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Stochastic models
Physical systems with

Complex small scale dynamics (MD, chemical systems, . . .)

Random forcing and source terms (finance, wind-load, . . .)

Unresolved scales (turbulence, climate modeling, . . .)

are often tackled by means of stochastic modeling where complex / unknown /
unresolved phenomenons are accounted for by the introduction of noisy dynamics.

In addition to the effect of the noise, the model may involve unknown parameters : e.g.
noise level, physical constants and parameters, initial conditions, . . .

Our general objective is to propagate / assess the impact of parameters uncertainty
within such stochastic models while characterizing the effect of inherent noise :

global sensitivity analysis & analysis of the variance
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Stochastic ODEs
We consider a simple systems driven by random noise (Ito equation) : for
t ∈ [0,T ]

.
= T

dX(t) = C(X(t))dt + D(X(t))dW (t), X(t = 0) = X0,

where

X(t) ∈ R is the solution,

W (t) is the Wiener process,

C(·) is the drift function,

and D(·) is the diffusion coefficient.

The solution can be computed through MC simulation, solving (e.g.)

Xi+1 = Xi + C(Xi )∆t + D(Xi )∆Wi , Xi ≈ X(i∆t),

drawing iid random variables ∆Wi ∼ N(0,∆t).
Sample estimate expectation, moments, quantiles, probability law, . . ., of the stochastic
process X(t) :

E {g(X(i∆t))} ≈
1
M

M∑
l=1

g(X l
i ).
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Stochastic ODEs with parametric uncertainty
The drift function and diffusion coefficient can involve some uncertain parameters Q :

dX(t) = C(X(t); Q)dt + D(X(t); Q)dW (t), X(t = 0) = X0.

We consider that :

Q random with known probability law,

Q and W are assumed independent.

The solution can be seen as a functional of W (t) and Q : X(t) = X(t ,W ,Q). We shall
assume, ∀t ∈ T ,

1 E
{

X 2} <∞,

2 E
{
E {X |W}2

}
.

= E
{

X 2
|W

}
<∞,

3 E
{
E {X |Q}2

}
.

= E
{

X 2
|Q

}
<∞.

We want to investigate the respective impact of Q, W on X .
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Classical sensitivity analysis
Focusing on the two first moments, global SA for the random parameters Q is based
on :

1 approximating the mean and variance of X|Q

E
{

X|Q
}

= µX (Q), V
{

X|Q
}

= Σ2
X (Q),

2 perform a GSA of µX (Q) and Σ2
X (Q) with respect to the input parameters in Q.

In particular, for independent parameters Q, Polynomial Chaos approximations :

µX (Q) ≈
∑
α

µαΨα(Q), Σ2
X (Q) ≈

∑
α

Σ2
αΨα(Q).

PC expansion coefficients can be computed / estimated by means of Non-Intrusive
Spectral Projection, Bayesian identification, . . ..

This approach characterizes the dependence of the first moments with respect to the
parameters Q.
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Another approach of GSA
Here, we exploit the structure of the model to take an alternative approach, inspired
from the hierarchical orthogonal Sobol-Hoeffding decomposition of X :

X(W ,Q) = X + XW (W ) + XQ(Q) + XW ,Q(W ,Q), ∀t ∈ T ,

where the functionals in the SH decomposition are mutually orthogonal.
In fact, the decomposition is unique and given by

X(t) .
= E {X(t)},

XW (t ,W )
.

= E {X(t)|W} − E {X(t)} = X|W (t)− X(t),

XQ(t ,Q)
.

= E {X(t)|Q} − E {X(t)} = X|Q(t)− X(t).

Owing to the orthogonality of the SH decomposition, we have

V {X} = V {XW }+ V {XQ}+ V
{

XW ,Q
}
,

from which follow the definitions of the sensitivity indices

SW =
V {XW }
V {X}

, SQ =
V {XQ}
V {X}

, SW ,Q =
V
{

XW ,Q
}

V {X}
.
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Sensitivity indices
The sensitivity indices

SW =
V {XW }
V {X}

, SQ =
V {XQ}
V {X}

, SW ,Q =
V
{

XW ,Q
}

V {X}
,

then measure the fraction of the variance due to

the Wiener noise only, or intrinsic randomness (SW ),

the parameters only, or parametric randomness (SQ),

the combined effect of intrinsic and parametric randomness (SW ,Q).

In particular, SW measure the part of the variance that cannot be reduced through a
better knowledge of the parameters.

In addition,

VQ {µX (Q)}
V {X}

= SQ , but
EQ
{

Σ2(Q)
}

V {X}
= SW + SW ,Q .

From Σ2(Q), one cannot distinguish the intrinsic and mixed randomness effects.

