

where @, |.; = infy>1 N%.e,,,N(U([O, 1]%).
(b) NON-ASYMPTOTIC (Pierce, Graf & Luschgy in [GLOO], Luschgy-P. [LP08]):

Let p' > p. There exists C, v 4€ (0, +00) such that, for every R%-valued X r.v.

YN>1, en(X)< Copaop(X). N5,

Remarks. o 0,/ (X) :=inf,cpa || X — a||y < 400 is the Lp/—(pseudo-)standard deviation.

1
e The rate N4 is known as the curse of dimensionality.
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Introduction to Optimal Quantization(s) = Quantization Rates/Zador's Theorem

Theorem (Zador's Theorem, 2016)

(a) SHARP ASYMPTOTIC (Zador, Kieffer, Bucklew & Wise, Graf & Luschgy in [GLOO],
Luschgy-P., 2016):

i
Let X € LP(R?) with distribution Px = @.\? + v such that  is essentially LP-radial and
non-increasing [e.g. p(&) =< g(|&lo), g | on (a0, +o0)&. .. ]

Then 1 oy
lim N7 - epn(X)= Qp. - </d god/(‘”p) dAd)
JI

N—oo
where Q.| = infy N . epn (U([0,1]%)).
(b) NON-ASYMPTOTIC (Pierce, Graf & Luschgy in [GLOO], Luschgy-P. [LP08]):

Let p' > p. There exists C, .4 € (0,+00) such that, for every R?-valued X r.v.

1

YN>1, en(X)< Copaop(X). N7
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Introduction to Optimal Quantization(s) ~ Numerical computation of auantizers

Numerical computation of quantizers

> Stationary quantizers Optimal grids I'" at level satisfy
X" =E(X|X7)

or equivalently if I = {x{", ..., x;

X' =E(X|Xe G(™))

(Nearly) optimal grids can be computed by optimization algorithms :
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Introduction to Optimal Quantization(s) ~ Numerical computation of auantizers

Numerical computation of quantizers

> Stationary quantizers Optimal grids I'" at level satisfy
X" =E(X|X7)
or equivalently if I = {x{", ..., x;

X' =E(X|Xe G(™))

(Nearly) optimal grids can be computed by optimization algorithms :

> LLoYD’S I ALGORITHM (Randomized) fixed-point method.
o n =0 Initial grid 1% = {x . . xI%
o k = k + 1 Standard step : Let '™ the current grid.

U Z B (x| X € () =B (x| X™ = £

and set ng“] = {xi[k“], i=1:N}

Proposition (Lloyd | always makes the quantization error decrease)

~(k+1) Srk Sk
X =X, < IX=E(XXT) ||, < [IX = X7

r(k+1)_ valued
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Introduction to Optimal Quantization(s) ~ Numerical computation of quantizers

© When d =1 and L(X) is log-concave: exponetially fast convergence (Kieffer, 1982).
Renewal of interest for 1-D quantization for quadrature formulas [Callegaro et al.,
2017).

@ However ... no general proof of convergence when £(X) has a non compact support
and d > 2.

@ Splitting method : initialize Lloyd's | procedure inductively on the size N by
MO ="y fe, }, €, € supp(£(X)).
(see P. -Yu, SICON, 2016). Then

pNFL0) _, (o) (stationary quantizer of full size N...) as k — +oo

Gilles PAGES (LPMA-UPMC) Quantization 19.07.2017 19 / 81



Introduction to Optimal Quantization(s) ~ Numerical computation of quantizers

© When d =1 and L(X) is log-concave: exponetially fast convergence (Kieffer, 1982).
Renewal of interest for 1-D quantization for quadrature formulas [Callegaro et al.,
2017).

@ However ... no general proof of convergence when £(X) has a non compact support
and d > 2.

@ Splitting method : initialize Lloyd's | procedure inductively on the size N by
MO = V=2 g fe 3, €, € supp(L(X)).
(see P. -Yu, SICON, 2016). Then
FN+1.00)

— () (stationary quantizer of full size N...) as k — +oo

o Practical implementation based on Monte Carlo simulations (or a dataset).

M
- X)L (xm
E(g(X)| X" =x) = lim 2o EXTmecon - (xmy g o
M—+ M
Y Lixmecny
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Introduction to Optimal Quantization(s) ~ Numerical computation of quantizers

> COMPETITIVE LEARNING VECTOR QUANTIZATION ALGORITHM (p = 2)

“Simply” a Stochastic gradient descent
o Let Dy : (RY)Y — R, be the (quadratic) distortion function

Dn(x) :=E min ||X —x|* — min
1<i<N xe(RIYW

Gilles PAGES (LPMA-UPMC) Quantization
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Introduction to Optimal Quantization(s) ~ Numerical computation of quantizers

> COMPETITIVE LEARNING VECTOR QUANTIZATION ALGORITHM (p = 2)

“Simply” a Stochastic gradient descent
o Let Dy : (RY)Y — R, be the (quadratic) distortion function

Dn(x) :=E min ||X —x|* — min
1<i<N xe(RIYW

@ As soon as | - | is smooth enough = Dy is differentiable at grids of full size. and if
F = {X1, . ,XN},

oD
8x:v (N=2 (E[(Xi - X>1{X€Cr'(r)}})i:1:N
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Introduction to Optimal Quantization(s) ~ Numerical computation of quantizers

> COMPETITIVE LEARNING VECTOR QUANTIZATION ALGORITHM (p = 2)
“Simply” a Stochastic gradient descent
o Let Dy : (RY)Y — R, be the (quadratic) distortion function
Dn(x) :=E min ||X —x|* — min
1<i<N xE(RI)N
@ As soon as | - | is smooth enough = Dy is differentiable at grids of full size. and if

M= {X1,...,XN},

oD
8X:V (N=2 (]E[(Xi - X>1{X€Cr'(r)}})i:1:N

@ Main point : ‘ VDn(I) = 0 iff T is stationary. ‘

Quantization 19.07.2017 20 / 81
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Introduction to Optimal Quantization(s) ~ Numerical computation of quantizers

> COMPETITIVE LEARNING VECTOR QUANTIZATION ALGORITHM (p = 2)

