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Stochastic models

Physical systems with
@ Complex small scale dynamics (MD, chemical systems, ...)
@ Random forcing and source terms (finance, wind-load, .. .)
@ Unresolved scales (turbulence, climate modeling, .. .)

are often tackled by means of stochastic modeling where complex / unknown /
unresolved phenomenons are accounted for by the introduction of noisy dynamics.

In addition to the effect of the noise, the model may involve unknown parameters : e.g.
noise level, physical constants and parameters, initial conditions, . ..

Our general objective is to propagate / assess the impact of parameters uncertainty

within such stochastic models while characterizing the effect of inherent noise :
global sensitivity analysis & analysis of the variance
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Variance-Based Sensitivity Analysis for SODE’s

Stochastic ODEs
We consider a simple systems driven by random noise (Ito equation) : for
te[0, T]=T
dX(t) = C(X(t))dt + D(X(t))dw(t), X(t=0)= Xy,

where

@ X(t) € Ris the solution,

@ W(t) is the Wiener process,

@ C(-) is the drift function,

@ and D(-) is the diffusion coefficient.

The solution can be computed through MC simulation, solving (e.g.)
Xip1 = Xi + C(X)At + D(X)AW,, X ~ X(iAt),

drawing iid random variables AW; ~ N(0, At).
Sample estimate expectation, moments, quantiles, probability law, .. ., of the stochastic

process X(t) :
M
E(GXUB0)) = 5 5= ax),
:
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Variance-Based Sensitivity Analysis for SODE’s

Stochastic ODEs with parametric uncertainty
The drift function and diffusion coefficient can involve some uncertain parameters Q :

ax(t) = C(X(t); Q)dt + D(X(t); QdW(t), X(t=0)=Xo.

We consider that :
@ Q random with known probability law,
@ Q and W are assumed independent.

The solution can be seen as a functional of W(t) and Q : X(t) = X(t, W, Q). We shall
assume, Vt € T,

Q E{X?} < oo,
[2) E{E{X| W}Z} = E{xfw} < oo,
0 E{E{x|01} =E{X%} <.

We want to investigate the respective impact of Q, W on X.
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Variance-Based Sensitivity Analysis for SODE’s Variance decompositiof

Classical sensitivity analysis
Focusing on the two first moments, global SA for the random parameters Q is based
on:

© approximating the mean and variance of X|q

E{Xo} =ux(Q), V{Xa}=2%(Q),
@ perform a GSA of ux(Q) and ¥5(Q) with respect to the input parameters in Q.

In particular, for independent parameters Q, Polynomial Chaos approximations :
nx(Q) = Y naVa (@), TX(Q) ~ Y FAVa(Q).
[e3 [e3

PC expansion coefficients can be computed / estimated by means of Non-Intrusive
Spectral Projection, Bayesian identification, . . ..

O. Le Maitre Variance-based SA
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Variance-Based Sensitivity Analysis for SODE’s

Another approach of GSA
Here, we exploit the structure of the model to take an alternative approach, inspired
from the hierarchical orthogonal Sobol-Hoeffding decomposition of X :

X(W,Q) = X + Xw(W) + Xo(Q) + Xw,o(W,Q), VteT,

where the functionals in the SH decomposition are mutually orthogonal.
In fact, the decomposition is unique and given by

° X(t) =E{X(1)},
o Xw(t, W) =E{X(D)|W} —E{X()} = Xw(t) — X(1),
°® Xo(t,Q) =E{X(1)|Q} — E{X(1)} = Xjq(t) — X(1).
Owing to the orthogonality of the SH decomposition, we have
V{X} = V{Xw} +V{Xa} +V{Xwa},
from which follow the definitions of the sensitivity indices

_V{Xwd o _ViXal o V{Xwa}
TTVeGT T v TN v
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Variance-Based Sensitivity Analysis for SODE’s Variance decompositiof