O. Le Maître Variance-based SA
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Polynomial Chaos expansion
We express the dependence of X on Q as a PC expansion

X(t ,W ,Q) =
∑
α

Xα(t ,W )Ψα(Q),

where

{Ψα} is a CONS of L2(Q, pQ),

the expansion coefficients Xα are random processes.

The random processes Xα(t) are the solutions of the coupled system of SODEs

dXβ(t) =

〈
F

(∑
α

Xα(t)Ψα; Q

)
,Ψβ

〉
dt +

〈
G

(∑
α

Xα(t)Ψα; Q

)
,Ψβ

〉
dW ,

where 〈·, ·〉 denotes the inner product in L2(Q, pQ).

This system can be solved by MC simulation (upon truncation).
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PC expansion
Assuming Ψ0 = 1, it comes

E {X} = E {X0} , XQ(Q) =
∑
α 6=0

E {Xα}Ψα(Q), XW (W ) = X0(W )− E {X0} ,

and
XW ,Q(W ,Q) =

∑
α 6=0

(Xα(W )− E {Xα}) Ψα(Q).

Finally, the partial variances have for expression :

V {XQ} =
∑
α 6=0

E {Xα}2 , V {XW } = V {X0} , V
{

XW ,Q
}

=
∑
α6=0

V {Xα} .

Observe :
1 XQ(Q) + E {X} = µX (Q),
2
∑
α V {Xα} =

∑
α E

{
X 2
α

}
− E {Xα}2 = EQ

{
Σ2

X

}
.
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Linear additive system
Consider SODE with drift and diffusion terms given by :

C(X ,Q) = Q1 − X D(X ,Q) = (νX + 1)Q2

where Q1 and Q2 are independent, uniformly-distributed, random variables with
mean µ1,2 and standard deviation σ1,2.

The orthonormal PC basis consists of tensorized Legendre polynomials.

We use for initial condition X(t = 0) = 0 almost surely.

O. Le Maître Variance-based SA
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Additive Noise

Additive noise model (ν = 0) with µ1 = 1, µ2 = 0.1, σ1 = σ2 = 0.05 :

dX(Q) = (Q1 − X(Q))dt + Q2dW ,

a first-order expansion suffices to exactly represent X(Q).
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Selected trajectories and variability ranges for [Xk ](t ,W ). The plots correspond to
k = 0, 1 and 2, arranged from left to right.
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Multiplicative Noise – I

Multiplicative noise : Q1 ∼ U [1, 0.05], Q2 ∼ U [0.1, 0.05], ν = 0.2
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Sample trajectories of [Xk ], 0 ≤ k ≤ 2. Top row : order 0, bottom row : order 1 with and
decreasing order in Q1 from left to right.
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Multiplicative Noise – II

Multiplicative noise : Q1 ∼ U [1, 0.05], Q2 ∼ U [0.1, 0.05], ν = 0.2

-1.0e+00

+0.0e+00

+1.0e+00

 0  2  4  6  8  10

[X
] k

 (
t)

t

Mean + 3σ

k=3
-2.0e-03

+0.0e+00

+2.0e-03

 0  2  4  6  8  10

[X
] k

 (
t)

t

Mean + 3σ

k=4
-1.0e-03

+0.0e+00

+3.0e-03

 0  2  4  6  8  10

[X
] k

 (
t)

t

Mean + 3σ

k=5

-1.0e+00

+0.0e+00

+1.0e+00

 0  2  4  6  8  10

[X
] k

 (
t)

t

Mean + 3σ

k=6

-1.0e+00

+0.0e+00

+1.0e+00

 0  2  4  6  8  10

[X
] k

 (
t)

t

Mean + 3σ

k=7

-1.0e-05

+0.0e+00

+2.0e-05

 0  2  4  6  8  10
[X

] k
 (

t)
t

Mean + 3σ

k=8

-2.0e-05

+0.0e+00

+2.0e-05

 0  2  4  6  8  10

[X
] k

 (
t)

t

Mean + 3σ

k=9

-1.0e+00

+0.0e+00

+1.0e+00

 0  2  4  6  8  10

[X
] k

 (
t)

t

Mean + 3σ

k=10

-1.0e+00

+0.0e+00

+1.0e+00

 0  2  4  6  8  10

[X
] k

 (
t)

t

Mean + 3σ

k=11

-1.0e+00

+0.0e+00

+1.0e+00

 0  2  4  6  8  10

[X
] k

 (
t)

t

Mean + 3σ

k=12

-1.5e-07

+0.0e+00

+1.5e-07

 0  2  4  6  8  10

[X
] k

 (
t)

t

Mean + 3σ

k=13

-1.5e-07

+0.0e+00

+1.5e-07

 0  2  4  6  8  10

[X
] k

 (
t)

t

Mean + 3σ

k=14

Sample trajectories of [Xk ], 3 ≤ k ≤ 14. The total order ranges from 2 (top row) to 4
(bottom row), with and decreasing order in Q1 from left to right.
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Distribution functions

