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Motivation
Simulation according to a measure 7(dx) = % on E where
@ )\ is a reference measure on (E, ¢),
@ 7 : E - R, is measurable and such that [ n(x)\(dx) € (0, c0).
Examples
@ Statistical physics : simulation according to the Boltzmann-Gibbs
probability measure with density proportional to n(x) = e 7T Y
w.r.t. the Lebesgue measure A on E = R” (kg Boltzmann
constant, T temperature, U : R” — R potential function),
@ Bayesian statistics : 6 E-valued parameter with a priori density
Po(6) with respect to .

Denoting by py|e(y|f) the density of the observation Y when the
parameter if 6, the a posteriori density of © is

Pyie(y160)pe(F)
JePyie(y19)pe(9)A(dW)
The computation of the normalizing constant is difficult in both cases.
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The Metropolis Hastings algorithm
Let g: E x E — R, be a mesurable function such that Vx € E,
® [a(x,y)\(dy) =1,
@ simulation according to the probability measure q(x, y)A(dy) is
possible.

Let a(x,y) = {

min (1’ a0y ) if n(x)q(x,y) >0
Tifn(x)q(x,y) =0

No need of the normalizing constant to compute «
Starting from an initial E-valued random variable Xj, construct a
Markov chain (Xk)xen by the following induction :
@ Given (Xp, ..., Xk), one generates a proposal
Yie1 ~ q(Xk, y)A(dy) and an independent random variable
Uk+1 ~ U[O, 1],
@ One sets Xii1 = Vi1 T (e <a i)y T Xk (U =006 vi0))s 1481
the proposal is accepted with probability o (X, Yx.1) and
otherwise the position Xj is kept.
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Markov kernel of (Xx)«
For f : E — R measurable and bounded and Xo.x = (Xo, X1, ..., Xk),

E[F(Xk1)| Xo:]
= E[E[f(Yk+1)1 (U <aXe, Vi) T F(X) T (01> aXe, Vi) X0k Yiert [ Xo:k]
= E[f(Yk+1)a( Xk, Y1) + F(X)(1 — a(Xie, Yis1)) [ Xok]

/f (X, )G(Xee YIA(Y) + F(Xe) /E (1 = a(Xe. )X Y)A(dy)

/f P(X. dy)

where P(x, dy) = 1y2qa(x, ¥)q(x, y)A(dy)
+ (/ (1 —a(x, 2))q(x, z)\(dz) + q(X,X)A({X})> Sx(dy).
E\{x}

Thus (Xx)ken is @ Markov chain with kernel P.

\ :
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Reversibility of &
For y # x,

n(x)a(x,y)min (1, 23823 it n(x)q(x, y) > 0

n(x)a(x,y) x 1ifn(x)q(x,y) =0
= min(n(x)q(x,y),n(y)a(y. x)).

is a symmetric function of (x, y). As a consequence,

Ty n(X)AMAX)P(x, dy) = 1azyn(X)alx, y)a(x, y)A(dx)A(dy)
= Tonyn(y)Mdy)P(y, dx).

Since the equality clearly remains true with 1;,_,, replacing 1;,.y,,
w(dx)P(x, dy) = n(dy)P(y, dx)

i.e. w is reversible for the Markov kernel P. This implies that

JSece m(@)P(x, dy) = [, g (dy)P(y, dx) = n(dy) P(y, E) = n(dy).

1

n(x)q(x, y)e(x, y) = {
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Remarks
@ the reversibility of 7 by the kernel P is preserved when

a(x,y) = {a (5093653) ttneoatxy) >0
Tif n(x)q(x,y) =0

where a: R, — [0, 1] satisfies a(0) = 0 and a(u) = ua(1/u) for

u > 0. The previous choice a(u) = min(u, 1) leads to better

asymptotic properties (Peskun 1973). Other ex: a(u) = 3.

@ When E =R" et q(x, y) = ¢(y — x) for some symmetric
probability density ¢ w.r.t. the Lebesgue measure \ (ex

o(2) = e 22 /(2702)"/2), then

n)aly. x) _ ny)ely —x) _ nly)

n(x)q(x.y)  n(x)ex—y)  n(x)
Algorithm called Random Walk Metroplis Hastings since the
random variables ( Y1 — Xn)nen are i.i.d. according to ¢(z)dz.

