Global Sensitivity Analysis in Stochastic Systems

Olivier Le Maître, Omar Knio

LIMSI CNRS, Orsay, France KAUST, Saudi-Arabia Duke University, Durham, North Carolina

CEMRACS - CIRM

Stochastic models

Physical systems with

- Complex small scale dynamics (MD, chemical systems, ...)
- Random forcing and source terms (finance, wind-load, ...)
- Unresolved scales (turbulence, climate modeling, ...)

are often tackled by means of stochastic modeling where complex / unknown / unresolved phenomenons are accounted for by the introduction of noisy dynamics.

In addition to the effect of the noise, the model may involve unknown parameters : *e.g.* noise level, physical constants and parameters, initial conditions, ...

Our general objective is to propagate / assess the impact of parameters uncertainty within such stochastic models while characterizing the effect of inherent noise :

global sensitivity analysis & analysis of the variance

Variance-Based Sensitivity Analysis for SODE's

- Variance decomposition
- PC-Galerkin approximation
- Examples

1

2

Stochastic Simulators

- stochastic simulators
- Variance Decomposition
- Examples

Stochastic ODEs

We consider a simple systems driven by random noise (Ito equation) : for $t \in [0, \mathcal{T}] \doteq \mathcal{T}$

$$dX(t) = C(X(t))dt + D(X(t))dW(t), \quad X(t=0) = X_0,$$

where

- $X(t) \in \mathbb{R}$ is the solution,
- *W*(*t*) is the Wiener process,
- $C(\cdot)$ is the drift function,
- and $D(\cdot)$ is the diffusion coefficient.

The solution can be computed through MC simulation, solving (e.g.)

$$X_{i+1} = X_i + C(X_i)\Delta t + D(X_i)\Delta W_i, \quad X_i \approx X(i\Delta t),$$

drawing iid random variables $\Delta W_i \sim N(0, \Delta t)$.

Sample estimate expectation, moments, quantiles, probability law, ..., of the stochastic process X(t):

$$\mathbb{E}\left\{g(X(i\Delta t))\right\}\approx\frac{1}{M}\sum_{l=1}^{M}g(X_{l}^{l}).$$

Variance decomposition PC-Galerkin approximation Examples

Stochastic ODEs with parametric uncertainty

The drift function and diffusion coefficient can involve some uncertain parameters Q:

$$dX(t) = C(X(t); Q)dt + D(X(t); Q)dW(t), \quad X(t = 0) = X_0.$$

We consider that :

- Q random with known probability law,
- Q and W are assumed independent.

The solution can be seen as a functional of W(t) and Q: X(t) = X(t, W, Q). We shall assume, $\forall t \in \mathcal{T}$,

We want to investigate the respective impact of Q, W on X.

Classical sensitivity analysis

Focusing on the two first moments, global SA for the random parameters *Q* is based on :

() approximating the mean and variance of $X_{|Q|}$

$$\mathbb{E}\left\{X_{\mid Q}\right\} = \mu_X(Q), \quad \mathbb{V}\left\{X_{\mid Q}\right\} = \Sigma_X^2(Q),$$

2 perform a GSA of $\mu_X(Q)$ and $\Sigma_X^2(Q)$ with respect to the input parameters in Q.

In particular, for independent parameters Q, Polynomial Chaos approximations :

$$\mu_X(\mathcal{Q}) \approx \sum_{\alpha} \mu_{\alpha} \Psi_{\alpha}(\mathcal{Q}), \quad \Sigma^2_X(\mathcal{Q}) \approx \sum_{\alpha} \Sigma^2_{\alpha} \Psi_{\alpha}(\mathcal{Q}).$$

PC expansion coefficients can be computed / estimated by means of Non-Intrusive Spectral Projection, Bayesian identification,

This approach characterizes the dependence of the first moments with respect to the parameters *Q*.

Variance decomposition PC-Galerkin approximation Examples

Another approach of GSA

Here, we exploit the structure of the model to take an alternative approach, inspired from the hierarchical orthogonal Sobol-Hoeffding decomposition of X:

$$X(W,Q) = \overline{X} + X_W(W) + X_Q(Q) + X_{W,Q}(W,Q), \quad \forall t \in \mathcal{T},$$

where the functionals in the SH decomposition are mutually orthogonal. In fact, the decomposition is unique and given by

•
$$\overline{X}(t) \doteq \mathbb{E} \{X(t)\},\$$

•
$$X_W(t, W) \doteq \mathbb{E} \{X(t) | W\} - \mathbb{E} \{X(t)\} = X_{|W}(t) - \overline{X}(t),$$

•
$$X_Q(t,Q) \doteq \mathbb{E} \{X(t)|Q\} - \mathbb{E} \{X(t)\} = X_{|Q}(t) - \overline{X}(t).$$

Owing to the orthogonality of the SH decomposition, we have

$$\mathbb{V}\left\{X\right\} = \mathbb{V}\left\{X_{W}\right\} + \mathbb{V}\left\{X_{Q}\right\} + \mathbb{V}\left\{X_{W,Q}\right\},$$

from which follow the definitions of the sensitivity indices

$$\mathbf{S}_W = \frac{\mathbb{V}\{X_W\}}{\mathbb{V}\{X\}}, \quad \mathbf{S}_Q = \frac{\mathbb{V}\{X_Q\}}{\mathbb{V}\{X\}}, \quad \mathbf{S}_{W,Q} = \frac{\mathbb{V}\{X_{W,Q}\}}{\mathbb{V}\{X\}}.$$

Sensitivity indices

The sensitivity indices

$$\mathbf{S}_{W} = \frac{\mathbb{V}\{X_{W}\}}{\mathbb{V}\{X\}}, \quad \mathbf{S}_{Q} = \frac{\mathbb{V}\{X_{Q}\}}{\mathbb{V}\{X\}}, \quad \mathbf{S}_{W,Q} = \frac{\mathbb{V}\{X_{W,Q}\}}{\mathbb{V}\{X\}},$$

then measure the fraction of the variance due to

- the Wiener noise only, or intrinsic randomness (S_W) ,
- the parameters only, or parametric randomness (S_Q),
- the combined effect of intrinsic and parametric randomness $(S_{W,Q})$.