Multiplicative noise : Q1 ∼ U [1, 0.05], Q2 ∼ U [0.1, 0.05], ν = 0.2
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Probability density functions of the modes [Xk ] at t = 10. The modes have been
centered and normalized to facilitate the comparison ; the standard Gaussian
distribution is also reported for reference.
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Mode correlations

Projections in the planes ([Xk ], [Xk′ ]) of realizations of the centered and normalized
solution vector XXX at time t = 10, for selected indices

[Xk ] vs [Xk′ ] k ′ = 0 k ′ = 5 k ′ = 9 k ′ = 14
k = 0
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Conditional trajectories
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Left : trajectories for samples of Q and a fixed realization of W
Right : trajectories for samples of W at a fixed value of the parameters.
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SH functions

X(Q,W ) E {X | Q}
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Selected trajectories of X and its SH functions.
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Parametric sensitivity

µX (Q)− E {X} Σ2
X (Q)
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Effect of Q1 and Q2 of the (centered) conditional mean µX (Q) = E {X | Q} − E {X}
and variance Σ2

X (Q) = V {X | Q} at time t = 10
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ANOVA

σ1 = 0 - σ2 = 0 σ1 = 0 - σ2 = 0.05
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Evolution of the components of the total variance. Shown are variance decompositions
obtained for different values of σ1 and σ2
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Non-linear system

Consider a system with additive noise and non-linear drift

dX = F (X)dt + δdW = −γ(X − a)(X − b)(X − c)dt + δdW

where δ > 0 is an additional parameter controlling the noise level, and as before W is a
Wiener process. Again the IC is X0 = X(t = 0).

 10

 20

 30

 0  2  4  6

X
(t

)

tSample trajectories with a = 10, b = 20, c = 30, γ = 0.01, and δ = 1. In all cases, the
initial condition coincides with x0 = b.
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Parametric uncertainty

Consider an uncertain initial condition, Q1 ∼ R[17.5, 22.5], and forcing amplitude,
Q2 ∼ R[0.5, 1.5].

dX = F (X)dt + Q1dW X0 = Q2.

Q1 and Q2 independent.

The PC representation is based on an adaptive multiwavelet basis expansion,
which enables us to accommodate for bifurcation(s).

The use of a non polynomial basis complicates the sensitivity analysis, but the
framework is essentially unaltered.
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Sample trajectories
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Left plots : sample set of realizations of W , the trajectories of X (time running up) for
different initial conditions and two noise levels Q2 = 0.65 (top plot) and Q2 = 1.35
(bottom).
Right plots show for two realizations of W (top and bottom), the trajectories of X for a
random sample set of values of Q10 and Q2.
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MW expansion
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Left : partitions of the parametric domain and surface plots for X(t = 6,W ) as a
function of Q.
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Variance decomposition
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Partial variances of X(t)
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Effect of Noise amplitude

 0

 20

 40

 60

 80

 100

 120

 0  2  4  6

V
a

ri
a

n
c
e

s

t

Vtot - E(δ)=1
Vtot - E(δ)=2

Vnoise + Vmix - E(δ)=1
Vnoise + Vmix - E(δ)=2

 0
 20
 40
 60
 80

 100
 120

 0  1  2  3  4  5  6
Va

ria
nc

es
t

Vtot
Vpar

Vnoise
Vmix

Left : comparison of the total variances V {X} and total noise contributions
Vnoise + Vmix to the variance, for two expected values of E {δ} = 1 and 2.
Right : partial variances of the stochastic process X(t) for the case E {δ} = 2.
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Extension to Non-Intrusive Projection

The PC expansion of X(t ,W ,Q) can be estimated non-intrusively, e.g. :

X(t ,W (i),Q) ≈
∑
α

Xα(t ,W (i))Ψα(Q), Xα(t ,W (i)) ≈
NQ∑
β=1

Πα,βX(t ,W (i),Q(β))

For instance sparse grid pseudo spectral projection operator [Π] [Conrad,
Marzouk] & [Constantine et al]

Provides accurate Q-statistics for each path W (i) from only NQ simulations

Yields complexity reduction when Q-variance is dominant

Applied to non-smooth QoI g(X), such as exit time. [Navarro, OLM, Knio, JUQ

2016]
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Stochastic Systems

Stochastic Simulator

Work with Omar Knio, Alvaro Moraes and Maria Navarro (KAUST)
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Stochastic Systems
Stochastic systems

governed by probabilistic evolution rules expresses by the master equation

∂P(xxx , t |xxx0, t0)

∂t
=

Kr∑
j=1

[
aj (xxx − ννν j )P(xxx − ννν j , t |xxx0, t0)− aj (xxx)P(xxx , t |xxx0, t0)

]
,

xxx(t) ∈ ZMs : state of the system at time t ,

Kr reactions channels,

propensity functions aj and state-change vectors ννν j ∈ ZMs ,

P(xxx , t |xxxo, to) : probability of XXX = xxx at time t , given XXX = xxx0 at time t0,

Markov process.