Sensitivity indices
The sensitivity indices

g YW} V{Xe} __ V{Xwo}
TTVeGT T v TP v

then measure the fraction of the variance due to
@ the Wiener noise only, or intrinsic randomness (Sy),
@ the parameters only, or parametric randomness (Sg),
@ the combined effect of intrinsic and parametric randomness (s, q)-

In addition,

Valm(@) _ -, Ea{ZQ)}

Vixy S T Twe

From 32(Q), one cannot distinguish the intrinsic and mixed randomness effects.
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Variance-Based Sensitivity Analysis for SODE’s decomposition
rkin approximation

Polynomial Chaos expansion
We express the dependence of X on Q as a PC expansion

X(H,W,Q) =" Xa(t, W)¥o(Q),
where

@ {V,}isaCONS of L2(Q, pg),
@ the expansion coefficients X, are random processes.

The random processes X (t) are the solutions of the coupled system of SODEs

dXs(t) _< <Zx (HWa; >,\I15>dt+ <G<ZXa(t)\Ua;Q> ,\IJB>dW,

where (-, -) denotes the inner product in L?(Q, pg)-
This system can be solved by MC simulation (upon truncation).

O. Le Maitre Variance-based SA
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Variance-Based Sensitivity Analysis for SODE’s decomposition
rkin approximation

PC expansion
Assuming ¥y = 1, it comes

E{X} =E{X}, Xo(Q) =D E{Xa}Va(Q), Xw(W)=X(W)-E{X},
a#0

and
Xw,o(W,Q) = > (Xa(W) —E{Xa}) ¥a(Q).
a#0

Finally, the partial variances have for expression :

V{Xo} =D E{Xa}?, V{Xuw}=V{X}, V{Xwo}=> V{Xe}.
a#0 a#0

Q Xo(Q) +EA{X} = ux(Q),
QO 3, V{Xa} = T E{XE} ~ E{Xa}? =Eq {T%}.

O. Le Maitre Variance-based SA
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Variance-Based Sensitivity Analysis for SODE’s Variance decomposition

PC rkin ap nation
Examples

Linear additive system
@ Consider SODE with drift and diffusion terms given by :

CX,Q)=0Q; - X D(X,Q)=wX+1)Q

where Q; and Q. are independent, uniformly-distributed, random variables with
mean pq o and standard deviation o4 ».

@ The orthonormal PC basis consists of tensorized Legendre polynomials.

@ We use for initial condition X(t = 0) = 0 almost surely.

O. Le Maitre Variance-based SA
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Variance-Based Sensitivity Analysis for SODE’s

Additive Noise

Additive noise model (v = 0) with uy =1, uo = 0.1, 01 = 020 =0.05:
dX(Q) = (Q — X(Q))dt + QuadW,

a first-order expansion suffices to exactly represent X(Q).

+1.5e+00

+7.5e-02 T T T T +2.5e-01
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+0.0e+00 +0.0e+00 L L L L -2.5e-01
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t t t

Selected trajectories and variability ranges for [Xi](t, W). The plots correspond to
k =0, 1 and 2, arranged from left to right.
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Variance-Based Sensitivity Analysis for SODE’s

Multiplicative Noise — |

Multiplicative noise : Qi ~ U[1,0.05], Q> ~ 14/[0.1,0.05], v = 0.2
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Sample trajectories of [Xk], 0 < k < 2. Top row : order 0, bottom row : order 1 with an
decreasing order in Qq from left to right.
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Variance-Based Sensitivity Analysis for SODE’s

Examples

Multiplicative Noise — Il

Multiplicative noise : Q; ~ U[1,0.05], Q> ~ 1[0.1,0.05], » = 0.2
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Sample trajectories of [Xk], 3 < k < 14. The total order ranges from 2 (top row) to 4
(bottom row), with and decreasing order in Q; from left to right. N
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Variance-Based Sensitivity Analysis for SODE’s