In particular, S_W measure the part of the variance that cannot be reduced through a better knowledge of the parameters.

In addition,

$$\frac{\mathbb{V}_{Q}\left\{\mu_{X}(Q)\right\}}{\mathbb{V}\left\{X\right\}} = \mathbb{S}_{Q}, \quad \mathsf{but} \quad \frac{\mathbb{E}_{Q}\left\{\Sigma^{2}(Q)\right\}}{\mathbb{V}\left\{X\right\}} = \mathbb{S}_{W} + \mathbb{S}_{W,Q}.$$

From $\Sigma^2(Q)$, one cannot distinguish the intrinsic and mixed randomness effects.

Variance decomposition PC-Galerkin approximation Examples

Polynomial Chaos expansion

We express the dependence of X on Q as a PC expansion

$$X(t, W, Q) = \sum_{\alpha} X_{\alpha}(t, W) \Psi_{\alpha}(Q),$$

where

- $\{\Psi_{\alpha}\}$ is a CONS of $L^{2}(Q, p_{Q})$,
- the expansion coefficients X_{α} are random processes.

The random processes $X_{\alpha}(t)$ are the solutions of the coupled system of SODEs

$$dX_{\beta}(t) = \left\langle F\left(\sum_{\alpha} X_{\alpha}(t)\Psi_{\alpha}; Q\right), \Psi_{\beta} \right\rangle dt + \left\langle G\left(\sum_{\alpha} X_{\alpha}(t)\Psi_{\alpha}; Q\right), \Psi_{\beta} \right\rangle dW,$$

where $\langle \cdot, \cdot \rangle$ denotes the inner product in $L^2(Q, p_Q)$. This system can be solved by MC simulation (upon truncation).

PC expansion

Assuming $\Psi_0 = 1$, it comes

$$\mathbb{E}\left\{X\right\} = \mathbb{E}\left\{X_{0}\right\}, \quad X_{Q}(Q) = \sum_{\alpha \neq 0} \mathbb{E}\left\{X_{\alpha}\right\} \Psi_{\alpha}(Q), \quad X_{W}(W) = X_{0}(W) - \mathbb{E}\left\{X_{0}\right\},$$

and

$$X_{W,Q}(W,Q) = \sum_{lpha
eq 0} (X_{lpha}(W) - \mathbb{E} \{X_{lpha}\}) \Psi_{lpha}(Q).$$

Finally, the partial variances have for expression :

$$\mathbb{V}\left\{X_{\mathcal{Q}}\right\} = \sum_{\alpha \neq 0} \mathbb{E}\left\{X_{\alpha}\right\}^{2}, \quad \mathbb{V}\left\{X_{\mathcal{W}}\right\} = \mathbb{V}\left\{X_{0}\right\}, \quad \mathbb{V}\left\{X_{\mathcal{W},\mathcal{Q}}\right\} = \sum_{\alpha \neq 0} \mathbb{V}\left\{X_{\alpha}\right\}.$$

Observe :

$$X_Q(Q) + \mathbb{E} \{X\} = \mu_X(Q),$$

$$\sum_{\alpha} \mathbb{V} \{X_{\alpha}\} = \sum_{\alpha} \mathbb{E} \{X_{\alpha}^2\} - \mathbb{E} \{X_{\alpha}\}^2 = \mathbb{E}_Q \{\Sigma_X^2\}.$$

Limsi

Linear additive system

• Consider SODE with drift and diffusion terms given by :

$$C(X, Q) = Q_1 - X$$
 $D(X, Q) = (\nu X + 1)Q_2$

where Q_1 and Q_2 are independent, uniformly-distributed, random variables with mean $\mu_{1,2}$ and standard deviation $\sigma_{1,2}$.

- The orthonormal PC basis consists of tensorized Legendre polynomials.
- We use for initial condition X(t = 0) = 0 almost surely.

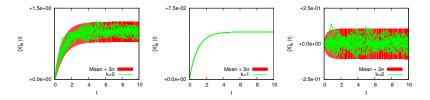
Variance decomposition PC-Galerkin approximation Examples

Additive Noise

Additive noise model (
$$\nu = 0$$
) with $\mu_1 = 1$, $\mu_2 = 0.1$, $\sigma_1 = \sigma_2 = 0.05$:

$$dX(Q) = (Q_1 - X(Q))dt + Q_2dW,$$

a first-order expansion suffices to exactly represent X(Q).

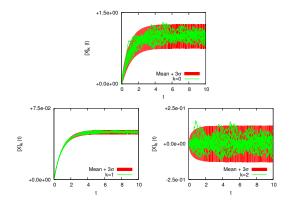


Selected trajectories and variability ranges for $[X_k](t, W)$. The plots correspond to k = 0, 1 and 2, arranged from left to right.

Variance decomposition PC-Galerkin approximation Examples

Multiplicative Noise – I

Multiplicative noise : $\textit{Q}_1 \sim \mathcal{U}[1, 0.05], \textit{Q}_2 \sim \mathcal{U}[0.1, 0.05], \nu = 0.2$

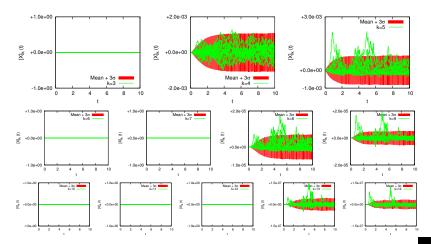


Sample trajectories of $[X_k]$, $0 \le k \le 2$. Top row : order 0, bottom row : order 1 with and decreasing order in Q_1 from left to right.