Examples includes Reactive Networks (chemistry, biology), social networks, . . .

Direct resolution of the master equation is usually not an option,

Simulate trajectories XXX(t) ∼ P(xxx , t |xxxo, to), using a stochastic simulator.
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Gillespie’s Algorithm

Given XXX(t) = xxx , the probability of the next reaction to occur in the [t , t + dt) is

a0(xxx)dt = dt
Kr∑
j=1

aj (xxx).

The time to the next reaction, τ , follows an exponential distribution with mean 1/a0(xxx).

Gillespie’s Algorithm : [Gillespie, 1970’s]

1 Set t = t0, XXX = xxx0.
2 Repeat until t > T

Draw τ ∼ exp a0(XXX)
Pick randomly k ∈ {1 . . .Kr} with relative probability pk (ak )
update t ← t + τ , XXX ← XXX + νk

3 Return X(T ) ∼ P(xxx , t |xxxo, to).

From a sample set of trajectory, estimate expectation of functionals E {g(X)}.

O. Le Maître Variance-based SA
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Sobol Analysis of the variance

From the stochastic state XXX(t) and a given functional g, we would like :

assess the contributions of different reaction channels (or group of)
on the variability of g(XXX )

For instance : which channel(s) is (are) responsible for most of the variance in g(XXX) ?
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This is not to be confused with parametric sensitivity analyses where one wants to
estimate the sensitivity of E {g(XXX)} with respect to some parameters qqq in the definition

of the dynamics (e.g. propensity functions).
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Sobol Analysis of the variance

NNN(ω) = (N1, · · · ,ND) a set of D independent random inputs Ni ,

F (NNN) a (second-order) random functional in NNN,

F (NNN) has a unique orthogonal decomposition [Sobol, 2002 ; Homma & Saltelli, 1996]

F (NNN) =
∑
uuu∈D

Fuuu(NNNuuu),

where D is the power set of {1, · · · ,D} and NNNuuu = (Nu1 , · · · ,Nu|uuu| ). The orthogonality
condition reads

E {FuuuFsss} =

∫
Ω

Fuuu(NNNuuu(ω))Fsss(NNNsss(ω))dµ(ω) = 0,

so
V {F} =

∑
uuu∈D\∅

V {Fuuu} ,

where V {Fuuu} are the partial variances.
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Sobol Analysis of the variance (cont. . .)

From the variance decomposition,

V {F} =
∑

uuu∈D\∅
V {Fuuu} ,

First order sensitivity indices Suuu : fraction of the variance caused by the random
inputs NNNuuu only

V {F}Suuu =
∑sss6=∅

sss⊇uuu V {Fuuu}
Total order sensitivity indices Tuuu : fraction of the variance caused by the random
inputs NNNuuu and interaction

V {F}Tuuu
∑(sss∩uuu) 6=∅

sss∈D V {Fsss}

The partial variances V {Fuuu} can be expressed as conditional variances : [Homma &
Saltelli, 1996]

V {Fuuu} = V {E {F | NNNuuu}} −
∑

sss∈D\∅
sss(uuu

V {Fsss} ,

or

V {F}Suuu = V {E {F | NNNuuu}} , V {F}Tuuu = V {F}−V {E {F | NNNuuu∼}} = V {F} (1−Suuu∼ ),

where uuu∼ = {1, . . . ,D} \ uuu.

Decomposition of the Variance = Estimation of conditional variances
O. Le Maître Variance-based SA
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Monte-Carlo estimation of the sensitivity indices

Consider two independent sample sets N¬ and N of M realizations of NNN.
The conditional variance V {E {F | NNNuuu}} can be estimated as [Sobol, 2001]

V {E {F | NNNuuu}}+ E {F}2 = lim
M→∞

1
M

M∑
i=1

F (NNN¬,(i)
uuu ,NNN¬,(i)

uuu∼ )F (NNN¬,(i)
uuu ,NNN,(i)

uuu∼ ),

such that

Ŝuuu =
1
M
∑M

i=1 F (NNN¬,(i))F (NNN¬,(i)
uuu ,NNN,(i)

uuu∼ )− Ê {F}
2

V̂ {F}
,

and

T̂uuu = 1−
1
M
∑M

i=1 F (NNN¬,(i))F (NNN,(i)
uuu ,NNN¬,(i)

uuu∼ )− Ê {F}
2

V̂ {F}

where Ê {F} and V̂ {F} are the classical MC estimators for the mean and variance.