Distribution functions
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Probability density functions of the modes [Xk] at t = 10. The modes have been
centered and normalized to facilitate the comparison ; the standard Gaussian

distribution is also reported for reference.
tirnsi
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Variance-Based Sensitivity Analysis for SODE’s ce decomposition

alerkin approximation
Examples

Mode correlations

Projections in the planes ([Xx], [Xk/]) of realizations of the centered and normalized
solution vector X at time t = 10, for selected indices

XdvsXe] | K =0 K =5 K =29 K =14
K

>

K=5
k=9
k=14 '
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Variance-Based Sensitivity Analysis for SODE’s

Conditional trajectories
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Left : trajectories for samples of Q and a fixed realization of W
Right : trajectories for samples of W at a fixed value of the parameters.
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SH functions

Variance-Based Sensitivity Analysis for SODE’s

decomposition
PC-Galerkin approximation
Examples
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Selected trajectories of X and its SH functions.

Variance-based SA
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Variance-Based Sensitivity Analysis for SODE’s riance decomposition

Parametric sensitivity

1x(Q) —E{X} Q)

0.03
0.02
0.01

Effect of Q; and Q@ of the (centered) conditional mean ux(Q) = E{X | Q} —E{X}
and variance ¥2(Q) = V{X | Q} attime t = 10
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Variance-Based Sensitivity Analysis for SODE’s

Examples
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Evolution of the components of the total variance. Shown are variance decomposition
obtained for different values of o1 and o»




Variance-Based Sensitivity Analysis for SODE’s

Non-linear system

Consider a system with additive noise and non-linear drift

dX = F(X)dt + 6dW = —(X — a)(X — b)(X — ¢)dt + 6dW
where § > 0 is an additional parameter controlling the noise level, and as before W is a
Wiener process. Again the IC is Xp = X(t = 0).

Sample trajectories with a = 10, b = 20, ¢ :t30, v =0.01,and 6 = 1. In all cases, the

initial condition coincides with x° = b.
Limsi
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Variance-Based Sensitivity Analysis for SODE’s Variance decomposition
PC rkin ap nation
Examples

Parametric uncertainty

@ Consider an uncertain initial condition, Q; ~ R[17.5,22.5], and forcing amplitude,
Q, ~ R[0.5,1.5].

dX = F(X)dt + QidW  Xo = Q,.

@ @ and Q. independent.

@ The PC representation is based on an adaptive multiwavelet basis expansion,
which enables us to accommodate for bifurcation(s).

@ The use of a non polynomial basis complicates the sensitivity analysis, but the
framework is essentially unaltered.
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Variance-Based Sensitivity Analysis for SODE’s ‘ariance decomposition
alerkin approximation
Examples

Sample trajectories

A
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X(t)
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Left plots : sample set of realizations of W, the trajectories of X (time running up) for
different initial conditions and two noise levels Q, = 0.65 (top plot) and Q> = 1.35
(bottom).

Right plots show for two realizations of W (top and bottom), the trajectories of X for a
random sample set of values of Q;0 and Q.
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Variance-Based Sensitivity Analysis for SODE’s

Examples

MW expansion

Left : partitions of the parar?letric domain and surface plots for X(t = 6, W) as a e
function of Q. \lesl




Variance-Based Sensitivity Analysis for SODE’s ‘ariance decomposition
>-Galerkin approximation
Examples

Variance decomposition
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Variance-Based Sensitivity Analysis for SODE’s riance decomposition

Effect of Noise amplitude
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Left : comparison of the total variances V { X} and total noise contributions

Vhoise + Vinix t0 the variance, for two expected values of E {6} = 1 and 2.