Variance decomposition PC-Galerkin approximation Examples

Multiplicative Noise – II

Multiplicative noise : $\textit{Q}_1 \sim \mathcal{U}[1, 0.05], \textit{Q}_2 \sim \mathcal{U}[0.1, 0.05], \nu = 0.2$



Sample trajectories of $[X_k]$, $3 \le k \le 14$. The total order ranges from 2 (top row) to 4 (bottom row), with and decreasing order in Q_1 from left to right.

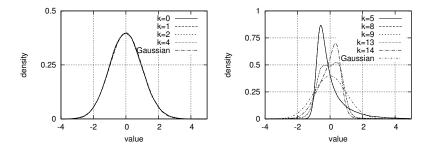
O. Le Maître Variance-based SA

Limsi

Variance decomposition PC-Galerkin approximation Examples

Distribution functions

Multiplicative noise : $Q_1 \sim \mathcal{U}[1, 0.05], Q_2 \sim \mathcal{U}[0.1, 0.05], \nu = 0.2$

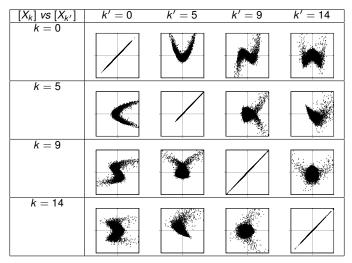


Probability density functions of the modes $[X_k]$ at t = 10. The modes have been centered and normalized to facilitate the comparison; the standard Gaussian distribution is also reported for reference.

Variance decomposition PC-Galerkin approximation Examples

Mode correlations

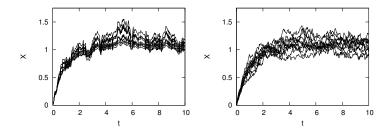
Projections in the planes ($[X_k], [X_{k'}]$) of realizations of the centered and normalized solution vector **X** at time t = 10, for selected indices



Limsi

Variance decomposition PC-Galerkin approximation Examples

Conditional trajectories

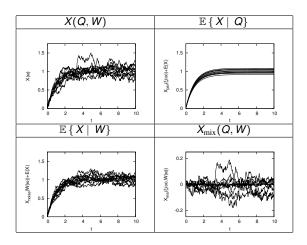


Left : trajectories for samples of Q and a *fixed* realization of WRight : trajectories for samples of W at a *fixed* value of the parameters.

Variance-Based Sensitivity Analysis for SODE's

Variance decomposition PC-Galerkin approximatio Examples

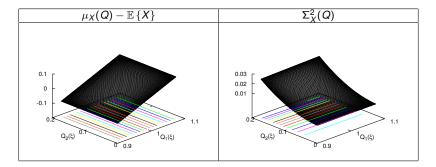
SH functions



Selected trajectories of *X* and its SH functions.

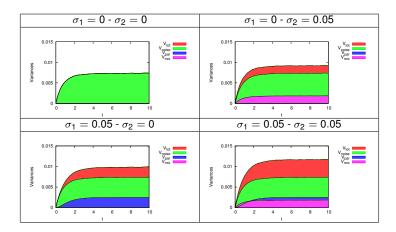
Variance decomposition PC-Galerkin approximation Examples

Parametric sensitivity



Effect of Q_1 and Q_2 of the (centered) conditional mean $\mu_X(Q) = \mathbb{E} \{ X \mid Q \} - \mathbb{E} \{ X \}$ and variance $\Sigma_X^2(Q) = \mathbb{V} \{ X \mid Q \}$ at time t = 10

Variance decomposition PC-Galerkin approximation Examples



Evolution of the components of the total variance. Shown are variance decompositions obtained for different values of σ_1 and σ_2

ANOVA

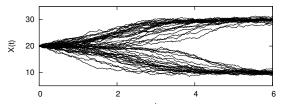
Limsi

Variance decomposition PC-Galerkin approximation Examples

Consider a system with additive noise and non-linear drift

$$dX = F(X)dt + \delta dW = -\gamma (X - a)(X - b)(X - c)dt + \delta dW$$

where $\delta > 0$ is an additional parameter controlling the noise level, and as before *W* is a Wiener process. Again the IC is $X_0 = X(t = 0)$.



Sample trajectories with a = 10, b = 20, $c = {}^{t}30$, $\gamma = 0.01$, and $\delta = 1$. In all cases, the initial condition coincides with $x^{0} = b$.

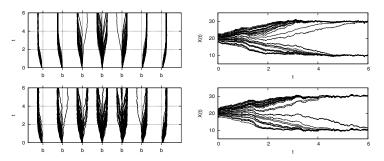
• Consider an uncertain initial condition, $Q_1 \sim \mathcal{R}[17.5, 22.5]$, and forcing amplitude, $Q_2 \sim \mathcal{R}[0.5, 1.5]$.

$$dX = F(X)dt + Q_1 dW \quad X_0 = Q_2.$$

- Q₁ and Q₂ independent.
- The PC representation is based on an adaptive multiwavelet basis expansion, which enables us to accommodate for bifurcation(s).
- The use of a non polynomial basis complicates the sensitivity analysis, but the framework is essentially unaltered.

Variance decomposition PC-Galerkin approximation Examples

Sample trajectories



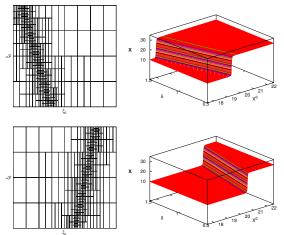
Left plots : sample set of realizations of W, the trajectories of X (time running up) for different initial conditions and two noise levels $Q_2 = 0.65$ (top plot) and $Q_2 = 1.35$ (bottom).