The computational complexity scales linearly with the number of indices to be computed
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Application to Stochastic Simulators

To assess the respective impacts of different reaction channels through Sobol’s
decomposition of V {g(XXX)}, when XXX is the output of a stochastic simulator, we need to
condition XXX on the channels dynamics :

What is a particular realization of a channel dynamics ?

Gillespie’s algorithm is not suited, and we have to recast the stochastic algorithm in
terms of

independent processes associated to each channel.
Next Reaction Formulation. [Ethier &Kurtz, 2005, Gibson & Bruck, 2000]

XXX(t) = XXX(t0) +

Kr∑
j=1

ννν j Nj (tj ),

where the Nj (t) are independent standard (unit rate) Poisson processes, and the
scaled times tj are given by

tj =

∫ t

t0
aj (XXX(τ))dτ, j = 1, . . . ,Kr .

Then, g(XXX) can be seen as

g(XXX) = F (N1, . . . ,NKr ).

O. Le Maître Variance-based SA
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Application to Stochastic Simulators (cont.)

The random functional g(XXX) = F (N1, . . . ,NKr ) can then be decomposed à la Sobol.

A particular realization of a channel dynamic is identified with a realization of the
underlying standard Poisson processes.

For instance, the conditional variance writes

E {g(XXX) | NNNuuu = nnnuuu} = E

g

XXX(t0) +
∑
j∈uuu

ννν j nj (tj ) +
∑

j∈uuu∼
ννν j Nj (tj )

 ,

with tj =
∫ t

t0
aj (XXX(τ))dτ .

Note that

in general, all firing times tj remain random for given nnnuuu(t), as they depend on NNNuuu∼
in practice, the standard Poisson processes Nj are entirely specified by their
random seeds and pseudo-random number generator :

the Poisson processes don’t have to be stored but are computed on the fly

O. Le Maître Variance-based SA
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The birth-death (BD) process

Single species S (Ms = 1) and Kr = 2 reaction channels :

∅ b−→S, S d−→∅,
with propensity functions

a1(x) = b, a2(x) = d × x .

We set b = 200, d = 1, and use M = 1, 000, 000 Monte Carlo samples to compute the
estimates.
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FIGURE: Left : Selected trajectories of X(t) generated using Next Reaction Algorithm. Right :
histogram of X(t = 8).
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B-D process. Variance decomposition of g(X) = X(t)
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Left : scaled first-order and total sensitivity indices (scaled by the variance) of the
birth-death model and t ∈ [0, 8]. Right : long-time evolution of the first-order sensitivity
indices, and of the mixed interaction term.

Variance in X is predominantly caused by the birth channel stochasticity for early
time t < 1

For 1 ≤ t ≤ 4, the variability induced by Rd only continues to grow with the
population size (first order reaction), while mixed effects develops

Eventually, effect of Rb stabilize (zero-order reaction, rate independent of X ) while
effect of Rd only slowly decays to benefit the mixed term (stochasticity of Nb
affects more and more the death process).
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Schlögl model

System with Kr = 4 reaction channels :

B1 + 2S
c1


c2

3S, B2
c3


c4

S,

with B1 and B2 in large excess and constant population over time, XB1 = XB2/2 = 105

and a single evolving species S with Ms = 1. The propensity functions are given by

a1(x) =
c1

2
XB1 x(x − 1), a2(x) =

c2

6
x(x − 1)(x − 2), a3(x) = c3XB2 , a4(x) = c4x.

We set c1 = 3× 10−7, c2 = 10−4, c3 = 10−3, c4 = 3.5 and deterministic initial condition
X(t = 0) = 250. Results in a bi-modal dynamic
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Schlögl model - Variance decomposition of g(X) = X(t)
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Reaction channels R1 and R4 are the dominant sources of variance
Dynamic essentially additive up to t ∼ 2
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Schlögl model - Variance decomposition of g(X) = X(t)

Analysis of the partial variance revealed that R1 and R4 are the main sources of
stochasticity.
It suggests a dominant role in selecting the bifurcation branch, as illustrated below

(a) Conditioned on N1 and N4 (b) Conditioned on N2 and N3

Trajectories of X(t) conditioned on (a) N1(ω) = n1 and N4(ω) = n4, and (b) N2(ω) = n2 and
N3(ω) = n3. Each sub-plot shows 10 conditionally random trajectories for fixed realizations n1 and
n4 in (a), and n2 and n3 in (b).
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Michaelis-Menten system