Right : partial variances of the stochastic process X(t) for the case E {6} = 2.
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Variance-Based Sensitivity Analysis for SODE’s decomposition
rkin af
Examples

Extension to Non-Intrusive Projection

@ The PC expansion of X(t, W, Q) can be estimated non-intrusively, e.g. :
Na
X(t, W9, Q) = 37 Xa(t, WO)Wa(Q), Xa(t, W)= SN, sX(t WO, Q)
% ﬁ:1

For instance sparse grid pseudo spectral projection operator [[] [conrad,
Marzouk] & [Constantine et al]

Provides accurate Q-statistics for each path W) from only N simulations
Yields complexity reduction when Q-variance is dominant

Applied to non-smooth Qol g(X), such as exit time. [Navarro, OLM, Knio, JUQ
2016]
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Stochastic Simulators

Stochastic Systems

Stochastic Simulator

Work with Omar Knio, Alvaro Moraes and Maria Navarro (KAUST)
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stochastic simulators
Stochastic Simulators a mposition

Stochastic Systems
Stochastic systems

governed by probabilistic evolution rules expresses by the master equation

OP(X, tX0, )
7@71070 = [a(x — vj)P(x — v}, tiXo, to) — ai(X)P(X, tX0, )] ,
=1

@ x(t) € ZMs : state of the system at time ¢,
@ K, reactions channels,
@ propensity functions a; and state-change vectors v; € ZMs,
@ P(x, t|xo, 1) : probability of X = x at time ¢, given X = x; at time f,
@ Markov process.
Examples includes Reactive Networks (chemistry, biology), social networks, ...

@ Direct resolution of the master equation is usually not an option,
@ Simulate trajectories X(t) ~ P(x, t|Xo, to), using a stochastic simulator.
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stochastic simulators
Stochastic Simulators Variance mposition

Gillespie’s Algorithm

Given X(t) = x, the probability of the next reaction to occur in the [t, t + df) is
Kr
ay(x)dt = dt »  aj(x).
j=1

The time to the next reaction, 7, follows an exponential distribution with mean 1/ag(x).

Gillespie’s Algorithm : [Gillespie, 1970’s]
o Set t = t(),XZXO.

@ Repeatuntilt > T

@ Draw 7 ~ exp ap(X)
o Pick randomly k € {1...K,} with relative probability px(ax)
o update t < t+ 7, X « X + v

© Return X(T) ~ P(x, t|xo, to)-

From a sample set of trajectory, estimate expectation of functionals E {g(X)}.
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stochastic simulators
Variance Decomposition

Stochastic Simulators
ISETES

Sobol Analysis of the variance

From the stochastic state X(t) and a given functional g, we would like :

assess the contributions of different reaction channels (or group of)
on the variability of g(X)

For instance : which channel(s) is (are) responsible for most of the variance in g(X) ?

300

200

This is not to be confused with parametric sensitivity analyses where one wants to
estimate the sensitivity of E {g(X)} with respect to some parameters q in the definitio
tirnsi

of the dynamics (e.g. propensity functions).



stochastic simulators
Stochastic Simulators Variance Decomposition

Exam

Sobol Analysis of the variance

@ N(w) = (Nq,---,Np) a set of D independent random inputs N;,
@ F(N) a (second-order) random functional in N,
F(N) has a unique orthogonal decomposition [Sobol, 2002 ; Homma & Saltelli, 1996]
F(N) =" Fu(Ny),
ucD
where D is the power set of {1, ,D} and Ny = (Nuy, - -+, Nu,,, ). The orthogonality

condition reads
E{RuFe} = /Q Fu(Nu(w)) Fo (N () dpa() = O,

S0
V{F}= > V{A},

ueD\0

where V {F,} are the partial variances.
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stochastic simulators
Stochastic Simulators Variance Decomposition
ISETES

Sobol Analysis of the variance (cont...)

