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Introduction

Credits & acknowledgements

This lecture is largely based on the contents of the following Master- and PhD-level
courses offered by the Chair of Risk, Safety and Uncertainty Quantification:

• Uncertainty Quantification in Engineering
Master Course at ETH Zürich
(B. Sudret and S. Marelli) www.rsuq.ethz.ch/teaching/uncertainty-quantification.html

• Structural Reliability and Risk Analysis
Master Course at ETH Zürich
(B. Sudret and S. Marelli) www.rsuq.ethz.ch/teaching/structural-reliability.html

• Uncertainty Quantification and Data Analysis in Applied Sciences
PhD Block Course at Computational Science Zürich (first block: Uncertainty
Quantification and Reliability Analysis)
(B. Sudret and S. Marelli) www.zhcs.ch/education/block-course-1/
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Introduction Computational models in Engineering

Computational models in engineering

Complex engineering systems are designed and assessed using computational
models, a.k.a simulators

A computational model combines:

• A mathematical description of the physical
phenomena (governing equations), e.g. mechanics,
electromagnetism, fluid dynamics, etc.
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Complex engineering systems are designed and assessed using computational
models, a.k.a simulators

A computational model combines:

• A mathematical description of the physical
phenomena (governing equations), e.g. mechanics,
electromagnetism, fluid dynamics, etc.

• Discretization techniques which transform
continuous equations into linear algebra problems

• Algorithms to solve the discretized equations
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Introduction Computational models in Engineering

Computational models in engineering

Computational models are used:
• Together with experimental data for calibration purposes

• To explore the design space (“virtual prototypes”)

• To optimize the system (e.g. minimize the mass) under performance
constraints

• To assess its robustness and its reliability w.r.t. uncertainty

Remarks:
• Engineering models are usually very expensive: O(1− 20 hrs/run)

even with HPC facilities
• They are often proprietary codes/workflows, hence black-boxes

S. Marelli (Chair of Risk, Safety & UQ) Metamodels in UQ CEMRACS2017 – Marseille 5 / 46



Introduction Computational models in Engineering

Computational models in engineering

Computational models are used:
• Together with experimental data for calibration purposes

• To explore the design space (“virtual prototypes”)

• To optimize the system (e.g. minimize the mass) under performance
constraints

• To assess its robustness and its reliability w.r.t. uncertainty

Remarks:
• Engineering models are usually very expensive: O(1− 20 hrs/run)

even with HPC facilities
• They are often proprietary codes/workflows, hence black-boxes

S. Marelli (Chair of Risk, Safety & UQ) Metamodels in UQ CEMRACS2017 – Marseille 5 / 46



Introduction Computational models in Engineering

Real world is uncertain

• Differences between the designed and the real
system:

• Dimensions (tolerances in manufacturing)

• Material properties (e.g. variability of the
stiffness or resistance)

S. Marelli (Chair of Risk, Safety & UQ) Metamodels in UQ CEMRACS2017 – Marseille 6 / 46



Introduction Computational models in Engineering

Real world is uncertain

• Differences between the designed and the real
system:

• Dimensions (tolerances in manufacturing)

• Material properties (e.g. variability of the
stiffness or resistance)

• Unforecast exposures: exceptional service loads, natural hazards (earthquakes,
floods, landslides), climate loads (hurricanes, snow storms, etc.),
accidental/malevolent human actions (explosions, fire, etc.)
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Introduction General UQ framework

Global framework for managing uncertainties

Physical
Model

Model(s) of the system
Assessment criteria

Probabilistic Input
Model

Quantification of
sources of uncertainty

Uncertainty
Analysis

Uncertainty propagation

Random variables Computational model Moments
Probability of failure

Response PDF

Iteration
Sensitivity analysis
Bayesian inversion

Iteration
Sensitivity analysis
Bayesian inversion

Sudret, B. (2007). Uncertainty propagation and sensitivity analysis in mechanical models - Contributions to structural reliability and stochastic
spectral methods. Habilitation à diriger des recherches, Université Blaise Pascal, Clermont-Ferrand
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Introduction General UQ framework

Uncertainty propagation

Goal: given an input random vector X ∼ fX , estimate the uncertainty/variability
of the quantities of interest (QoI) Y =M(X) due to the input uncertainty fX

• Output statistics, i.e. mean, standard deviation,
etc.