Ms = 4 species and Kr = 3 reaction channels :

S1 + S2
c1


c2

S3, S3
c3→S4 + S2

with a1(xxx) = c1x1x2, a2(xxx) = c2x3, and c3(xxx) = c3x3,.
We set c1 = 0.0017, c2 = 10−3 and c3 = 0.125, and initial conditions
X1(t = 0) = 300, X2(t = 0) = 120 and X3(t = 0) = X4(t = 0) = 0
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Michaelis-Menten system - Variance decomposition of g(XXX) = Xi (t)

Note : X2 + X3 = const, the sensitivity indices for S2 and S3 are equal

(a) S1 (b) S2 (c) S4
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Michaelis-Menten model : First-order and total sensitivity indices S{j} and T{j} for j = 1, . . . , 4.
Plots are a generated for (a) X1, (b) X2 and (c) X4

Relative importance of R1 and R3 changes in time for S1 and S2

Stochastic dynamic of S4 is essentially additive and dominated by R3

Channel R2 induces nearly no variance in X(t) : here the dissociation reaction R2
can be simply disregarded without affecting significantly the dynamics.
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Michaelis-Menten system - Variance decomposition of g(XXX) = Xi (t)

On the contrary, increasing c2 by an order of magnitude, the effect of R2 on the
variances becomes apparent :

(a) S1 (b) S2 (c) S4
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Schlögl model - Effect of parameters g(X) = X(t)

Consider parametric uncertainty on the propensity function :

ak (X ; Q).
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Trajectories of X(t) for different Poisson processes and fixed propensity functions (left) or different
propensity functions and fixed Poisson processes (right).
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Schlögl model - Effect of parameters g(X) = X(t)

Consider parametric uncertainty on the propensity function (ind. all with same CV)
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Sensitivity indices associated to the propensity function parameters Spar, inherent stochastic
dynamic Snoise and their interaction Smix.
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Conclusions and Future Work

We have proposed

A variance decomposition for parametric SA in stochastic systems

PC expansion when parametric dependence is pathwise smooth

Development of methods and algorithms to enable variance decomposition in
stochastic simulators

Identify the channels dynamics with their associated standard Poisson processes

Assessment of the relative importance of different reaction channels

Current works

Application to complex non-smooth functional g(XXX) : exit-time, path integrals, . . .

Account for parametric uncertainty in the definition of the propensity functions

Improve stochastic simulators for computational complexity reduction, e.g.
Tau-Leaping method and variance reduction methods.
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Algorithm 7

convenient to construct the Poisson processes “on the
fly”, as shown in Algorithm 2, where the next unscaled
firing time ⌧+

j for channel j is determined only when it

actually fires (that is when the unscaled time ⌧j reaches
⌧+
j ).
However, for the correct MC estimation of the corre-

lation in (16), it is crucial to ensure that the sequence
of (unscaled) firing times ⌧+

j remains the same for the

channels j 2 uuu when computing XXX(NNN I,(i)
uuu ,NNN I,(i)

uuu⇠ ) and

XXX(NNN I,(i)
uuu ,NNN II,(i)

uuu⇠ ). In other words, the same sequence of
time increments between the successive firing events of
channel j 2 uuu must be repeated; because the time in-
crement between two successive firing events for channel
j is simulated by means of the pseudo-random number
generators RGj , as shown in line 20 of Algorithm 2, this
implies that the generator RGj must reproduce the same
sequence of pseudo-random numbers rj when computing

g(XXX(NNN I,(i)
uuu ,NNN I,(i)

uuu⇠ )) and g(XXX(NNN I,(i)
uuu ,NNN II,(i)

uuu⇠ )), whenever
j 2 uuu. On the contrary, for a channel index j /2 uuu, two
independent sequences of random numbers rj have to be
used. The control of sequence of pseudo-random num-
bers delivered by RGj can be classically enforced through
the “seed” of the generator. In this context, the Poisson
process Nj(⌧) is totally determined by RGj and its seed,
sj . For such generators, consistent solutions

XXX(NNN I,(i)
uuu ,NNN I,(i)

uuu⇠ ) and XXX(NNN I,(i)
uuu ,NNN II,(i)

uuu⇠ )

are obtained by calling Algorithm 2 twice, with the same
initialization (seeding) RGj(sj) if j 2 uuu, and two random
and independent realizations RGj(s

I
j ) and RGj(s

II
j ) for j 2

uuu⇠.
The whole procedure for the Monte Carlo estimation

of the whole set of Kr first and total-order sensitivity
indices S{i} and T{i} is schematically illustrated in Algo-
rithm 3, in the case of g(XXX) = g(XXX(t = T )). Note that
Algorithm 3 is not optimized; in particular the compu-
tationally intensive part of the algorithm, namely the
(Kr + 1) calls to NRA can be carried out in parallel.
Nonetheless, the present formulation provides a general
framework that can be easily adapted to the estimation
of generic sensitivity indices associated to uuu 2 K, and to
other functionals g(XXX).