From the variance decomposition,

V{F}= > V{F}

ueD\0

@ First order sensitivity indices sy : fraction of the variance caused by the random
inputs Ny, only
V{F}su =Y $00 Vi)

sOu
@ Total order sensitivity indices Ty, : fraction of the variance caused by the random
inputs Ny, and interaction

V{F} Tu X7V {F)

The partial variances V { Fy } can be expressed as conditional variances : [Homma &
Saltelli, 1996]
V{Fu} =V{E{F| Nu}} = > V{F},

seD\0
sCu

or

V{F}su=V{E{F| Nu}}, V{F}Tu=V{F}-V{E{F| Nu_}} =V{F}(1-5u.),

whereu. ={1,...,D} \u.
Limsi
Decomposition of the Variance = Estimation of conditional variances \
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stochastic simulators
Stochastic Simulators Variance Decomposition

Exam

Monte-Carlo estimation of the sensitivity indices

Consider two independent sample sets /P and N'® of M realizations of N.
The conditional variance V{E { F | Ny}} can be estimated as [Sobol, 2001]

M
VIE(F| Nub} +BLFR = im0 S FIND O, NGO ENG O, NE),
i=1

such that _ P .,
o - m X FNCO PN NGO - B(FY
V{F}
and ' P .,
oy X PN FNG O NGD) — BLF)
V{F}

where Iﬁl?} and %f{?} are the classical MC estimators for the mean and variance.
The computational complexity scales linearly with the number of indices to be computed
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stochastic simulators
Stochastic Simulators Variance Decomposition
ISETES

Application to Stochastic Simulators

To assess the respective impacts of different reaction channels through Sobol’s
decomposition of V {g(X)}, when X is the output of a stochastic simulator, we need to
condition X on the channels dynamics :

What is a particular realization of a channel dynamics ?

Gillespie’s algorithm is not suited, and we have to recast the stochastic algorithm in

terms of
independent processes associated to each channel.
Next Reaction Formulation. [Ethier &Kurtz, 2005, Gibson & Bruck, 2000]
Kr
X(t) = X(to) + > _viNi(t),
j=1

where the N;(f) are independent standard (unit rate) Poisson processes, and the
scaled times #; are given by

t
1}-:/&7]-(X(7'))d7'7 j=1,.. K.
fo

Then, g(X) can be seen as

g(x):F(N17-~~7NK,)~ tirnsi
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stochastic simulators
Stochastic Simulators Variance Decomposition
ISETES

Application to Stochastic Simulators (cont.)

The random functional g(X) = F(Ny, ..., Nk,) can then be decomposed & /a Sobol.

A particular realization of a channel dynamic is identified with a realization of the
underlying standard Poisson processes.

For instance, the conditional variance writes

E{g(X)| Nu=m}=E g (X()+ D wmt)+ > vN(t) | ¢,
jEU JEU~
with §; = ftf) a(X(r))dr.
Note that
@ in general, all firing times t; remain random for given ny(t), as they depend on Ny~

@ in practice, the standard Poisson processes N; are entirely specified by their
random seeds and pseudo-random number generator :

the Poisson processes don’t have to be stored but are computed on the fly
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Stochastic Simulators E composition
Examples

The birth-death (BD) process
Single species S (Ms = 1) and K, = 2 reaction channels :

028 s,
with propensity functions
ai(x)=b, a(x)=dxx.
We set b =200, d = 1, and use M = 1,000,000 Monte Carlo samples to compute the

estimates.
300 T T T 0.03 T T T
=)
200 | L0.02 4
5
= L
x 3
100 - X001 | ]
g
0 L L L o L L
0 2 4 6 8 100 150 200 250 300

X

FIGURE: Left : Selected trajectories of X(t) generated using Next Reaction Algorithm. Right :

histogram of X(t = 8).
Limsi
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imu ors
Stochastic Simulators a mposition

Examples

B-D process. Variance decomposition of g(X) = X(t)

300 Vék) 1
L Sy d
250 S(b)(bgo T{g; — 2 0.8
o 200 SoTgme=s | S
_— -]
3 — £ 06
§ 150 R =
5 2 04 | ST 1
> @ : Tl .
100 o 2 4
50 - ‘ 1 ® oar ]
N ‘ ‘ N ‘
0 2 4 6 8 0.1 1 10 100

t t
Left : scaled first-order and total sensitivity indices (scaled by the variance) of the
birth-death model and t € [0, 8]. Right : long-time evolution of the first-order sensitivity
indices, and of the mixed interaction term.