“Simply” a Stochastic gradient descent
o Let Dy : (RY)Y — R, be the (quadratic) distortion function

Dn(x) :=E min ||X —x|* — min
1<i<N xe(RIYW

@ As soon as | - | is smooth enough = Dy is differentiable at grids of full size. and if
M= {X1, N ,XN},

oD
8X:V (N=2 (]E[(Xi - X>1{X€Cr'(r)}})i:1:N

@ Main point : ‘ VDn(I) = 0 iff T is stationary. ‘

@ Hence we can implement a zero search (stochastic) gradient ... known as

Competitive Learning Vector Quantization
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Introduction to Optimal Quantization(s) ~ Numerical computation of quantizers

Xit1/

e — x[2dPx(€)

mmzé/

Xi—1/2
= Evaluation of Voronoi-Cells, Gradient and Hessian is simple if fx, F, & E;
have closed form ~~ Newton-Raphson.

od>2:
Stochastic Gradient Method: CLVQ

o Simulate &1,&2, ... independent copies of X
o Generate step sequence v1,72,. . .
Usually: step v, = Biﬂ N0 or v%=n=0
o Grid updating n+— n+1:
Selection: select winner index: i* € argmin;|x/" — &n|

n+l . _n n — . n

Learning: {Xi,:rl :7 x;: + Yn(X . fn?*_ dilat(&n; 1 yn)(x,-*)

X=X for j #i™.

Nearest neighbour search: Computational challenge of simulation based stochastic
optimization methods :

1(xcc(r) = NEAREST NEIGHBOUR SEARCH

Highly challenging problem in higher dimension, say d > 4 or 5.
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Figure: A random Quantizer for N'(0, k) of size N = 500 in
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Introduction to Optimal Quantization(s) = Optimal Quantiz

Benett's conjecture (195

Figure: An N-quantization of X ~ N(0; k) with coloured weights: P(X € G;(F(*:M))

(with J. Printems)
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Introduction to Optimal Quantization(s) ~ Optimal Quantizers

Toward Benett’s conjecture: TN = {x; ... x }

X ~ N(0; b).

Figure: x; — P(X € G(T*M) (green Gaussian line); x; — IE|X7X"‘21{XEC-(F(*’N))} (red flat line)
(with J.C. fort) ’

o Local inertia: x; — E|X — X,'|21X€Cl_(|—*,N) ~ Constant.

x2

1
3
e Weights: x; — P(X € G(r'*M) ~ C. (e_TI) (fitting)
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Introduction to Optimal Quantization(s) = Optimal Quantizers

More on Benett's conjecture

> Benett's conjecture (weak form): In any dimension d, LP-optimal quantizers satisfy
M

)r
(

When d = 1 is holds uniformly on compacts sets ([Fort-P.], '03), when d > 1 at least in
a measure sense.

o Local inertia: x; — E|X — x;|? Lyecr=my =

m‘s

o Weights: x; — P(X € Ci(r(*,N)) (

> Strong Benett's conjecture:

o Conjecture on the geometric form of Voronoi cells go U([0,1]¢) (d = 2: regular
hexagon, d = 3 octaedron, d > 4 7777).

@ Generic form of Voronoi cells for A.C. distributions.
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Introduction to Optimal Quantization(s) = Optimal Quantizers

Quantizing Non-Gaussian multivariate distributions

. (]
: ..6%0‘0?\
NN Ot
; LR
OFoERRscEs

5?? BStset . S

: 0‘0%392‘3‘&9&:33333

: SOy

375 350 <325 300 275 -2s0 -225 200 -L75 -150 -125 -100 -075 -0S0 -025 000 025 050 075 L00 125 LS50 175 200 235 250 275 300 325

Figure: A Quantizer for (By,supy¢jo 1] Bt, B std B.M. of size N = 500 in (R2,] - ]2).
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Back to learning
Back to clustering

o If (& )k> ii.dd. & ~ p = L(&) on RY, consider its empirical measure

Mn(w7 d£ Z 6§k

o Assume that M(B(O 1)) = 1. For every w€ (Q, there exists (at least) an optimal
quantizer F™)(w, n) for p,(w, d€). Then (Biau et al., 2008, see [BDL08])

E(ez(rw)(w,n) )) e (1) < Cmin \/Td\/Tw

where C > 0 is a universal real constant.

@ See also (Graf-Luschgy, AoP, 2002, [GLO2]) for other results on empirical measures
(bounded support).
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Quantization and Cubature ~ Cubature formulae

Back to numerical Probability? Quantization for Cubature

> Assume that we have access to £()?r): both the grid and the Voronoi cell weights

F={x,...,xy} and p| =P(X € G(T)), i=1,...,N.
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Quantization and Cubature ~ Cubature formulae

Back to numerical Probability? Quantization for Cubature

> Assume that we have access to £()?r): both the grid and the Voronoi cell weights
F={x,...,xy} and p| =P(X € G(T)), i=1,...,N.

— The computation of IEF()?F) for some Lipschitz continuous F : RY — R becomes
straightforward:

EF(X") =" p F(x).
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Quantization and Cubature ~ Cubature formulae

Back to numerical Probability? Quantization for Cubature

> Assume that we have access to £()?r): both the grid and the Voronoi cell weights
F={x,...,xy} and p| =P(X € G(T)), i=1,...,N.

— The computation of IEF()?F) for some Lipschitz continuous F : RY — R becomes
straightforward:

N
EF(X") =" pl F(x).

i=1

> As a first error estimate, we already know that

IEF(X) —EF(X")| < [Flup EIX — X"|.

Gilles PAGES (LPMA-UPMC) Quantization 19.07.2017
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Quantization and Cubature = Error estimates

Error Estimates

> First order. Moreover, if IV"* is Ll—optimal at level N >1

inf{ sup |[EF(X)—EF(Y)|, card(Y(Q)) < N}

[FlLip<1

= sup [EF(X)—EFX") =E|X = X""| = en(X)

[FlLip<1
i.e. Optimal Quantization is optimal for the class of Lipschitz functions or equivalently.
eLN(X) = Wl (,C()()7 73/\/)
with Py = {atomic distribution with at most NV atoms}.
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Quantization and Cubature = Error estimates

Error Estimates

> First order. Moreover, if IV"* is Ll—optimal at level N >1

inf{ sup |[EF(X) — EF(Y)|, card(Y(Q)) < N}

[FlLip<1

= sup [EF(X)—EFX") =E|X = X""| = en(X)

[Flip<1
i.e. Optimal Quantization is optimal for the class of Lipschitz functions or equivalently.
e,n(X) =MW (E(X), PN).
with Py = {atomic distribution with at most NV atoms}.
> Second order.