Right plots show for two realizations of W (top and bottom), the trajectories of X for a random sample set of values of Q_10 and Q_2 .

Variance-Based Sensitivity Analysis for SODE's

tochastic Simulators Conclusions Variance decomposition PC-Galerkin approximation Examples

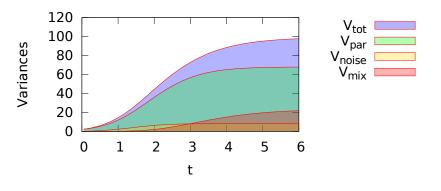
MW expansion



Left : partitions of the parametric domain and surface plots for X(t = 6, W) as a function of Q.

Variance decomposition PC-Galerkin approximation Examples

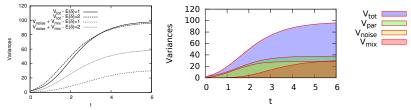
Variance decomposition



Partial variances of X(t)

Variance decomposition PC-Galerkin approximation Examples

Effect of Noise amplitude



Left : comparison of the total variances $\mathbb{V} \{X\}$ and total noise contributions $V_{\text{noise}} + V_{\text{mix}}$ to the variance, for two expected values of $\mathbb{E} \{\delta\} = 1$ and 2. Right : partial variances of the stochastic process X(t) for the case $\mathbb{E} \{\delta\} = 2$.

Extension to Non-Intrusive Projection

• The PC expansion of X(t, W, Q) can be estimated non-intrusively, *e.g.* :

$$X(t, W^{(i)}, Q) \approx \sum_{\alpha} X_{\alpha}(t, W^{(i)}) \Psi_{\alpha}(Q), \quad X_{\alpha}(t, W^{(i)}) \approx \sum_{\beta=1}^{N_Q} \Pi_{\alpha, \beta} X(t, W^{(i)}, Q^{(\beta)})$$

- For instance sparse grid pseudo spectral projection operator [Π] [Conrad, Marzouk] & [Constantine et al]
- Provides accurate Q-statistics for each path $W^{(i)}$ from only N_Q simulations
- Yields complexity reduction when Q-variance is dominant
- Applied to non-smooth Qol g(X), such as exit time. [Navarro, OLM, Knio, JUQ 2016]

stochastic simulators Variance Decomposition Examples

Stochastic Systems

Stochastic Simulator

Work with Omar Knio, Alvaro Moraes and Maria Navarro (KAUST)

governed by probabilistic evolution rules expresses by the master equation

$$\frac{\partial P(\boldsymbol{x},t|\boldsymbol{x}_0,t_0)}{\partial t} = \sum_{j=1}^{K_r} \left[a_j(\boldsymbol{x}-\boldsymbol{\nu}_j) P(\boldsymbol{x}-\boldsymbol{\nu}_j,t|\boldsymbol{x}_0,t_0) - a_j(\boldsymbol{x}) P(\boldsymbol{x},t|\boldsymbol{x}_0,t_0) \right],$$

- $\mathbf{x}(t) \in \mathbb{Z}^{M_{\mathcal{S}}}$: state of the system at time t,
- K_r reactions channels,
- propensity functions a_i and state-change vectors $\boldsymbol{\nu}_i \in \mathbb{Z}^{M_s}$,
- $P(\mathbf{x}, t | \mathbf{x}_o, t_o)$: probability of $\mathbf{X} = \mathbf{x}$ at time t, given $\mathbf{X} = \mathbf{x}_0$ at time t_0 ,
- Markov process.

Examples includes Reactive Networks (chemistry, biology), social networks, ...

- Direct resolution of the master equation is usually not an option,
- Simulate trajectories X(t) ~ P(x, t|xo, to), using a stochastic simulator.

Given $\boldsymbol{X}(t) = \boldsymbol{x}$, the probability of the next reaction to occur in the [t, t + dt) is

$$a_0(\boldsymbol{x})dt = dt \sum_{j=1}^{K_r} a_j(\boldsymbol{x}).$$

The time to the next reaction, τ , follows an exponential distribution with mean $1/a_0(\mathbf{x})$.

1 Set
$$t = t_0$$
, $X = x_0$.

2 Repeat until t > T

- Draw $\tau \sim \exp a_0(\boldsymbol{X})$
- Pick randomly $k \in \{1 \dots K_r\}$ with relative probability $p_k(a_k)$
- update $t \leftarrow t + \tau, \mathbf{X} \leftarrow \mathbf{X} + \nu_k$

3 Return $X(T) \sim P(\mathbf{x}, t | \mathbf{x}_o, t_o)$.

From a sample set of trajectory, estimate expectation of functionals $\mathbb{E} \{g(X)\}$.

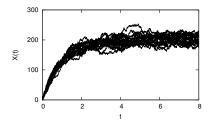
[Gillespie, 1970's]

Sobol Analysis of the variance

From the stochastic state X(t) and a given functional g, we would like :

assess the contributions of different reaction channels (or group of) on the variability of $g(\mathbf{X})$

For instance : which channel(s) is (are) responsible for most of the variance in g(X)?



This is **not to be confused with parametric sensitivity analyses** where one wants to estimate the sensitivity of $\mathbb{E} \{g(\mathbf{X})\}$ with respect to some parameters \mathbf{q} in the definition of the dynamics (*e.g.* propensity functions).