µY = EX [M(X)]

σ2
Y = EX

[
(M(X)− µY )2]

Mean/std.
deviation

µ

σ

• Distribution of the QoI
Response

PDF

• Probability of exceeding an admissible threshold
yadm

Pf = P (Y ≥ yadm)

Probability
of

failure
Pf
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Introduction Monte Carlo Simulation and Metamodels

Monte Carlo simulation

Methodology
• The input random vector X is sampled according to its prescribed joint PDF

fX(x)

• For each sample point x(i), the model response is evaluated, say
y(i) =M(x(i))

• The sample set of response quantities Y = {M(x(i)) , i = 1, . . . , N} is
processed, e.g.:

- Moments analysis
- PDF estimation with kernel smoothing
- Descriptive statistics

Main drawback: Monte Carlo simulation requires a large number of
samples N to achieve proper convergence (i.e. typically NMC ∼ 104−6)
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Introduction Monte Carlo Simulation and Metamodels

Meta models
Definition

• A metamodel is an inexpensive to evaluate analytical function that
accurately approximates a computational model

• It is built from a small sample of point-wise model evaluations (black-box), the
experimental design (ED):

X =
{
x(1), ...,x(NED)} , Y =

{
M(x(1)), ...,M(x(NED))

}
Selected metamodelling techniques

Polynomial chaos expansions (PCE):

MPC(X) =
∞∑
j=0

ajΨj(X)

Gaussian process modelling (Kriging):

MGP (X) = βTF (X) + σ2Z(X, ω)
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Introduction Monte Carlo Simulation and Metamodels

Metamodels for Uncertainty Propagation

Metamodels as substitutes (surrogates)

• Sample an experimental design in the input domain ΩX :

X =
{
x(1), ...,x(NED)

}
, Y =

{
M(x(1)), ...,M(x(NED))

}
• Calibrate a metamodel such that M̃(X) ≈M(X)
• Substitute the model M(X) with its surrogate M̃(X) and perform the

MCS analysis

The principle

• MCS with a metamodel is inexpensive (∼ 106 runs · s−1 per core)
• The computational cost of MCS is traded for the cost of training the

surrogate: NED � NMC
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Gaussian process modelling Gaussian processes and auto-correlation functions

[Very] Short introduction to Gaussian processes

Gaussian processes in a nutshell
Consider a probability space (ΩZ , FZ ,PZ) and x ∈ RM . A stochastic process Z(x)
is Gaussian i.i.f. for any finite set C ∈ RM the collection of random variables Z(C)
has a Gaussian joint distribution

Notes on Gaussian processes

• A Gaussian process is entirely defined by its mean and covariance functions:

µ(x) = E [Z(x)]

k(x,x′) = Cov
[
Z(x), Z(x′)

]
• The covariance function k(x,x′) a positive definite kernel, usually stationary:

k(x,x′) = f(|x− x′|)
• k(x,x′) = σ2R(x,x′), where R(x,x′) is the auto-correlation function and σ2

is the process variance
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Gaussian process modelling Gaussian processes and auto-correlation functions

Role of the covariance kernel

Consider the following parametric Gaussian covariance kernel

k(x,x′) = σ2 exp

(
−

M∑
i=1

(
xi − x′i
θi

)2
)

where {θi, i = 1, . . . , d} are scale parameters and σ2 is the process variance

Covariance kernel Random process trajectories

Illustrations taken from Dubourg (2011)S. Marelli (Chair of Risk, Safety & UQ) Metamodels in UQ CEMRACS2017 – Marseille 13 / 46



Gaussian process modelling Gaussian processes and auto-correlation functions

Gaussian process modelling (Kriging)

Gaussian process modelling (a.k.a. Kriging) assumes that the map y =M(x) is a
realization of a Gaussian process:

Y (x, ω) =
p∑
j=1

βj fj(x) + σ Z(x, ω)

where:
• f = {fj , j = 1, . . . , p}T are predefined (e.g. polynomial) functions which

form the trend or regression part

• β = {β1, . . . , βp}T are the regression coefficients

• σ2 is the variance of Y (x, ω)

• Z(x, ω) is a stationary, zero-mean, unit-variance Gaussian process

E [Z(x, ω)] = 0 Var [Z(x, ω)] = 1 ∀x ∈ X

The Gaussian measure artificially introduced is different from the
aleatory uncertainty on the model parameters X
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Gaussian process modelling Gaussian processes and auto-correlation functions

Assumptions on the trend and the zero-mean process

Prior assumptions are made based on the existing knowledge on the model to
surrogate (linearity, smoothness, etc.)