Proposition

Second order cubature error bound Assume F € CLl,-P and the grid T is stationary (e.g.
because it is L2-optimal), i.e.
= E(X|X").
Then a Taylor expansion yields
EF(X)-EF(X")| = [EF(X)-EFX")-E(VFX")|Xx-X")|
< [DFlip-EIX — X"

v
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Quantization and Cubature  Error estimates

> Convexity Furthermore, if F is convex, then Jensen's inequality implies for stationary
grids I N
EF(X") <EF(X).

Gilles PAGES (LPMA-UPMC) Quantization



Quantization and Cubature = Error estimates

Quantization for Conditional expectation (Pythagoras’ Theorem)

> Applications in Numerical Probability = conditional expectation approximation.

Gilles PAGES (LPMA-UPMC) Quantization 19.07.2017



Quantization and Cubature = Error estimates

Quantization for Conditional expectation (Pythagoras’ Theorem)

> Applications in Numerical Probability = conditional expectation approximation.

Proposition (Pythagoras’ Theorem for conditional expectation)

Let P(y,du) = L(X|Y = y) be a regular version of the conditional distribution of X
given Y, so that
E(g(X)| Y) = Pg(Y) as.
Then
S AR SE SAIE
[E@X) 1Y) —E@EX) V)] < [elin]X =X, +[|Pe(Y) - Pe(Y)]
<12 112
< lglin| X = XI, + [Pelin | Y - Y1
If P propagates Lipschitz continuity:
[Peluip < [PlLip[glrip:
then quantization produces a control of the error.
Gilles PAGES (LPMA-UPMC) Quantization 19.07.2017
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Quantization and Cubature = Error estimates

Quantization for Conditional expectation

> Sketch of proof. As
L2(P)

Pg(Y)—E(Pg(Y)|Y) L o(Y)

and

E(g(X)|Y)-E(@(X)|V) = (E@(X) | Y)-E(Pe(Y)| V) T (E(Pe(Y)| V) -E(e(X)|7))

so that by Pythagoras' theorem

IE(e(X) 1Y) ~EX)V); = [Pe(Y)~E(PeMIY)I[; +E(Pe (X)) ~E(e(X)IV) 3

< ||Pe(Y) — Pe(Y)) |3+ l&(X) — g(X)|[5.
< [PelllY = Y|P + [eln] X — X[

> If p # 2, a Minkowski like control is preserved

A

< [gluwlIX = X[, + [|Pe(Y) — Pe(V)],

[E(g(X)|Y) —E(g(X)| V)],

IA

b [X — X[, + [P} ~ 71,

I>

Gilles PAGES (LPMA-UPMC) Quantization 19.07.2017
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Application to BSDE

A typical result (BSDE)

> We consider a “standard” BSDE:

T T
Y: = h(X;) —|—/ f(s,Xs, Ys, Zs)ds —/ ZidWs, te [0, T],
t t
where the exogenous process (X:):cpo, 7] is a diffusion
t t
X :X+/ b(s,Xs)ds—i—/ o(s, Xs)dWs, xeR%
0 0

with b, o, h Lipschitz continuous in x, f Lipschitz in (x,y, z) uniformly in t€ [0, T]...
> which is the probabilistic representation of the partially non-linear PDE

deu(t, x) + Lu(t,x) + f(t,x, u(t, x), (Oruo)(t,x)) =0 on [0, T) xRY, u(T,.)=h
with Lg = (Vblg) + 3 Tr(c* D?go).

> ...and its time discretization scheme with step A, = % recursively defined by

Yt,? = h()_(t;,’)7

Yt;: = E(Ytzﬂlftg) + Anf(tI’(17Xt£7E(th+l‘-7:tQ)z<t£)7

- 1 _ 1 _ _

Gp = A B(Yy, Wy, = WollFe) = -E((Yy, = Yg)(We,, - Wy)lF)

where X is the Euler scheme of X defined by
)_<t = )_Qz'(' + b(z,th)An + U(Za)_(t"(')(Wt"

k41

n
k41
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Application to BSDE

> ...spatially discretized by quantization: We “force” Markov property to write a
Quantized Backward Dynamic Programming Principle

Yo = h(X,)
Yo = IEk(\A/kH) + Anﬂ()?k,ﬁk(?kﬂ),&)
~ 1 ~ ~
e = EEk(YkJrI(WtQH - Wy))
where N N
B — E(- | X0).

> By induction

so that R N N
Ek(YkJrl(WtQA — Wip)) = Ex (Vegr (Xiewa ) (W

n
k k+1

- W)
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Application to BSDE
Quanrization tree

> A Quantization tree for (X)k—o, .n: N = No+ ---+ Ny, Ny = size of layer t}.

Figure: A typical (small!) 1-dimensional quantization tree

> At time k (i.e. tx)
Xe, = Projr, (Xy,) with e = {xf, ... ,xk }is a grid of size Nj.
> What kind of tree a quantization tree is ?