Sobol Analysis of the variance

- $N(\omega) = (N_1, \cdots, N_D)$ a set of D independent random inputs N_i ,
- F(N) a (second-order) random functional in N,

 $F(\mathbf{N})$ has a unique orthogonal decomposition

[Sobol, 2002 ; Homma & Saltelli, 1996]

Lims

$$F(\mathbf{N}) = \sum_{\mathbf{u}\in\mathcal{D}} F_{\mathbf{u}}(\mathbf{N}_{\mathbf{u}}),$$

where \mathcal{D} is the power set of $\{1, \cdots, D\}$ and $\boldsymbol{N}_{\boldsymbol{u}} = (N_{\boldsymbol{u}_1}, \cdots, N_{\boldsymbol{u}_{|\boldsymbol{u}|}})$. The orthogonality condition reads

$$\mathbb{E}\left\{F_{\mathbf{u}}F_{\mathbf{s}}\right\} = \int_{\Omega} F_{\mathbf{u}}(\boldsymbol{N}_{\mathbf{u}}(\omega))F_{\mathbf{s}}(\boldsymbol{N}_{\mathbf{s}}(\omega))d\mu(\omega) = 0,$$

so

$$\mathbb{V}\left\{F\right\} = \sum_{\mathbf{u}\in\mathcal{D}\setminus\emptyset}\mathbb{V}\left\{F_{\mathbf{u}}\right\},$$

where $\mathbb{V}\{F_u\}$ are the partial variances.

stochastic simulators Variance Decomposition Examples

Sobol Analysis of the variance (cont...)

From the variance decomposition,

$$\mathbb{V}\left\{F\right\} = \sum_{\mathbf{u}\in\mathcal{D}\setminus\emptyset}\mathbb{V}\left\{F_{\mathbf{u}}\right\},\,$$

• First order sensitivity indices s_u : fraction of the variance caused by the random inputs N_u only

$$\mathbb{V}\left\{F\right\}$$
 s_u = $\sum_{\mathfrak{s}\supseteq\mathfrak{u}}^{\mathfrak{s}\neq\emptyset} \mathbb{V}\left\{F_{\mathfrak{u}}\right\}$

• Total order sensitivity indices \mathbb{T}_u : fraction of the variance caused by the random inputs \pmb{N}_u and interaction

$$\mathbb{V}\left\{F\right\}\mathbb{I}_{\mathfrak{u}}\sum_{\mathfrak{s}\in\mathcal{D}}^{(\mathfrak{s}\cap\mathfrak{u})\neq\emptyset}\mathbb{V}\left\{F_{\mathfrak{s}}\right\}$$

The partial variances $\mathbb{V}\{F_{u}\}\$ can be expressed as conditional variances : [Homma & Saltelli, 1996]

$$\mathbb{V}\left\{F_{\boldsymbol{u}}\right\} = \mathbb{V}\left\{\mathbb{E}\left\{F \mid \boldsymbol{N}_{\boldsymbol{u}}\right\}\right\} - \sum_{\substack{\boldsymbol{s} \in \mathcal{D} \setminus \emptyset \\ \boldsymbol{s} \subseteq \boldsymbol{u}}} \mathbb{V}\left\{F_{\boldsymbol{s}}\right\},$$

or

$$\mathbb{V}\left\{F\right\} s_{\boldsymbol{u}} = \mathbb{V}\left\{\mathbb{E}\left\{F \mid \boldsymbol{N}_{\boldsymbol{u}}\right\}\right\}, \quad \mathbb{V}\left\{F\right\} \mathtt{T}_{\boldsymbol{u}} = \mathbb{V}\left\{F\right\} - \mathbb{V}\left\{\mathbb{E}\left\{F \mid \boldsymbol{N}_{\boldsymbol{u}_{\sim}}\right\}\right\} = \mathbb{V}\left\{F\right\}(1-s_{\boldsymbol{u}_{\sim}}),$$
 where $\boldsymbol{u}_{\sim} = \{1, \ldots, D\} \setminus \boldsymbol{u}.$

Decomposition of the Variance = Estimation of conditional variances

Monte-Carlo estimation of the sensitivity indices

Consider two independent sample sets $\mathcal{N}^{\textcircled{0}}$ and $\mathcal{N}^{\textcircled{2}}$ of *M* realizations of *N*. The conditional variance $\mathbb{V} \{ \mathbb{E} \{ F \mid N_u \} \}$ can be estimated as [Sobol, 2001]

$$\mathbb{V}\left\{\mathbb{E}\left\{F\mid\boldsymbol{N}_{\boldsymbol{\mathsf{u}}}\right\}\right\}+\mathbb{E}\left\{F\right\}^{2}=\lim_{M\to\infty}\frac{1}{M}\sum_{i=1}^{M}F(\boldsymbol{N}_{\boldsymbol{\mathsf{u}}}^{\textcircled{D},(i)},\boldsymbol{N}_{\boldsymbol{\mathsf{u}}\sim}^{\textcircled{D},(i)})F(\boldsymbol{N}_{\boldsymbol{\mathsf{u}}}^{\textcircled{D},(i)},\boldsymbol{N}_{\boldsymbol{\mathsf{u}}\sim}^{\textcircled{D},(i)}),$$

such that

$$\widehat{\mathbf{S}_{\mathbf{u}}} = \frac{\frac{1}{M} \sum_{i=1}^{M} F(\boldsymbol{N}^{\mathbb{O},(i)}) F(\boldsymbol{N}_{\mathbf{u}}^{\mathbb{O},(i)}, \boldsymbol{N}_{\mathbf{u}_{\sim}}^{\mathbb{O},(i)}) - \widehat{\mathbb{E}\{F\}}^2}{\widehat{\mathbb{V}\{F\}}},$$

and

$$\widehat{\mathbb{T}_{\mathbf{u}}} = 1 - \frac{\frac{1}{M} \sum_{i=1}^{M} F(\mathbf{N}^{\mathbb{D},(i)}) F(\mathbf{N}_{\mathbf{u}}^{\mathbb{D},(i)}, \mathbf{N}_{\mathbf{u}}^{\mathbb{D},(i)}) - \widehat{\mathbb{E}\left\{F\right\}}^2}{\widehat{\mathbb{V}\left\{F\right\}}}$$

where $\widehat{\mathbb{E}\{F\}}$ and $\widehat{\mathbb{V}\{F\}}$ are the classical MC estimators for the mean and variance. The computational complexity scales linearly with the number of indices to be computed

Application to Stochastic Simulators

To assess the respective impacts of different reaction channels through Sobol's decomposition of $\mathbb{V} \{g(X)\}$, when X is the output of a stochastic simulator, we need to condition X on the channels dynamics :

What is a particular realization of a channel dynamics?