@ Variance in X is predominantly caused by the birth channel stochasticity for early
time t < 1

@ For 1 <t < 4, the variability induced by R4 only continues to grow with the
population size (first order reaction), while mixed effects develops

@ Eventually, effect of Ry, stabilize (zero-order reaction, rate independent of X) while
effect of Ry only slowly decays to benefit the mixed term (stochasticity of N,
affects more and more the death process).

O. Le Maitre Variance-based SA
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Stochastic Simulators
Examples

Schlégl model

System with K, = 4 reaction channels :
cy c3
By +25=38S, B,=S,
Co Cy
with By and B; in large excess and constant population over time, Xg, = Xp,/2 = 10°
and a single evolving species S with Mg = 1. The propensity functions are given by
C C
ai(0) = ZXex(x = 1), @00 = Zx(x = N(x~2), a(x)=Xs,, a(x) = aax.

Wesetc; =3 x 1077, ¢, = 1074, ¢ = 1073, ¢, = 3.5 and deterministic initial condition
X(t=0) = 250. Results in a bi-modal dynamic

0.015 T T T

-0)

0.01 | 1

8lxy=250,t

0.005 - 1

0 250 500 750

P(x.t:

Left : selected trajectories of X(t) showing the bifurcation in the stochastic dynamics. Right :
histogram of X(t = 8). tirnsi
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VIX)
5S4
Sq1y to Ty mmmm

Y ——

45000

30000 L S(ay to T(ay

Variances

15000 -

First and total order partial variances.

4000

3000

2000

Partial variances

1000

0

t
Higher order partial variances.

Reaction channels Ry and R, are the dominant sources of variance

Partial variances

0 2 4 6 8

Dynamic essentially additive up to t ~ 2
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Stochastic Simulators

Schlégl model - Variance decomposition of g(X) =

Analysis of the partial variance revealed that R; and R, are the main sources of

stochasticity.

It suggests a dominant role in selecting the bifurcation branch, as illustrated below

(a) Conditioned on Ny and Ny

(b) Conditioned on N, and N3

A
L

Trajectories of X(t) conditioned on (a) Ny(w) = ny and Ns(w) = n4, and (b) No(w) = n» and
N3(w) = n3. Each sub-plot shows 10 condltlonally random trajectories for fixed realizations ny and

ny in (@), and n, and ng in (b).
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Stochastic Simulators
Examples

Michaelis-Menten system

M; = 4 species and K, = 3 reaction channels :
S +32%337 $35,+5
with a;(Xx) = ¢y X1 X2, @2(X) = C2X3, and c3(X) = C3X3,.

We set ¢; = 0.0017, ¢, = 10~3 and ¢3 = 0.125, and initial conditions
Xi(t=0) =300, Xo(t =0) =120 and X3(t =0) = Xa(t =0) =0

300

250 X,

X2
200 | X 1

X4
X 150 B
100 | 1
50 B
0 |

0 10 20 30 40 50 60
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Stochastic Simulators Variance Di
Examples

Michaelis-Menten system - Variance decomposition of g(X) = X(t)

Varianc
\ Sum of 1st order
\ Channel

Channel 2 ==

Channel 3

Variances
Variances
Variances

Michaelis-Menten model : First-order and total sensitivity indices s(;; and Ty forj=1,...,4.
Plots are a generated for (a) X1, (b) Xz and (c) X4

@ Relative importance of Ry and Rz changes in time for S; and S,

@ Stochastic dynamic of S, is essentially additive and dominated by R3

@ Channel R; induces nearly no variance in X(t) : here the dissociation reaction R,
can be simply disregarded without affecting significantly the dynamics.
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On the contrary, increasing ¢, by an order of magnitude, the effect of R, on the
variances becomes apparent :

(@) S

(b) S

Variances
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Stochastic Simulators

Examples

Schlégl model - Effect of parameters g(X) = X(t)

Consider parametric uncertainty on the propensity function :

a(X; Q).