@ A quantization tree is not re-combining.
@ But its size can designed a priori (and subject to possible optimization).
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Aopplication to BSDE
Calibrating the quantization tree

> To implement the above Quantized Backward Dynamic Programming Principled we
need to compute repeatedly conditional expectations of the form

E (p(Xer1) | Xe)  and  E (o(Xis1) AW, | Xe)

> First, one has
Nit+1

E (@()A(kﬂ)l{xk:xik}) = > melx™)

j=1

where
75 =P(Xer1 € G(Tkar) & X € Gi(Tx))

so we need to estimate the hyper-matrix [#f]; .k

> Weights for the Z term

E (‘P()?kJrl)AWtkHl{)?k:xlk}) NW*‘P(XJ‘HI)

I
3

where

A Wtk+1>

~W,k R
Tij *E(l{xmec,-(rm)}m{,xk:x,k}
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Application to BSDE

Quantized forward Kolmogorov equations (on weights)

> Note that by elementary Bayes formula

Ni—1
K k ~k—1
p; = IP’(X e G(r )) = Z s
i=1
so that we may compute

E (o(Xe11)1xecry)

E (<p()A<H1)|)A<k) = P(X € Ci(lk))

o> Initialization: Quantize Xy (often Xo = xo).
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Application to BSDE

Grid optimization and calibration (offline)

> Simulability
o Exact Xi = X, when possible.
o A discretization scheme Xi = Xj.
o Let (X7, A tk+1)0<k<"' m=1: M be i.i.d. copies of (X, AWtkH)OSkSn-

> Grid Optimization: Let the sample “pass” through the quantization tree using either
@ Randomized Lloyd procedure.
e or CLVQ.

to optimize the grids Iy at each time level.
> Calibrate %5— and %fj—:

M

~ . 1 m m
R = lim 4> Card{m: X{'€ G(N) & X € G(Tn). 1< m < M}
m=1
and
I m
i = im v ZIE (AW Lxpeciroinix ]

> Embedded optimal quantization: Perform optimization and calibration simultaneously.
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Application to BSDE
Error estimates

Theorem (A priori error estimates (Sagna-P., SPA 2017))

Suppose that all the “Lipschitz” assumptions on b, o, f, h are fulfilled.
(a) “Price”: Then, for every k =0,...,n,

| Ver — VkHz < [l Z W)~ k(b o T f, h)||Xer — )?t’!’

2 n
=o(-2).
P 2 (N%)

(b) “Hedge”:
n—1 _ N n—1 R = %
STA|Cp — Gl < 30 M v — Vi |13+ Ki(b, o, T, f, B)|| X — X
k=0 k=0
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Application to BSDE
Error estimates

Theorem (A priori error estimates (Sagna-P., SPA 2017))

Suppose that all the “Lipschitz” assumptions on b, o, f, h are fulfilled.
(a) “Price”: Then, for every k =0,...,n,

| Ver — VkHz < [l Z W)~ k(b o T f, h)||Xer — )?t’!’

2 n
=o(-2).
P 2 (N%>

(b) “Hedge”:
n—1 _ N n—1 R = %
Z AnHCt,’(7 - Ck”i S Z e(1+[f]Lip)tk Yt£+1 - Yt£+1 ||§ I Kk(b7 g, T7 f7 h)HXt,’(’ - Xt,’(’ 2
k=0 k=0

(c) “RBSDE": The same error bounds hold with Reflected BSDE (so far without Z in f)
by replacing h by hx = h(tf,.) where h(t, X:) is the obstacle process in the resulting
quantized scheme.

What is new (compared to Bally-P. 2003 for reflected BSDE)?
@ +: Z inside the driver f for quantization error bounds.

@ +: Squares everywhere
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Application to BSDE = Distortion mismatch

A new result : distortion mismatch/ L°-rate optimality, s > p

> Let I'%’), N > 1, be a sequence LP-optimal grids.

What about e;(X, I'y) (L°-mean quantization error) when X € L;4(P) for s > p?

Theorem (LP-L°-distortion mismatch, Graf-Luschgy-P. 2005, Luschgy-P. 2015)

(a) Let X € Lp,(P) and let (r%’))Nzl be an LP-optimal sequence for grids. Let
s€ (p,p+d). If
Xe La=t(p), § > 0,

sd
d+p—s

(note that > s and lims_piq ﬁis = +00), then
WNé es(rs\’,’),X) < +o00.

(b) IfPx = f(|x]).Aa(d&) (radial density) then 6 = 0 is admissible.

(c) IFE|X|75— = +oo, then limy N¢es(T'?), X) = +o0.

> Possible perspectives: error bounds for quantization based numerical schemes for
BSDE with a quadratic Z term ?

> So far, an application to quantized non-linear filtering.
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Application to BSDE = Distortion mismatch

Application to non-linear filtering

Signal process (Xk)k>o is an R%-valued Markov chain.
The observation process ( Yk)«>o0 is a sequence of R%valued random vectors such
that

(Xks Y)k>o0 is a Markov chain.

The conditional distribution
L(Yi| Xe=1, Yi—1, Xk) = gx(Xk=1, Ye—1, Xk, ¥) Aq(dy)

@ Aim : compute

Mypn(dh) = B(Xic € | Yo =y, -, Yo = y2)

o Kallianpur-Streibel formula: set y = yo.n = (yo, ..., ¥n) a vector of observations
Ty.nf
Myn(dx) = My f = 220
Y, ( ) Y 7Ty,n1

with the normalized filter 7y, , » defined by

Typmnf = E(F(Xo)Lyonn)  with Ly, 0= [ ] (X1, ye—1, Xe, y),

k=1

solution to both a forward and a backward inductionsbased on the kernels

Hy ikh(x) = E(h(Xk)gk(x; yk—1, Xi; yi)|[ X1 = x),  Hy,of (x) = E(f(X0)),
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Application to BSDE Distortion mismatch

o Forward: Start from
my,0 = Hyo

and define by a forward induction

7Ty’kf:7'l'y7k71H7kf, k:l,‘..,n.