Gillespie's algorithm is not suited, and we have to recast the stochastic algorithm in terms of

independent processes associated to each channel.

Next Reaction Formulation.

[Ethier &Kurtz, 2005, Gibson & Bruck, 2000]

Lims

$$\boldsymbol{X}(t) = \boldsymbol{X}(t_0) + \sum_{j=1}^{K_r} \boldsymbol{\nu}_j N_j(t_j),$$

where the $N_j(t)$ are independent standard (unit rate) Poisson processes, and the scaled times t_i are given by

$$t_j = \int_{t_0}^t a_j(\boldsymbol{X}(\tau)) d\tau, \quad j = 1, \dots, K_r.$$

Then, $g(\mathbf{X})$ can be seen as

$$g(\boldsymbol{X}) = F(N_1,\ldots,N_{K_r}).$$

Application to Stochastic Simulators (cont.)

The random functional $g(\mathbf{X}) = F(N_1, \dots, N_{K_r})$ can then be decomposed à *la* Sobol.

A particular realization of a channel dynamic is identified with a realization of the underlying standard Poisson processes.

For instance, the conditional variance writes

$$\mathbb{E}\left\{g(\boldsymbol{X})\mid \boldsymbol{N}_{\boldsymbol{u}}=\boldsymbol{n}_{\boldsymbol{u}}\right\}=\mathbb{E}\left\{g\left(\boldsymbol{X}(t_{0})+\sum_{j\in\boldsymbol{u}}\boldsymbol{\nu}_{j}\boldsymbol{n}_{j}(t_{j})+\sum_{j\in\boldsymbol{u}_{\sim}}\boldsymbol{\nu}_{j}\boldsymbol{N}_{j}(t_{j})\right)\right\},\$$

with $t_j = \int_{t_0}^t a_j(\boldsymbol{X}(\tau)) d\tau$.

Note that

- in general, all firing times t_i remain random for given $n_u(t)$, as they depend on $N_{u\sim}$
- in practice, the standard Poisson processes N_j are entirely specified by their random seeds and pseudo-random number generator :

the Poisson processes don't have to be stored but are computed on the fly

stochastic simulators Variance Decomposition Examples

The birth-death (BD) process

Single species S (M_s = 1) and K_r = 2 reaction channels :

$$\emptyset \stackrel{b}{\longrightarrow} S, \quad S \stackrel{d}{\longrightarrow} \emptyset,$$

with propensity functions

$$a_1(x) = b$$
, $a_2(x) = d \times x$.

We set b = 200, d = 1, and use M = 1,000,000 Monte Carlo samples to compute the estimates.

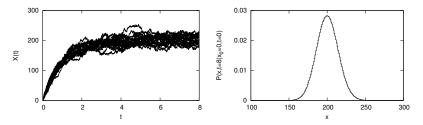
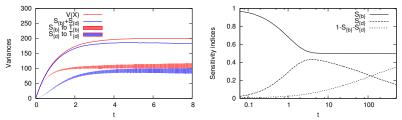


FIGURE: Left : Selected trajectories of X(t) generated using Next Reaction Algorithm. Right : histogram of X(t = 8).

Variance-Based Sensitivity Analysis for SODE's stochastic simulators Variance Decomposition Conclusions Examples

B-D process. Variance decomposition of g(X) = X(t)



Left : scaled first-order and total sensitivity indices (scaled by the variance) of the birth-death model and $t \in [0, 8]$. Right : long-time evolution of the first-order sensitivity indices, and of the mixed interaction term.

- Variance in X is predominantly caused by the birth channel stochasticity for early time t < 1
- For $1 \le t \le 4$, the variability induced by R_d only continues to grow with the population size (first order reaction), while mixed effects develops
- Eventually, effect of R_b stabilize (zero-order reaction, rate independent of X) while effect of R_d only slowly decays to benefit the mixed term (stochasticity of N_b affects more and more the death process).

stochastic simulators Variance Decomposition Examples

Schlögl model

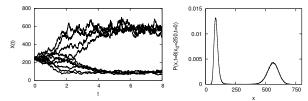
System with $K_r = 4$ reaction channels :

$$B_1 + 2S \stackrel{c_1}{\underset{c_2}{\Longrightarrow}} 3S, \quad B_2 \stackrel{c_3}{\underset{c_4}{\Longrightarrow}} S,$$

with B_1 and B_2 in large excess and constant population over time, $X_{B_1} = X_{B_2}/2 = 10^5$ and a single evolving species *S* with $M_s = 1$. The propensity functions are given by

$$a_1(x) = \frac{c_1}{2} X_{B_1} x(x-1), \quad a_2(x) = \frac{c_2}{6} x(x-1)(x-2), \quad a_3(x) = c_3 X_{B_2}, \quad a_4(x) = c_4 x.$$

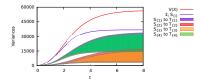
We set $c_1 = 3 \times 10^{-7}$, $c_2 = 10^{-4}$, $c_3 = 10^{-3}$, $c_4 = 3.5$ and deterministic initial condition X(t = 0) = 250. Results in a bi-modal dynamic



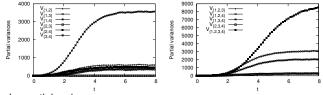
Left : selected trajectories of X(t) showing the bifurcation in the stochastic dynamics. Right : histogram of X(t = 8).