700 ‘ 1200

@
8
i
_‘%
_§>
’

Trajectories of X(t) for different Poisson processes and fixed propensity functions (left) or different
propensity functions and fixed Poisson processes (right).
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Stochastic Simulators

Schlégl model - Effect of parameters g(X

Sensitivity indices

Sensitivity indices associated to the propensity function parameters S, inherent stochastic

1

o o o
= (=2} =<

o
)

(a) CV =0.05

dynamic S,ise and their interaction Sy

1

o o o
X o o

Sensitivity indices

o
[N

(b) CV =0.15
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Conclusions

Conclusions and Future Work

We have proposed
@ A variance decomposition for parametric SA in stochastic systems
@ PC expansion when parametric dependence is pathwise smooth

@ Development of methods and algorithms to enable variance decomposition in
stochastic simulators

@ |dentify the channels dynamics with their associated standard Poisson processes
@ Assessment of the relative importance of different reaction channels

Current works
@ Application to complex non-smooth functional g(X) : exit-time, path integrals, . ..
@ Account for parametric uncertainty in the definition of the propensity functions

@ Improve stochastic simulators for computational complexity reduction, e.g.
Tau-Leaping method and variance reduction methods.
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Conclusions

Algorithm

ALGORITHM 3. Computation of the first and total-order @ Procedure NRA implement the Next

sensitivity indices S;; and Ty;y of g(X (7). Reaction A|gorithm
Procedure Compute SI(M, X, T, {v,}.{a;}.9)
Require: Sample set dimension M, initial condition X, fi- @ Poisson processes defined by two

nal time T, state-change vectors {,}, propensity func- independent sets of seeds and RNG

tions {a;} and functional g

1 p+0,0°«0 > Init. Mean and Variance . . .
2 for j = 1to K, do @ Obvious parallelization
: S(j)« 0, T(j)«+ 0 > Init. first and total-order SIs
end for ALGORITHM 2. Next Reaction Algorithm.

5. form=1tom=M do Procedure NRA(Xo, T’ {¥;},{a;}.RG1, ..., RGi, )
6:  Draw two independent set of beedb s! and s'! Require: Initial condition Xo, final time 7T, state-change
7. X < NRA(Xo,T.{v;}, {a;}.RG: (s RGk(sL vectors {v;}, propensity functions {a;}, and sceded
. l )? { £ { a8 (XI)( B s \"fﬁ( t\\.'», 1 pseudo-random number generators RG_1.. k,
i peptgX), 0t ot tyg Acc. mean anc Lotk de
variance 2. Draw r; from RG;
9: for j =1 to K, do 3 10,7 « —logr; b set next reaction times
X5 + NRA(Xo, T, {v;},{a;}, Rc](e”) s 4: end for
1 5t 0,X « Xo
- RG;(s1), .., RGk, (si4)) .
X1 < NRA(Xo, T, {v;},{a;}, RG1(5,) 7 forj=1,...,K, do
JRG; (s]" \RG, (sk, ) §  Evaluate ay(X) and dt; = =2
S(j) < 8(j) + 9(X) x (Xs) > Acc. 1-st order 9 end for
T(j) < T(j) + 9(X) x g(X1) > Acc. total order 10:  Set | = argmin; dt; © pick next reaction
»xt channel 1 if t4di > T then
end for > Next channel 12 break > Final time reached
: end for > Next sample 13 else
o p/M, 0% o /(M —1) — 14 ettt > update time
19: for j =1 to K do 15: ?{FX*»I/; ‘< a & update the state vector
. 2 . 16 for j =1, K, do
20 8() < . > Estim. 1-st order B & update el times
. 18: end for
T(j) (w l\n“ +5 > Estim. total order 19, et r; from RG;
end for 20 7t 7t —logn © next reaction time
Return S(j) and T(j), j LK, & First and ; cdnii if
. / end loop
total-order sensitivity indices ;) and T(;) of g(X(T)) 22 end loop + State X(1)
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