@ Backward: We define by a backward induction

uy,n(F)(x) f(x),
Uy’k_l(f) = Hy,kuy,k(f), k:O,...,n.

so that
mynf = uy,—1(f)

This formulation is useful in order to establish the quantization error bound.
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Application to BSDE = Distortion mismatch

Quantized Kallianpur-Streibel formula (P.-Pham (2005))

o Quantization of the kernel:
Hoo o (6) — Fo i (x) = E(F(Xi) (%, vt Xio v1) X1 = )
@ Forward quantized dynamics (1):
Tyuf =7k 1Hyof,  k=1,...,n
o Forward quantized dynamics (I1):

~ ~ 7z nf
A, (dx) = M, .f = "0

ﬂ-.VO:m”l

(finitely supported unnormalized filter satisfies formally the same recursions)

o Weight computation: If Xo =X, Ty = {xi,....x5,} then

A,.q(dx) = ZI‘I WO with T, =Tl 0(Lry)-
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Application to BSDE = Distortion mismatch

From Lip to 6-Liploc assumptions

@ Standard Hyipassumption for the conditional densities gk(.,y,.,y’): bounded by K,
and Lipschitz continuity.

|g‘<(X7an/7y/)_gk(?7y7?,7y,)| < [gk]LiP(yay/)(‘X_?|+|X/_S<\/|)‘

@ The kernels Pi(x,d&) = P(Xx € d€ | Xk—1 = x) propagate Lipschitz continuity with
coefficient [Px]rips such that

max [Pk]Lip < +00
k=1,...,n

Aim: Switch to a 6-local Lipschitz assumption (6 : R — Ry, T 400 as |x| T +00).
Ih(x, ') = h(%, &) < [Hloc (1x — %] + X' = %) (1 +60x) + 0() + () + 0(3"))

o New (Hiiploc) assumption: the functions gi are still bounded by K, and 6-local
Lipschitz continuous

lgk(x,y, X", ¥y )—eu(X, v, X', y')| < [gklioc(y, ¥) (Ix=%|+|x"=X'|) (14+0(x)+0(x")+0(X)+0(X"))

o The kernels Py(x, d&) = P(Xk € d€| Xk—1 = x) propagate 0-local Lipschitz
continuity with coefficient [Pklioc < 400.
® The kernels Pi(x, d§) propagate 6-control: maxo<k<n—1 Pk(0)(x) < C(1+ 6(x)).

Typical example: X = _f,}l (Euler scheme with step A, = L), 6(¢) = |£]*, a > 0.
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Application to BSDE Distortion mismatch

Theorem (Sagna-P., SPA '17)
Let s€ (1,1+ 2) and 0(x) = |x|*, a€ (0, ).
s—1 d

Assume (Xi) and (gk) satisfy (Hfiph,c) (in particular (X«) propagates 0-Lipschitz

2ds
continuity) and assume X, € L32-25, k =0,...,n. Then

My nf — Ty nf” < Bi(f,y) [ Xk — Xell3s (2)
¢2( Z f
<[ X—XiI3< kN, @ (Mismatch!!)
with R
¢n(}’) =mnl and d’n()/) = %y,nla
BL(,y) := 2[PR " O + 20| 1P Rovk + [|Flloo R
where
s n—k
8571 Msn m— 2
Ru = =z [gesalfoe + e + (;[P]loﬁ(l + [Phoc)lgitmlioc) |
and

n A X A
M! =2 k:n&e'\‘)'(‘n(E(Q(Xk)sﬂ) 4 E(Q(Xk)S—l).

v
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Application to BSDE = Distortion mismatch

Numerical illustrations (3)

@ Risk-neutral price under historical probability (B&S model, Euler scheme)
dy; = (rYt + uZ) dt + ZydW,
o
with
Y: = h(X;) = (Xt — K)+.
> Model parameters: r =0.1; T =0.1; 0 = 0.25; S = K = 100.
> Quantization tree calibration: 7.510° MC and NbLloyd = 1.

> Reference callgs(K, T) = 3.66, Zo = 14.148. If p€ {0.05,0.1,0.15,0.2},
o n=10and Ny = N =20 : Q-price = 3.65,20 = 14.06.

o n=10 and Ny = N = 40, Q-price = 3.66, Zy = 14.08.
> Computation time :
— 5 seconds for one contract.
— Additional contracts for free (more than 10°/s).
> Romberg extrapolation price = 2 x Q-price(N:)-Q-price(N1) does improve the price
(and the "hedge”).
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Application to BSDE = Distortion mismatch

Numerical illustrations

@ Bid-ask spreads on interest rates :

dY, = (rYt + 5= LZe+ (R = r)min (Yt - éo)) dt + ZedW,

with
Y, = h(X;) = (X7 — K1)+ —2(X; — K2), K1 =095, K» =105.
uw=0.05r=0.01, 0 =02, T=0.25 R=0.06
> Reference values: price = 2.978, Z) = 0.553.
> Crude Quantized prices:

o n=10and Ny = Ny = 20 : Q-price = 2.96, Z, = 0.515.
o n=10 and N, = N> = 40, Q-price = 2.97, Zy = 0.531.

> Romberg extrapolated price = 2 * Q-price(N,)-Q-price(N;) ~ 2.98

and Romberg extrapolated hedge Zo ~ 0.547.
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Application to BSDE = Distortion mismatch

Multidimensional example (due to J.-F. Chassagneux)

> Let W be a d-dimensional B.M. and let
e =exp(t+ W!+ ...+ W),

> Consider the non-linear BSDE
er

dXt - th7 7dYt == f(t, Yt,Zt)dt - Zt . th, YT -
1+ er

with f(t,y,z) = (2 + ...+ za) (y — 32).

> Solution:

-« Zi=
]-‘i’ei.*7 ! (1+et)2.

We set d = 2,3 and T = 0.5, so that

Ye

Yo=05 and Zj=024 i=1,...,d.
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Application to BSDE Distortion mismatch
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Figure: Convergence rate of the quantization error for the multidimensional example). Abscissa axis: the size
N =5,...,100 of the quantization. Ordinate axis: The error | Yy — Y0N| and the graph N — a/N + b, where
3 and b are the regression coefficients. d = 3.
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Otbher results

Local behaviour of optimal quantizers (back to Benett's conjecture)

Theorem (Local behaviour: toward Benett’s conjecture, Graf-Luschgy-P. AoP, 2012)

(a) If Px is absolutely continuous on RY then

_ P
e (X) — &by (X) = N~(+8),
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Otbher results

Local behaviour of optimal quantizers (back to Benett's conjecture)

Theorem (Local behaviour: toward Benett’s conjecture, Graf-Luschgy-P. AoP, 2012)
(a) If Px is absolutely continuous on RY then
_ 2
e (X) — &by (X) = N~(+8),

(b) Upper-bounds: Suppose Px = ¢.\g ¢ is essentially bounded with compact support
and its support is peakless

Vse (0,%), Vxe supp(Px), Px(B(x,s)) > cli(B(x,s)), ¢ > 0.

maxN PX(C,-(F*’N)) < il\ll’