Variance-Based Sensitivity Analysis for SODE's Stochastic Simulators stochastic simulators Variance Decomposition Examples

Schlögl model - Variance decomposition of g(X) = X(t)



First and total order partial variances.



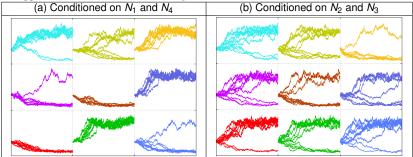
Higher order partial variances.

Reaction channels R_1 and R_4 are the dominant sources of variance Dynamic essentially additive up to $t \sim 2$

Schlögl model - Variance decomposition of g(X) = X(t)

Analysis of the partial variance revealed that R_1 and R_4 are the main sources of stochasticity.

It suggests a dominant role in selecting the bifurcation branch, as illustrated below



Trajectories of X(t) conditioned on (a) $N_1(\omega) = n_1$ and $N_4(\omega) = n_4$, and (b) $N_2(\omega) = n_2$ and $N_3(\omega) = n_3$. Each sub-plot shows 10 conditionally random trajectories for fixed realizations n_1 and n_4 in (a), and n_2 and n_3 in (b).

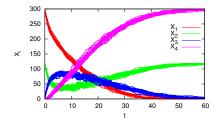
stochastic simulators Variance Decomposition Examples

Michaelis-Menten system

 $M_s = 4$ species and $K_r = 3$ reaction channels :

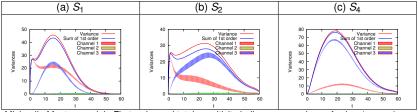
$$S_1 + S_2 \mathop{\stackrel{c_1}{\rightleftharpoons}}_{c_2} S_3, \quad S_3 \mathop{\stackrel{c_3}{
ightarrow}} S_4 + S_2$$

with $a_1(\mathbf{x}) = c_1 x_1 x_2$, $a_2(\mathbf{x}) = c_2 x_3$, and $c_3(\mathbf{x}) = c_3 x_3$. We set $c_1 = 0.0017$, $c_2 = 10^{-3}$ and $c_3 = 0.125$, and initial conditions $X_1(t=0) = 300$, $X_2(t=0) = 120$ and $X_3(t=0) = X_4(t=0) = 0$



Michaelis-Menten system - Variance decomposition of $g(\mathbf{X}) = X_i(t)$

Note : $X_2 + X_3 = \text{const}$, the sensitivity indices for S_2 and S_3 are equal

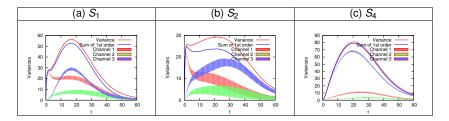


Michaelis-Menten model : First-order and total sensitivity indices $S_{\{j\}}$ and $T_{\{j\}}$ for j = 1, ..., 4. Plots are a generated for (a) X_1 , (b) X_2 and (c) X_4

- Relative importance of R₁ and R₃ changes in time for S₁ and S₂
- Stochastic dynamic of S₄ is essentially additive and dominated by R₃
- Channel *R*₂ induces nearly no variance in *X*(*t*) : **here** the dissociation reaction *R*₂ can be simply disregarded without affecting significantly the dynamics.

Michaelis-Menten system - Variance decomposition of $g(\mathbf{X}) = X_i(t)$

On the contrary, increasing c_2 by an order of magnitude, the effect of R_2 on the variances becomes apparent :

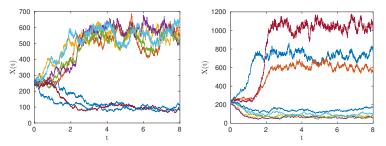


Variance-Based Sensitivity Analysis for SODE's stochastic simulators Stochastic Simulators Conclusions Examples

Schlögl model - Effect of parameters g(X) = X(t)

Consider parametric uncertainty on the propensity function :

 $a_k(X; Q).$

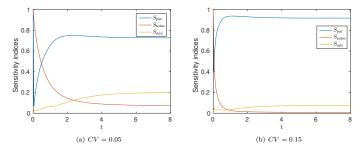


Trajectories of X(t) for different Poisson processes and fixed propensity functions (left) or different propensity functions and fixed Poisson processes (right).

Variance-Based Sensitivity Analysis for SODE's Stochastic Simulators Conclusions Stochastic simulators Variance Decomposition Examples

Schlögl model - Effect of parameters g(X) = X(t)

Consider parametric uncertainty on the propensity function (ind. all with same CV)



Sensitivity indices associated to the propensity function parameters S_{par} , inherent stochastic dynamic S_{noise} and their interaction S_{mix} .

Conclusions and Future Work

We have proposed

- A variance decomposition for parametric SA in stochastic systems
- PC expansion when parametric dependence is pathwise smooth
- Development of methods and algorithms to enable variance decomposition in stochastic simulators
- Identify the channels dynamics with their associated standard Poisson processes
- Assessment of the relative importance of different reaction channels

Current works

- Application to complex non-smooth functional g(X) : exit-time, path integrals, ...
- Account for parametric uncertainty in the definition of the propensity functions
- Improve stochastic simulators for computational complexity reduction, *e.g.* Tau-Leaping method and variance reduction methods.

Acknowledgement : This work was supported by the US Department of Energy (DOE), Office of Science, Office of Advanced Scientific Computing Research, under Award Number DE-SC0008789. Support from the Research Center on Uncertainty Quantification of the King Abdullah University of Science and Technology is also acknowledged.