Trend
• Simple Kriging: p = 1, f1 = 1 known constant β1

• Ordinary Kriging: p = 1, f1 = 1, unknown constant β1

• Universal Kriging: fj are ha set of arbitratry functions,
e.g.

{
fj(x) = xj−1, j = 1, . . . , p

}
in 1D

Type of auto-correlation function of Z(x)
A family of auto-correlation function R(·; θ) is selected:

Cov
[
Z(x), Z(x′)

]
= σ2 R(x,x′; θ)

e.g. square exponential, generalized exponential, Matérn, etc.
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Gaussian process modelling Kriging in a nutshell

Kriging in a nutshell

Data
• Given an experimental design X =

{
x(1), . . . ,x(NED)} and

y =
{
y(1) =M(x(1)), . . . , y(NED) =M(x(NED))

}
Assumption

• We assume that M(x) is a realization of the Gaussian process Y (x, ω) such
that the values y(i) =M(x(i)) are known on

{
x(1), . . . ,x(NED)}

Goal
• Of interest is the prediction at a new point x0 /∈ X , denoted by

Ŷ0 ≡ Ŷ (x0, ω), which will be used as a surrogate of M(x0)
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Gaussian process modelling Kriging in a nutshell

Joint distribution of the observations

• For each point x(i) ∈ X , Y (i) ≡ Y (x(i)) is a Gaussian variable:

Y (i) =
p∑
j=1

βj fj(x(i)) + σZi = fT
i · β + σ Zi Zi ∼ N (0, 1)

• The joint distribution of Y is Gaussian:

Y (i) ∼ N (fT
i β, σ

2) Cov
[
Y (i), Y (j)] = σ2 R(x(i),x(j); θ)

that is:
Y = NNED (Fβ , σ2 R(θ))

• Regression matrix F of size
(NED × p)

Fij = fj(x(i))
i = 1, . . . , NED, j = 1, . . . , p

• Correlation matrix R(θ) of size
(NED ×NED)

Rij(θ) = R(x(i),x(j); θ)
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Gaussian process modelling Kriging in a nutshell

Joint distribution of the predictor / observations

• The joint distribution of
{
Y0, Y

(1), . . . , Y (NED)}T is Gaussian:{
Y0

Y

}
∼ N1+NED

({
fT

0 β

Fβ

}
, σ2

[
1 rT

0

r0 R

])

• Regression matrix F of size (NED×p)

Fij = fj(x(i))
i = 1, . . . , NED, j = 1, . . . , p

• Vector of regressors f0 of size p

f0 = {f1(x0), . . . , fp(x0)}

• Correlation matrix R of size
(NED ×NED)

Rij = R(x(i),x(j); θ)

• Cross-correlation vector r0 of size NED

r0i = R(x(i),x0; θ)
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Gaussian process modelling Kriging in a nutshell

Kriging predictor as the Gaussian process mean

Metamodel: mean predictor

µ
Ŷ0

= fT
0 β + rT

0 R−1 (y − Fβ)

Kriging variance:

σ2
Ŷ0

= E
[
(Ŷ0 − Y0)2

]
= σ2 (1− rT

0 R−1 r0
)

Properties
• The mean predictor has a regression part fT

0 β =
∑p

j=1 βj fj(x0) and a local
correction

• It interpolates the experimental design:

µ
Ŷi
≡ µ

Ŷ (x(i)) = y(i)

σ2
Ŷi
≡ σ2

Ŷ (x(i))
= 0

}
∀x(i) ∈ X
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Gaussian process modelling Kriging in a nutshell

Confidence intervals

• Due to the Gaussianity of the
predictor Ŷ0 ∼ N (µ

Ŷ0
, σ2
Ŷ0

), one
can derive confidence intervals on
the prediction

• With confidence level (1− α), e.g.
95%, one gets:

0 5 10 15

−20

−10

0

10

20

x

M
(x
)

 

 

Conf. interval
M(x) = x sin(x)
Exp.design
Kriging predictor

µ
Ŷ0
− 1.96σ

Ŷ0
≤M(x0) ≤ µ

Ŷ0
+ 1.96σ

Ŷ0

• The Kriging predictor is asymptotically consistent:

lim
N→∞

E
[(
Ŷ0 − Y0

)2
]

= 0

when the size of the experimental design N tends to infinity
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Gaussian process modelling Estimation of the parameters

Kriging inference

So far:
• Kriging predictor assumes that the autocovariance function σ2 R(x,x′; θ) and

the trend coefficients β are known

In practice:
• A choice is made for the family of autocorrelation function used, e.g.