Jc,z€[1,00) s.t. YNEN,{ ¥ e
max / € — xi||® dPx(d€) < eN~CFa),
x€MN Jei(r )
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Otbher results

Local behaviour of optimal quantizers (back to Benett's conjecture)

Theorem (Local behaviour: toward Benett’s conjecture, Graf-Luschgy-P. AoP, 2012)

(a) If Px is absolutely continuous on RY then
(142
en (X) — eby (X) =< N~0+8),

(b) Upper-bounds: Suppose Px = ¢.\g ¢ is essentially bounded with compact support
and its support is peakless

Vse (0,%), Vxe supp(Px), Px(B(x,s)) > cli(B(x,s)), ¢ > 0.

max IF’X(C,-(F*’N)) < il\ll’

xper*N

Jec,ce[1,00) s.it. VNEN, Lap
max / € — xi||® dPx(d€) < eN~CFa),
C(r*’N)

x;er*N

(¢) Lower bounds V ne N, min / |l€ — al|P dP(¢) > ng(H%).
a Ca(

er=N r=N)

b
e(a) 9t

> Benett’s conjecture (1955): ]P’(Ca(l'*’N)) ~ o B ae TN as N — oo

> Various extensions to unbounded r.v., including uniform results for radial decreasing
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Other results

QUANTIFICATION QUADRATIQUE OPTIMALE DE TAILLE 50 DE A/(0;1)

0.45
0.4 —
0.35F

0.3

A

-a -3 -2 -1 o 1 2 3

50) (',{/550)_ p (50))

o Le quantifieur optimal de taille 50 : STy

- Les poids : z; +— P (:\ e O (20 :)

—— L’inertie locale : x; +— (&— IESU))Q]P)X (d€)
JCi (250

Figure: a — P(X € C(X3'V), X ~ N(0;1), N =50
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[Gobet-P.-Pham-Printems '07].

o Quantization based Universal Stratification (variance reduction) [Corlay-P. '10].
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Other results ~ Applications

First conclusions on optimal (Voronoi) vector quantization

> Download free pre-computed grids of N(0; /) distributions at the URL

www.quantize.maths-fi.com

ford=1,...,10 and N =1,...,10* and many others items related to optimal
quantization.

@ Voronoi quantization is optimal for “Lipschitz approximation”
@ Paradox: it does not preserve regularity
@ Second order (stationarity) : (almost) only optimal grids = lack of flexibility

@ As for cubature: quantization vs uniformly distributed sequences?
(n)n>1, [0, 1]%valued sequences s.t.

N
1 RrY
N 206 = Mo

i=1

Q@ RYvs[0,1]9 [1-0].

@ Lipschitz continuity vs Hardy & Krause finite variation on [0,1]9, [2 —0].
© Sequences of N-tuples vs sequences  [2 — 1] (QMC!).

@ Companion weights vs no weights  [2 — 2].

© Rates n~d vs log n x n=d ( Stoikov, 1987, price for uniform weights!) [3 — 2].

How to “fix" (3) without affecting (4): Greedy quantization.

Gilles PAGES (LPMA-UPMC) Quantization 19.07.2017
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Greedy auantization

What greedy quantization is the name for?

> Switch from a sequence of N-tuples toward a sequence of points (ay)n>1 such that
VN >1, AN = {a1,...,a,} produces “good” quantization grids.
Among others, the first questions are:

o How to proceed theoretically?

How “good”?

@ How to compute them?

How flexible can they be?
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Greedy auantization

Level-by-level optimization

Let X € L?,(Q, A, P) be a random vector with distribution P, = .
> Optimal greedy quantization: We define by induction a sequence (ay)n>1 recursively
by
a” =9, VN>0, anae argmingekdep(a(/\’) U {¢}, X).
> It is a natural and constructive way to answer the above first question.

> Is it the best one? No answer so far. ..

> Note that a; always exists and
ap is the LP(P)-median

(always unique if p > 1).

Gilles PAGES (LPMA-UPMC) Quantization 19.07.2017



Greedy auantization
Existence of an LP- optimal greedy quantization sequence

Proposition (Assume card (supp(u)) = +oco and X € LP(P))

(a) Existence: There exists an LP-optimal greedy quantization sequence (an)n>1 and
(ep(a™, X)), ., is (strictly) decreasing to 0 (and a1 is an LP-median).
(b) Space filling: Let g > p. If X& L] ,(P). Then, any LP-optimal greedy quantization

sequence (an)n>1 satisfies
Ii,(ln e,(a™, X) =0.

57 / 81
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Greedy quantization is rate optimal

Greedy quantization is rate optimal

> Main rate optimality result.

Theorem (Rate optimality, Luschgy-P. '15)
Let pe (0,+0), X € LP(Q, A,P) and let p =P, . Let (an)n>1 be an LP-optimal greedy
quantization sequence.

(a) Let p' > p. There exists C, v 4 € (0,+00) such that, for every R%-valued X r.v.
YN>1, e(a™, X) < Cyopaop(X). N3

(b) If 1 = p(€)Xa(dE) = F(€]0)Xa(dE), |.lo (any) norm on R and f =R, — R,
bounded and non-increasing outside a compact, and X lies in L? and

Jra f(‘§|0)ﬁ”d)\d(§) < +oo0, then

lim sup N ep(a™, X) < +o0.
N

Condition in (b) is optimal since, if u = v.\d,

) _ » (d+p)/d
liminf N4 e, n(X) = Qp.1 X (/ /(@) d)\d) .
RrRd

> Main tool: Still micro-macro inequalities.
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Greedy quantization is rate optimal
Flavour of proof

> First we not that by definition of the sequence (an)n>1,
Vye Rdv A5\7)+1 = ep(a(N)7X)p - ep(a(NH)) > ep(a(N)aX)p - ep(a(N) Uiy} X)?
So, we start from the micro-macro inequality (0 < b < % fixed parameter).

VyeRY, e(a™, X)" — ep(a™ U {y}, X)" > Coud(y,a™)u(B(y, bd(y,a™))).
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Greedy quantization is rate optimal
Flavour of proof

> First we not that by definition of the sequence (an)n>1,
Vye Rdv A5\7)+1 = ep(a(N)7X)p - ep(a(NH)) > ep(a(N)aX)p - ep(a(N) Uiy} X)?
So, we start from the micro-macro inequality (0 < b < % fixed parameter).