Lims

Thank you for your attention

- O.P. Le Maître, O. Knio and A. Moraes, Variance decomposition in stochastic simulators, *J. Chemical Physics*, **142**, pp. 244115, (2015).
- M. Navarro Jimenez, O.P. Le Maître and O.M. Knio, Global sensitivity analysis in stochastic simulators of uncertain reaction networks, *J. Chem. Phys.*, 145, pp. 244106, (2016).
- O. Le Maître and O. Knio, PC analysis of stochastic differential equations driven by Wiener noise, *Reliability Engineering and System Safety*, 135, pp. 107-124 (2015).
- M. Navarro Jimenez, O.P. Le Maître and O.M. Knio, Non-intrusive Polynomial Chaos expansions for sensitivity analysis in stochastic differential Equations, *SIAM/ASA J. Uncertainty Quantification*, **5** :1, pp. 378-402, (2017).

Acknowledgement : This work was supported by the US Department of Energy (DOE), Office of Science, Office of Advanced Scientific Computing Research, under Award Number DE-SC0008789. Support from the Research Center on Uncertainty Quantification of the King Abdullah University of Science and Technology is also acknowledged.

Lims

Algorithm

ALGORITHM 3. Computation of the first and total-order sensitivity indices $S_{\{j\}}$ and $T_{\{j\}}$ of $g(\boldsymbol{X}(T))$. **Procedure Compute_SI** $(M, \boldsymbol{X}_0, T, \{\boldsymbol{\nu}_j\}, \{a_i\}, g)$

- Require: Sample set dimension M, initial condition X_0 , final time T, state-change vectors $\{\boldsymbol{\nu}_i\}$, propensity functions $\{a_i\}$ and functional g1: $\mu \leftarrow 0, \sigma^2 \leftarrow 0$ ▷ Init. Mean and Variance for j = 1 to K_r do $S(i) \leftarrow 0, T(i) \leftarrow 0$ ▷ Init, first and total-order SIs 3: 4. end for 5: for m = 1 to m = M do Draw two independent set of seeds s^{I} and s^{II} $X \leftarrow NRA(X_0, \hat{T}, \{\boldsymbol{\nu}_i\}, \{a_i\}, RG_1(s_1^I), \dots, RG_{K_r}(s_{K_r}^I))$ 7: $\mu \leftarrow \mu + q(\boldsymbol{X}), \ \sigma^2 \leftarrow \sigma^2 + q(\boldsymbol{X})^2 \qquad \triangleright \text{ Acc. mean and}$ 8: variance for i = 1 to K_r do 9: $X_{S} \leftarrow NRA(X_{0}, T, \{\nu_{i}\}, \{a_{i}\}, RG_{1}(s_{1}^{II}), \dots,$ 10: \ldots , RG₁ (s_1^I) , \ldots , RG_K $(s_{K_n}^{II})$ 11: 12: $\boldsymbol{X}_{T} \leftarrow NRA(\boldsymbol{X}_{0}, T, \{\boldsymbol{\nu}_{i}\}, \{a_{i}\}, RG_{1}(s_{1}^{I}), \ldots,$ $\dots, RG_{i}(s_{i}^{II}), \dots, RG_{K_{r}}(s_{K_{r}}^{I}))$ 13: $S(j) \leftarrow S(j) + q(\mathbf{X}) \times q(\mathbf{X}_{s})$ > Acc. 1-st order 14: $T(j) \leftarrow T(j) + q(\boldsymbol{X}) \times q(\boldsymbol{X}_{T})$ ▷ Acc. total order 15:16. end for ▷ Next channel 17 end for ▷ Next sample 18: $\mu \leftarrow \mu/M$, $\sigma^2 \leftarrow \sigma^2/(M-1) - \mu^2$ 19: for j = 1 to K_r do $S(j) \leftarrow \frac{S(j)}{(M-1)\sigma^2} - \frac{\mu^2}{\sigma^2}$ 20: ▷ Estim. 1-st order $T(j) \leftarrow 1 - \frac{T(j)}{(M-1)\sigma^2} + \frac{\mu^2}{\sigma^2}$ 21: ▷ Estim. total order 22: end for 23: Return S(j) and T(j), j = 1,..., K_r ▷ First and total-order sensitivity indices $S_{\{i\}}$ and $T_{\{i\}}$ of $g(\mathbf{X}(T))$
- Procedure NRA implement the Next Reaction Algorithm
- Poisson processes defined by two independent sets of seeds and RNG

Obvious parallelization

ALGORITHM 2. Next Reaction Algorithm. Procedure NRA($X_0, T, \{\boldsymbol{\nu}_i\}, \{a_i\}, RG_1, \dots, RG_{K_n}$) Require: Initial condition X_0 , final time T, state-change vectors $\{\boldsymbol{\nu}_i\}$, propensity functions $\{a_i\}$, and seeded pseudo-random number generators $RG_{i=1...K_r}$ 1: for $j = 1, ..., K_r$ do Draw r_i from RG_i $\tau_i \leftarrow 0, \tau_i^+ \leftarrow -\log r_i$ 3. ▷ set next reaction times 4: end for 5: $t \leftarrow 0, \mathbf{X} \leftarrow \mathbf{X}_0$ 6: loop for $i = 1, ..., K_r$ do 7: Evaluate $a_j(\mathbf{X})$ and $dt_j = \frac{\tau_j^+ - \tau_j}{\sigma}$ 8: 9: end for Set $l = \arg \min_i dt_i$ ▷ pick next reaction 10. 11: if $t + dt_l > T$ then break 12. Final time reached 13. else 14. $t \leftarrow t + dt_i$ ▷ update time 15: $X \leftarrow X + \nu_1$ ▷ update the state vector 16: for $i = 1, \dots, K_r$ do 17: $\tau_i \leftarrow \tau_i + a_i dt_i$ ▷ update unscaled times 18end for 19: Get r, from RG 20- $\tau_l^+ \leftarrow \tau_l^+ - \log r_l$ ▷ next reaction time 21: end if 22: end loop 23: Return X \triangleright State X(T)