Gaussian, exponential, Matérn-ν, etc.

• The parameters of the covariance function and of the trend,
(
~β, σ2, θ

)
, must

be estimated from the data, i.e. the experimental design:

X =
{
x(1), . . . ,x(NED)} y =

{
y(1) =M(x(1)), . . . , y(N) =M(x(NED))

}
Maximum likelihood estimation
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Gaussian process modelling Estimation of the parameters

Maximum likelihood estimation in Kriging

• Assuming that data follows a joint Gaussian distribution Y ∼ NN (Fβ , R(θ))
the negative log-likelihood reads:

− log L
(
β, σ2, θ | y

)
= 1

2σ2 (y − Fβ)T R(θ)−1 (y − Fβ) + N

2 log (2π)

+ N

2 log
(
σ2)+ 1

2 log (det R(θ))

• The solution
(
β̂, σ̂2

)
is obtained by solving:

∂(− log L)
∂β

= 0 ; ∂(− log L)
∂σ2 = 0

Note on the variance: the estimation of the β coefficients adds extra
term to the predictor variance:

σ2
Ŷ0

= E
[
(Ŷ0 − Y0)2

]
= σ2

(
1− rT

0 R−1 r0+uT
0
(
FT R−1 F

)−1
u0

)
with u0 = FT R−1 r0 − f0
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Gaussian process modelling Estimation of the parameters

Maximum likelihood estimation

Computation of β̂ and σ̂2

• The log-likelihood is quadratic in β

∂(− log L)
∂β

= F TR−1(θ)(y − Fβ) = 0

that is:
β̂(θ) = (FT R(θ)−1 F)−1 FT R(θ)−1 y

• Then:
σ̂2(θ) = 1

N
(y − F · β̂)T R(θ)−1 · (y − F β̂)

Correlation hyperparameters
• Minimizing (− log L) is equivalent to minimizing the reduced likelihood

function
ψ(θ) = σ̂2(θ) det R(θ)1/N

• This problem is solved numerically using standard optimization algorithms, e.g.
gradient-based or global
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Gaussian process modelling Active learning

One-dimensional example

Computational model

x 7→ x sin x for x ∈ [0, 15]

Experimental design
Six points selected in the range [0, 15]
using Monte Carlo simulation:
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M(x) = x sin(x)
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using Monte Carlo simulation:
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Original model + Data

 

 

M(x) = x sin(x)
Exp. design

X = {0.6042 4.9958 7.5107 13.2154 13.3407 14.0439}
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Gaussian process modelling Active learning

Kriging predictor

• Trend: ordinary
• Covariance kernel: Gaussian
• Optimization method: BFGS (gradient based)
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M(x) = x sin(x)
Exp.design
Kriging predictor
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Gaussian process modelling Active learning

Outline

1 Introduction

2 Gaussian process modelling
Gaussian processes and auto-correlation functions
Kriging in a nutshell
Estimation of the parameters
Active learning

3 Reliability Analysis

4 Kriging in structural reliability

5 Summary and conclusions
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Gaussian process modelling Active learning

Beyond surrogates: active learning

Heuristics

• Adaptively enrich the ED in regions of interest
• Capitalize on the Kriging variance information (meta-modelling)
• Naive approach: choose points where the Kriging variance is maximum
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Gaussian process modelling Active learning

Sequential updating
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Reliability Analysis

Outline

1 Introduction

2 Gaussian process modelling

3 Reliability Analysis
Problem statement
Monte Carlo Simulation

4 Kriging in structural reliability

5 Summary and conclusions
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Reliability Analysis Problem statement

Typical engineering questions w.r.t risk and reliability

• What is the scattering of a quantity of
interest Y ?

• What are the parameters that drive the
uncertainty on the QoI ?

• What is the probability of failure (resp. non
performance) of the system ?