VyeRY, e(a™, X)" — ep(a™ U {y}, X)" > Coud(y,a™)u(B(y, bd(y,a™))).

> Let u =P, . Integrating w.r.t. a distribution v(dy):

As\ﬁl > G //1{|5 y|<bd(y,a d()’v )V(dy)u(d{)

> Cp!b//1{|s—y|de(y,a<N>>,d(y 20> 1 age Ay, @ ™)Pw(dy)p(d€)
> C;,b// L1y by, o), dly, s> 2 ate oty (€ @)y )u(d€)
> C 1 b d(¢, a™)Pu(dy)
= b {I&*ylﬁmd(&a(”))} ;

A2 = Go [v(B(6 5y ™)) d(E SV u(de)

still by Fubini's theorem.
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Greedy quantization is rate optimal

> Let be (0,3) be such that ;25 = .

K

) = e a sy

d(dX).

Then, if p < }x — a

, 1
V(B('£7p)) > pd X [g(&) =K Vdm}

Noting that d(¢&,a™)) < d(x,a1) = |x — a1 yields

ep(a, X)P — (a8 > ¢ / d(€, 3™ g()ule).
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Greedy quantization is rate optimal

> Let be (0,3) be such that ;25 = .
K
v(dx) = (x = a1 £ 5/4)77 Ad(dx).
Then, if p < %|
1
> d = ! ——
V(B(&p)) Zp X [g(f) K Vd(|€781| +1)d+n]

Noting that d(¢&,a™)) < d(x,a1) = |x — a1 yields

oo™ XY = (a2 ¢ [ d(e.a"Y g(Oule).

> Inverse Minkowski Inequality implies W|th d <land —§ <0, yields

ptd d
P

Az ¢ | [ ated®yuae]| T | [ fuge)|

=ep(alM), x)p+d

Now
/ () Fu(e) = / € — anPE u(E) =EIXPHY < too

so that
ep(a(N)>X)p - ep(a(NH))p > Cox - ep(a(N): X)p+d~
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Greedy quantization is rate optimal

> The sequence (e,(a™), X)P)n>1 being non-negative and | 0, one easily derives the
announced conclusion:

ep(a™, X)P < RN
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Greedy quantization is rate optimal

> The sequence (e,(a™), X)P)n>1 being non-negative and | 0, one easily derives the
announced conclusion:
d
ep(a™, X)P < EN" 5.

> The universal bounds follows by a careful handling of the real constants and a scaling
argument.
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Greedy quantization is rate optimal '~ Distortion mismatch for optimal greedv auantization seauences

Distortion mismatch
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Greedy quantization is rate optimal '~ Distortion mismatch for optimal greedv auantization seauences

Distortion mismatch

> Let X € LP(IP). As long as g€ (0, p], any optimal greedy sequence (a,)n>1 remains
L9-rate optimal for the L%-norm (by monotony).

The distortion mismatch problem amounts to the following question

What happens if s > p?

Gilles PAGES (LPMA-UPMC) Quantization 19.07.2017



Greedy quantization is rate optimal '~ Distortion mismatch for optimal greedv auantization seauences

Distortion mismatch

> Let X € LP(IP). As long as g€ (0, p], any optimal greedy sequence (a,)n>1 remains
L9-rate optimal for the L%-norm (by monotony).

The distortion mismatch problem amounts to the following question
What happens if s > p?

> It was first addressed for sequences of optimal N-quantizers in joint paper with S. Graf
and H. Luschgy [Graf-Luschgy-P., ESAIM P&S, '08].

> A first necessary condition to preserve the rate:

a s
liminf N9 e n(X)* > Qs </ fﬁpdxd> </ flfmdAd).
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Greedy quantization is rate optimal '~ Distortion mismatch for optimal greedv auantization seauences

Main greedy mismatch result

Theorem (Greedy Distortion mismatch, Luschgy-P. '15)

Let X € LP*(P) an R?-valued random vector and let g€ (p, p + d] and let (an)n>1 be an
LP-greedy optimal sequence. If s€ [p,p + d) and

Xe Las—t(p).

Then

_P_ _1
eq(a™, X) < Goas || X — aIH"t::a IX =2l ) x V72
+p—

Moreover if ¢ is essentially quadratic decreasing, it still works for 6 =0 (e.g.
X ~ N(m,X).

> So far, no such universal bound for optimal quantization though mismatch holds true.

> If X has a compact support the rate optimality (mismatch) holds for every g > p
(hence for every g > 0).
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Greedy quantization is rate optimal Distortion mismatch for optimal greedy quantization sequences

> Inverse Minkowski Inequality implies with Holder exponents 5 < land -9 <0,
yields

ptd d
s

Az ¢ | [ate.ayue] [ [ g(é)’%u(f)]

=eq(alN), x)p+d

la

[ 2u0)] T Ex < o
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Greedy quantization is rate optimal Distortion mismatch for optimal greedy quantization sequences

> Inverse Minkowski Inequality implies with Holder exponents 5 < land -9 <0,
yields

ptd d
s

AMJEC{/H@JWVM@]QL/AQﬁM@ﬂ

=eq(alN), x)p+d

d

[ 2u0)] T Ex < o

> Hence

Al

N d
Nt 2 Cpﬁ«,Xeq(a( )vX)IH

so that, using that k — e,(a®), X)P™ is decreasing,

2N 2N
Neg(a®, X)PH < 3 eg(a®, X)PH < N AP < ey (e, X)PH
k=N+1 k=N+1

Finally

eq(a(ZN)7X)p+d < %ep(a(N),X)erd - Cfolfg,
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Greedy quantization is rate optimal '~ Distortion mismatch for optimal greedv auantization seauences

Numerical computations when d =1, u = N(0;1)

> Graph N — (2N +1)?e3 (a®"™) 1), N =1,...,2'° = 1024 where y = N'(0;1).