V. EXAMPLES

In this section, we apply and illustrate the proposed
sensitivity analysis and variance decomposition methods
to well-known stochastic models.

A. Birth-Death model

The birth-death (BD) process25 involves a single
species S (Ms = 1) and Kr = 2 reaction channels:

; b�!S, S
d�!;,

ALGORITHM 3. Computation of the first and total-order
sensitivity indices S{j} and T{j} of g(XXX(T )).
Procedure Compute SI(M,XXX0, T, {⌫⌫⌫j}, {aj}, g)

Require: Sample set dimension M , initial condition XXX0, fi-
nal time T , state-change vectors {⌫⌫⌫j}, propensity func-
tions {aj} and functional g

1: µ 0, �2  0 . Init. Mean and Variance
2: for j = 1 to Kr do
3: S(j) 0, T(j) 0 . Init. first and total-order SIs
4: end for
5: for m = 1 to m = M do
6: Draw two independent set of seeds sssI and sssII

7: XXX  NRA(XXX0, T, {⌫⌫⌫j}, {aj}, RG1(s
I
1), . . . , RGKr (sI

Kr
))

8: µ µ + g(XXX), �2  �2 + g(XXX)2 . Acc. mean and
variance

9: for j = 1 to Kr do
10: XXXS  NRA(XXX0, T, {⌫⌫⌫j}, {aj}, RG1(s

II
1 ), . . . ,

11: . . . , RGj(s
I
j ), . . . , RGKr (sII

Kr
))

12: XXXT  NRA(XXX0, T, {⌫⌫⌫j}, {aj}, RG1(s
I
1), . . . ,

13: . . . , RGj(s
II
j ), . . . , RGKr (sI

Kr
))

14: S(j) S(j) + g(XXX)⇥ g(XXXS) . Acc. 1-st order
15: T(j) T(j) + g(XXX)⇥ g(XXXT) . Acc. total order
16: end for . Next channel
17: end for . Next sample
18: µ µ/M , �2  �2/(M � 1)� µ2

19: for j = 1 to Kr do

20: S(j) S(j)

(M�1)�2 � µ2

�2 . Estim. 1-st order

21: T(j) 1� T(j)

(M�1)�2 + µ2

�2 . Estim. total order

22: end for
23: Return S(j) and T(j), j = 1, . . . , Kr . First and

total-order sensitivity indices S{j} and T{j} of g(XXX(T ))

with propensity functions

a1(x) = b, a2(x) = d⇥ x.

We set b = 200, d = 1, and use M = 1, 000, 000 Monte
Carlo samples to compute the estimates presented in this
section.

Figure 1 reports typical trajectories of the system for
the initial condition X(t = 0) = 0. The plot shows the
transient growth of X toward its asymptotic distribution,
which is the Poisson distribution with mean b/d = 200.
As depicted in Figure 2, the histogram of X(t = 8) is
very close to the asymptotic distribution.

For this simple model with only two reaction channels,
Rb and Rd, the analysis of the variance for g(X(t)) =
X(t) yields only three terms corresponding to the two
first-order sensitivity indices S{b} and S{d}, and the

mixed contribution S0{b,d}
.
= V

�
X{b,d}

 
/V {X}; we have

T{b} = S{b} + S0{b,d}, T{d} = S{d} + S0{b,d},

and S{b} + S{d} + S0{b,d} = 1.

Figure 3 shows the evolution of the first-order and to-
tal sensitivity indices of X for t 2 [0, 8]. To appreci-
ate the transient dynamic, the sensitivity indices have
been scaled by the variance V {X} whose evolution is

Procedure NRA implement the Next
Reaction Algorithm

Poisson processes defined by two
independent sets of seeds and RNG

Obvious parallelization 4

ALGORITHM 2. Next Reaction Algorithm.
Procedure NRA(X0, T, {⌫⌫⌫j}, {aj}, RG1, . . . , RGKr )

Require: Initial condition XXX0, final time T , state-change
vectors {⌫⌫⌫j}, propensity functions {aj}, and seeded
pseudo-random number generators RGj=1,...Kr