• What is the optimal design (e.g. minimal
cost) that guarantees some performance

• What are the best-fit model parameters that
allow one to reproduce experimental data

PDF fY
µ̂Y , σ̂Y

Sensitivity indices

pf = P (Y ≥ yadm)

d∗ = arg min c(d) s.t.
P (g(X(d),Z) ≤ 0) ≤ pf,adm

Bayesian inversion
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Reliability Analysis Problem statement

Limit state function

• For the assessment of the system’s performance, failure criteria are defined,
e.g. :

Failure ⇔ QoI =M(x) ≥ qadm
Examples:

+ admissible stress / displacements in civil engineering
+ max. temperature in heat transfer problems
+ crack propagation criterion in fracture mechanics

• The failure criterion is cast as a limit state function (performance function)
g : x ∈ DX 7→ R such that:

g (x,M(x)) ≤ 0 Failure domain Df

g (x,M(x)) > 0 Safety domain Ds

g (x,M(x)) = 0 Limit state surface

e.g. g(x) = qadm −M(x)

Failure domain
Df = {x: g(x) ≤ 0}

Safe domain Ds

x1

x2
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Reliability Analysis Problem statement

Probability of failure
Definition

Pf = P ({X ∈ Df}) = P (g (X,M(X)) ≤ 0)

Pf =
∫
Df ={x∈DX : g(x,M(x))≤0}

fX(x) dx

Features
• Multidimensional integral, whose dimension is equal to the number of basic

input variables M = dimX

• Implicit domain of integration defined by a condition related to the sign of the
limit state function:

Df = {x ∈ DX : g(x,M(x)) ≤ 0}

• Failures are (usually) rare events: sought probability in the range 10−2 to 10−8

S. Marelli (Chair of Risk, Safety & UQ) Metamodels in UQ CEMRACS2017 – Marseille 30 / 46



Reliability Analysis Monte Carlo Simulation

Monte Carlo simulation

Reformulation
• Indicator function of the failure domain

1Df (x) =
{

1 if g (x,M (x)) ≤ 0
0 otherwise

• Probability of failure:

Pf =
∫
Df

fX(x) dx =
∫
DX

1Df (x) fX(x) dx = E
[
1Df (X)

]
Crude Monte Carlo estimator

P̂f = 1
N

N∑
i=1

1Df (Xi) Xi : i.i.d copies of X
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Reliability Analysis Monte Carlo Simulation

Monte Carlo simulation

• X1

• X2

• X3

Limit state
function

X1

X2

µ1

µ2

Failure domain
Df = {x : g(x) ≤ 0}

Safe domain
Ds

•
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Reliability Analysis Monte Carlo Simulation

Estimator of the probability of failure Pf

• The estimator P̂f is a sum of Bernoulli variables: it has a binomial distribution
with:

Mean value: E
[
P̂f
]

= Pf Unbiasedness
Variance: Var

[
P̂f
]

= 1
N
Pf (1− Pf ) Convergence

• Its coefficient of variation reduces to CVPf ≈ 1/
√
N Pf for rare events.

Convergence rate of Monte Carlo simulation ∝ 1/
√
N

Minimal size of the sample set
Suppose the probability of failure under consideration is of magnitude Pf = 10−k and an
accuracy of 5% is aimed at.

CVPf
=

1√
N Pf

CVPf
≤ 5% =⇒ N ≥ 4.10k+2

Pf Nmin

10−2 40,000
10−3 400,000
10−4 4,000,000
10−6 400,000,000
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Reliability Analysis Monte Carlo Simulation

A note on Reliability analysis

An active research field
Reliability analysis (aka Structural Reliability) is a research field that has
been active in the last 40 years, producing a rich literature on advanced
methods to estimate low-probability events

Overview of solution strategies

• Methods based on approximation: FORM, SORM
• Methods based on simulation: MCS, Importance Sampling, Line

Sampling, Subset Simulation, Asymptotic sampling, etc.
• Methods based on metamodels: Active learning-based methods
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Kriging in structural reliability Kriging for Reliability

Use of Kriging for structural reliability analysis

• From a given experimental design X =
{
x(1), . . . ,x(n)}, Kriging yields a

mean predictor µĝ(x) and the Kriging variance σĝ(x) of the limit state
function g

• The mean predictor is substituted for the “true” limit state function, defining
the surrogate failure domain

Df 0 = {x ∈ DX : µĝ(x) ≤ 0}

• The probability of failure is approximated by: Kaymaz, Struc. Safety (2005)