4.2 T T T T T

L L L I L
0 200 400 600 800 1000 1200

Figure: Graph N — (2N +1)2e3 (a4 A7(0;1)), N =1,...,210 = 1024,
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Greedy quantization is rate optimal '~ Distortion mismatch for optimal greedv auantization seauences

Unexpected (?) behavior

> As limsup N?e3 (a(N), pt) = limsup(2N + 1)°e3 (a(zNH), 1) since €3 (a™, 1) | 0,
N N

. 3 :
lim inf Ne3 (™, N(0;1)) ~ 2.763 - > 5V =lim N?e3 (N(0;1))

since 3/ ~ 2.65868.....

> Hence, we cannot derive from the empirical measure theorem ([GL0O], '00):

1 N
N > 6, 277

k=1

the asymptotic behavior if the empirical measure remains an open question. ..
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Greedy quantization is rate optimal

Distortion mismatch for optimal greedv auantization seauences

Normalized mean Quantization error N — v/Ney(at™), N(0, I)),

N=1,...,1000

Implementing the randomized Greedy Lloyd's | algorithm with

23

22

21

19

18

17

16

Gilles PAGES (LPMA-UPMC)

M= M(N)=1000x N, N=1,...,1000.
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Functional Quantization
Toward Functional Quantization

What remains tue when R? ~ (H, |.|4)?
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Functional Quan

505 s0.25 s0.ss s0.65 s0.85 s
Figure: A N = 20-quantizers of Brownian motion vs some Brownian paths......

(with S. Corlay), [CP15]

W is Gaussian process with independent increments
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Functional Quantization

50.5%

$-0.5%

$-1.5%

508 50.5% 513 5155 25 5255 535

(with S. Corlay)
t
X :/ e AW, || dXe = —Xedt + dWh, Xo ~ N(O; %)

— 00
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Functional Quantization

50.55 fj N
N
’ {

$-0.5%

L L ’
“M\ V\w“‘“%h} ?‘/N

s-15
J
$-1.18 1 1 1 1
508 $0.25 50.45 50.65 50.85 515

Figure: A N = 20-quantizers of Brownian bridge vs some paths......

(with S. Corlay)

X = W — tWi, te[0,1]
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Functional Quantization

non Gaussian diffusion processes? etc.

Some questions
> What is the connection between blue chaotic lines and pink smooth lines?
> How to get the pink smooth lines from the blue chaotic lines?

> Can we replace the blue chaotic lines by the pink smooth lines (for numerics, in
a SDE or in a SPDE)?

o> Can we take advantage of the pink smooth lines to simulate the blue chaotic
lines?
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Functional Quantization

Optimal Functional Quantization (of the Brownian motion)

-
o H = L2 = (0. T) do). (fle) = [ F(D(t)de, I7ly = /(I
0
> The Brownian motion W: centered Gaussian process with covariance operator
Cwlf): Fr (¢ H/ (s A\ £)F(s)ds).
0,T]?

s

> Diagonalization of Cw yields the Karhunen-Loéve system (= CPA of W)

e,',”(t):x/ﬁsin((n—é)w%), >\,,:<T1)> . n>1

7r(n—§

[

W, > (wie), = Ve (1)

n>1 n>1

& ~ N(O1), n>1, iid
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Functional Quantization

Sharp (quadratic) rate

& THEOREM (Luschgy-P., JFA [LP02] (2002) and AoP [LP04] (2004),
EJP [LP14](2014)) Let oV, N > 1, be a sequence of optimal N-quantizers.

>a¥=(al,-- al) C span{elvv,...7egt/,v)} with
d(N) = logN/2 and d(N) = |[logN| is admissible
> Conjecture: dmin(N) ~ log N.

— N V2 o1
W, L2) = |W — W ||, ~ X2 Y2 _ /0.2026... = 0.4502...).
B> ey (W, 2) = | e~ o (2 = V02026 = 0.4502..)

> Reduction to finite dimension (Pythagoras)
/\()IN AL
\w-w ||§ = ||z~ ZB(N)H? + Zkzd(N)H Ak

(Ow) d(N) R
Z=2Z0~ QN(O,XN) & [ Z-2°||, = en(Z,RIM)
k=1

d(N)

Then we' = Z(?B(N))ke)f‘/.
k=1

19.07.2017 75 /81
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Functional Quantization

Optimal Quadratic Functional Quantization of Gaussian processes

THEOREM (Luschgy-P., JFA [LP02] (2002) and AoP [LP04] (2004), EJP [LP14](2014))
Let X = (X:)ccpo,1) be a Gaussian process with K-L eigensystem (AX, e),>1. Let o,
N > 1, be a sequence of quadratic optimal N-quantizers for X. If

Afw% as n — oo (b>1).

>a = (al, - al) C span{ef,...,ejx(,v)} with

1 2 2
X > _ - £ _ 14 . P
d*(N) = 5/0-D b logN and d(N)= Lb log N| is admissible

> Conjecture: d*(N) ~ %Iog N].
1
Sl b* 2 1
> e (X, 3 ) =X - X N\/E( ) — .
N( [0,1]) ” ||2 (b— 1)b71 (2 |og N)%
<
> Extensions to AX ( > > ©(n), ¢ regularly varying, index —b < —1.
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Applications to classical (centered) Gaussian processes

> Applications to classical (centered) Gaussian processes
Sharp rates for ey(X, L2) available for

- Brownian bridge, Ornstein-Uhlenbeck process, Gaussian diffusions (same rate).
— Fractional Brownian motion with Hurst constant H € (0,1)

(e}

H j2
eN(W ,LT) (IogN)H.

— Brownian sheet, m-fold integrated Brownian motion, etc.
EXTENSIONS TO p # 2 (methods are different)
— Brownian motion and fractional Brownian motion: Dereich-Scheutzow (2005) based on
self-similarity properties, random quantization, small balls
Sp

(W LYy~ 2
ew (W7, L7) (log N)F
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Functional Quantization

> Good news: (Oy) is a finite dimensional optimization problem.
> Bad news: A1 = 0.40528... and X, = 0.04503... =~ \;/10 !

> A way out:
d(N)
N-optimal quantization of N(0,1
(On) = ptimal g (§1 (0.1)
for the covariance norm |(z, ..., zgm))|* = ZZ(:’\{) Az
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