1: for j = 1, . . . , Kr do
2: Draw rj from RGj

3: ⌧j  0, ⌧+
j  � log rj . set next reaction times

4: end for
5: t 0,XXX  XXX0

6: loop
7: for j = 1, . . . , Kr do

8: Evaluate aj(XXX) and dtj =
⌧+

j �⌧j

aj

9: end for
10: Set l = arg minj dtj . pick next reaction
11: if t + dtl > T then
12: break . Final time reached
13: else
14: t t + dtl . update time
15: XXX  XXX + ⌫⌫⌫l . update the state vector
16: for j = 1, . . . , Kr do
17: ⌧j  ⌧j + aj dtl . update unscaled times
18: end for
19: Get rl from RGl

20: ⌧+
l  ⌧+

l � log rl . next reaction time
21: end if
22: end loop
23: Return XXX . State XXX(T )

variance decomposition, the sensitivity indices are associ-
ated to the input parameters via a decompositions of the
output variance.11,12 When the input parameters vary
independently, the Sobol’s decomposition is orthogonal
and the definition of the sensitivity indices is immedi-
ate from the so-called partial variances (see below). The
case of dependent inputs requires appropriate definition
and interpretation of the sensitivity indices (see for in-
stance Refs. 13 and 14). The Sobol’s decomposition is
also related to High Dimensional Model Representation
(HDMR), which corresponds to a truncated SH decompo-
sition; such decompositions have in particular been used
for the construction of surrogate models (see for instance
Refs. 13, 15–17). In the context of reaction networks pre-
senting an inherent stochastic dynamics, analyses have
been restricted to averaged functionals of the stochas-
tic model solution: the analyses characterizes the sensi-
tivity of such averages with respect to parameters, for
instance coe�cients in the propensity functions defining
the stochastic network.18–22

Parametric sensitivity analyses have to be contrasted
with the use of the Sobol decomposition we are proposing
in the present work. Here, we assume no variability in
any model parameters. Instead, we seek to quantify the
respective contributions of di↵erent reaction channels to
the variance of a given functional of the stochastic model
solution.

In this section, we summarize relevant aspects of the
Sobol-Hoe↵ding decomposition, provide a brief outline
of how these concepts can be applied to define useful

sensitivity indices, and detail a Monte-Carlo sampling
procedure for their estimation.

A. Sobol-Hoe↵ding decomposition

Consider a vector NNN = (N1, · · · , ND) of D indepen-
dent random quantities defined on an abstract probabil-
ity space P = (⌦,⌃, µ). Let F : NNN 7! F (NNN) 2 R be a
second-order random functional in NNN , that is

F 2 L2(⌦, µ), E
�
F (NNN)2

 
<1. (5)

Let D be the power set of {1, · · · , D}. For uuu 2 D denote
|uuu| = Card(uuu) and uuu⇠ = D \uuu, such that uuu[uuu⇠ = D and
uuu\uuu⇠ = ;. Given uuu 2 D we denote NNNuuu the sub-vector of
NNN with components (Nu1

, · · · , Nu|uuu|), so NNN = (NNNuuu,NNNuuu⇠).

For the assumptions considered, the function F (NNN) has
a unique orthogonal decomposition of the form23

F (NNN) =
X

uuu2D
Fuuu(NNNuuu), (6)

Equation (6) is called the Sobol-Hoe↵ding (SH) decom-
position of F . For instance, in the case D = 3 the de-
composition is expressed as:

F (N1, N2, N3) = F; + F{1}(N1) + F{2}(N2) + F{3}(N3)

+ F{1,2}(N1, N2) + F{1,3}(N1, N3)

+ F{2,3}(N2, N3) + F{1,2,3}(N1, N2, N3).

The orthogonality condition for the functions implies
that 8uuu 6= sss

E {FuuuFsss} =

Z

⌦

Fuuu(NNNuuu(!))Fsss(NNNsss(!))dµ(!) = 0,

and the SH functions Fuuu are recursively defined according
to:11

Fuuu(NNNuuu) = E {F | NNNuuu}�
X

sss2D
sss(uuu

Fsss(NNNsss), (7)

where E {F | nnnuuu} is the conditional expectation of F (NNN)
given NNNuuu = nnnuuu, namely

E {F | nnnuuu} =

Z

⌦

F (nnnuuu,NNNuuu⇠(!))dµ(!).

For instance, in the previous example with D = 3, we
have

F{2,3}(N2, N3) = E {F | N2, N3}� F; � F{2}(N2)

�F{3}(N3).

Clearly, F; = E {F}, and the orthogonality of the de-
composition implies E {Fuuu} = 0 for uuu 6= ;. The decompo-
sition (6) being orthogonal, the variance V {F} is decom-
posed into the sum of partial variances corresponding to
the variances of the SH functions:

V {F} =
X

uuu2D\;
V {Fuuu} . (8)

O. Le Maître Variance-based SA
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