P 0
f = IP [µĝ(X) ≤ 0] =

∫
D0

f

fX(x) dx = E
[
1D0

f
(X)

]
• Monte Carlo simulation can be used on the metamodel:

P̂ 0
f = 1

N

N∑
k=1

1D0
f
(xk)
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Kriging in structural reliability Kriging for Reliability

Confidence bounds on the probability of failure

Shifted failure domains Dubourg et al. , Struct. Mult. Opt. (2011)

• Let us define a confidence level (1− α) and k1−α = Φ−1(1− α/2), i.e. 1.96 if
1− α = 95%, and:

D−f = {x ∈ DX : µĝ(x) + k1−α σĝ(x) ≤ 0}

D+
f = {x ∈ DX : µĝ(x)− k1−α σĝ(x) ≤ 0}

• Interpretation (1− α = 95%):
• If x ∈ D0

f it belongs to the true failure domain with at worst a 50%
chance

• If x ∈ D+
f it belongs to the true failure domain with at worst 95%

chance: conservative estimation

Bounds on the probability of failure

D−f ⊂ D
0
f ⊂ D+

f ⇔ P−f ≤ P
0
f ≤ P+

f
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Kriging in structural reliability Kriging for Reliability

Example: hat function

Problem statement

g(x) = 20− (x1 − x2)2 − 8 (x1 + x2 − 4)3

where X1 , X2 ∼ N (0, 1)

• Ref. solution:

Pf = 1.07 · 10−4

• Kriging surrogate:

P−f = 7.70 · 10−6

P 0
f = 4.43 · 10−4

P+
f = 5.52 · 10−2
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Kriging in structural reliability Active learning

How to improve the results?

Heuristics
• The Monte Carlo estimate of Pf reads:

P̂f = 1
N

N∑
k=1

1Df (xk)≈ 1
N

N∑
k=1

1D0
f
(xk)

• The Kriging-based prediction is accurate when:

1D0
f
(xk) = 1Df (xk) for almost all xk

i.e. if µĝ(x) is of the same sign as g(x) for almost all sample points

Ensure that the mean predictor µĝ(x) classifies properly the MCS
samples according to the sign of g(x)
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Kriging in structural reliability Active learning

Adaptive Kriging for structural reliability

Procedure
• Start from an initial experimental design X and a Kriging surrogate

• At each iteration:
• Select the next point(s) to be added to X : enrichment criterion
• Update the Kriging surrogate
• Compute an estimation of Pf and bounds
• Check convergence
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Kriging in structural reliability Active learning

Different enrichment criteria

Requirements
• It shall be based on the available information: (µĝ(x) , σĝ(x))

• It shall favor new points in the vicinity of the limit state surface

• If possible, it shall yield the best K points when distributed computing is
available

Different enrichment criteria
• Margin indicator function Ph.D Deheeger (2008); Bourinet et al. , Struc. Safety (2011)

• Margin classification function Ph.D Dubourg (2011); Dubourg et al. , PEM (2013)

• Learning function U Ph.D Échard (2012); Échard & Gayton, RESS (2011)

• Expected feasibility function Bichon et al. , AIAA (2008); RESS (2011)

• Stepwise uncertainty reduction (SUR) Bect et al. , Stat. Comput. (2012)
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Kriging in structural reliability Active learning

Learning function U(x)

Definition
• The learning function U is defined by: Échard et al. (2011)

U(x) = |µĝ(x)|
σĝ(x)

Interpretation
• It describes the distance of the mean predictor µĝ to zero in terms of a

number of Kriging standard deviations σĝ
• A small value of U(x) means that:

• µĝ(x) ≈ 0: x is close to the limit state surface
• and / or σĝ(x) >> 0: the uncertainty in the prediction at point x is large

• The probability of misclassification of a point x is equal to Φ(−U(x))
Bect et al. , Stat. Comput. (2012)
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Kriging in structural reliability Active learning

Comparison of the enrichment criteria

Learning function U

Optimization of the enrichment crite-
rion

x∗U = arg min
x∈DX

U(x)

Requires the solution of a complex opti-
mization problem in each iteration

Discrete optimization over a large Monte Carlo sample X =
{
x(1), . . . ,x(NMC )}

x∗U = arg min
i=1, ... ,n

{
U(x(1)), . . . , U(x(NMC ))

}
Echard, B., Gayton, N. & Lemaire, M. AK-MCS: an active learning reliability method combining Kriging and Monte Carlo simulation, Structural

Safety (2011)
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Kriging in structural reliability Application example

1D Application example - U function

Limit state function: g(x) = 5− x sin x
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Kriging in structural reliability Application example

Series system
Schöbi et al. , ASCE J. Risk Unc. (2016)

Consider the system reliability analysis defined by:

g(x) = min


3 + 0.1 (x1 − x2)2 − x1+x2√

2
3 + 0.1 (x1 − x2)2 + x1+x2√

2
(x1 − x2) + 6√

2
(x2 − x1) + 6√

2


where X1, X2 ∼ N (0, 1)

• Initial design: LHS of size 12 (transformed into
the standard normal space)

• In each iteration, one point is added (maximize
the probability of missclassification)

• The mean predictor µ
M̂

(x) is used, as well as the bounds µ
M̂

(x)± 2σ
M̂

(x)
so as to get bounds on Pf : P̂−f ≤ P̂ 0

f ≤ P̂+
f
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Kriging in structural reliability Application example

Results with classical Kriging (AK-MCS)
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Summary and conclusions

Outline
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3 Reliability Analysis

4 Kriging in structural reliability

5 Summary and conclusions
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Summary and conclusions

Conclusions

Conclusions

• Metamodels are ideal tools to deal with uncertainty when the models are
black-boxes

• Estimating low probabilities of failure requires more refined algorithms than
plain MCS

• Recent research on metamodels and active learning has brought new extremely
efficient algorithms

• Accurate estimations of Pf are obtained with O(102) runs independently of
their magnitude

Remark

• More advanced techniques combine active learning with recent metamodels
(e.g. PC-Kriging), as well as proper simulation-based algorithms (e.g. subset
simulation)
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Summary and conclusions

Questions ?

Acknowledgements: R. Schöbi
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Matérn autocorrelation function (1D)

Definition

R1(x, x′) = 1
2ν−1Γ(ν)

(√
2 ν |x− x

′|
θ

)ν
κν

(√
2 ν |x− x

′|
θ

)
where ν ≥ 1/2 is the shape parameter, θ is the scale parameter, Γ(·) is the Gamma
function and κν(·) is the modified Bessel function of the second kind

Properties

The values ν = 3/2 and ν = 5/2 are usually used
(
h = |x− x

′|
θ

)
:

R1(h; ν = 3/2) = (1 +
√

3h) exp(−
√

3h)

R1(h; ν = 5/2) = (1 +
√

5h+ 5
3 h

2) exp(−
√

5h)
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Matérn autocorrelation function

Parameter ν controls the regularity (smoothness) of the trajectories

• The trajectories of such a process are bνc times differentiable:
ν = 1/2 : C0 (continuous, non differentiable)
ν = 3/2 : C1

ν = 5/2 : C2

• When ν → +∞, R1(h; ν) tends to the square exponential autocorrelation

Autocorrelation function Trajectories
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Kriging variance

• The Kriging variance reads:

σ2
Ŷ0

= E
[
(Ŷ0 − Y0)2

]
= σ2

(
1− rT

0 R−1 r0 + uT
0
(
FT R−1 F

)−1
u0

)
with u0 = FT R−1 r0 − f0

• It is made of two parts:
• σ2 (1− rT

0 R−1 r0
)

corresponds to the simple Kriging (when the trend is
known)

• the rest corresponds to the uncertainty due to the estimation of β from
the data

• The predictor is interpolating the data in the experimental design:

σ2
Ŷi
≡ σ2

Ŷ (x(i))
= 0 ∀x(i) ∈ X
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PC-Kriging

Schöbi & Sudret, IJUQ (2015); Kersaudy et al. , J. Comp. Phys (2015)

Heuristics: Combine polynomial chaos expansions (PCE) and Kriging
• PCE approximates the global behaviour of the computational model
• Kriging allows for local interpolation and provides a local error estimate

Universal Kriging model with a sparse PC expansion as a trend

M(x) ≈M(PCK)(x) =
∑
α∈A

aαψα(x) + σ2Z(x, ω)

PC-Kriging calibration
• Sequential PC-Kriging: least-angle regression (LAR) detects a sparse basis,

then PCE coefficients are calibrated together with the auto-correlation
parameters

• Optimized PC-Kriging: universal Kriging models are calibrated at each step of
LAR
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Results with PC Kriging
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