)
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Ergodic theory for Markov chains
Conditions on P and 7 ensuring that as k — oo,
@ the law of Xj converges weakly to ,
) for f: E — R measurable and such that S [f(x)|m(dx) < o0,

k k ! o f(Xj) converges a.s. to fE Y (dx),
° \f( Z,k - (X — Jef(x ) converges in law to AV4(0, 0%)

wheren,?_/< (/F xdy>>(dx)

with F solving the Poisson equation
Vx € E, F(x /F(y (x,dy) = f(x) — /f

=PF(x ) : (
zf J(( ;) — 7(f) =
S (F(X) — EIF(X) Xoj—1]) + F(Xo) — PF(Xic_1).
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@ Optimal scaling of the transient phase of RWMH
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Random Walk Metropolis Hastings algorithm

@ Sampling of a target probability measure with density n on R”
@ Y/, = X] + 0Gky1 where (Gy)k>1 i.i.d. ~ Np(0, 1)

® 9(x,¥) = Gy %P (~ U545 ) = gy %)

@ Acceptance probability a(x, y) = % AT
How to choose ¢ in function of the dimension n?
Bad exploration of the space (and therefore poor ergodic properties)
in the two opposite situations
@ o too large : large moves are proposed but almost always
rejected,
@ o too small even if a large proportion of the proposed moves is
then accepted.
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Previous work: Roberts, Gelman, Gilks 97
Two fundamental assumptions:

@ (H1) Product target: n(x) = n(xi,..., X)) =[], e~ V&),
@ (H2) Stationarity: X§ = (X3",..., XJ"") ~ n(x)dx and thus
vk, X7 = (X}, .., XP") ~ n(x)dx.

Then, pick the first component X1’”, choose o, = ﬁ and rescale the

time accordingly (diffusive scaling) by considering (an’fJ )t>0-

Under regularity assumptions on V, as n — oo, (XE,;;’J);ZO @ (X)t=0
unique solution of the SDE

he)

dX; = /h(0) dB; — S V/(X;) dt,

2

where h(¢) = 202 ¢ (_ww) with &(x) = [~ e s &
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Previous work: Roberts, Gelman, Gilks 97
Practical counterparts: scaling of the variance proposal.

Question: How to choose ¢ ?
@ The function ¢ +— h(¢) = 2¢2 ¢ <—w> is maximum

at /* ~ 2.38

TV EWV)2exp(=V)'

@ Besides, the limiting average acceptance rate is

Bla(G, Vi) = [ @R Vo0 £ g, (x,y)e S Vi
RAXR"
a(x.y)

0/ (V)2 exp(—V
e A(0) =20 | — \/IR( )zeXp( ) € (0,1).

We observe that a(¢*) ~ 0.234, whatever V.
This justifies a constant acceptance rate strategy, with a target
acceptance rate of approximately 25%.

\ |
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Main result

Definition 1

A sequence (XY, ..., xn)n>1 of exchangeable random variables is said
to be v-chaotic if for fixed k € N*, the law of (x{, ..., x}) converges in
distribution to v®* as n goes to cc.

Equivalent to the law of large numbers :
o 1 ! 5 Pr
Vp = E 21 X7 — Vv
=

Let (GL)jx>1 be i.id. ~ N7(0,1) indep. (Uk)ks1 i.i.d. ~ 1[0, 1].

in _ yd,n [aye) i
Xiier = X, +%Gk+11a4k+1v 1<i<n,

with Ay q = {Uk+1 < ez,;(V(XL")—WXL"%GLM»}_
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Main result : RWMH target n(x) = ], exp(— V(X))
From now on, we assume that V is C® with V" and V) bounded and
m is a probability measure on R such that [, (V’)*(x) m(dx) < +oo.

Theorem 2

Assume that the initial positions (X", ..., X§"")n>1 are exchang.,
m-chaotic and s.t. im0 E[(V/(Xg"™))?] = [ (V')2(x) m(dx). Then
the processes ((X, En;] Lo X fn?] )t>0)n>1 are P-chaotic where P is the
law of the unique solution to the SDE nonlinear in the sense of

McKean with Xy ~ m

oX, = VI(E[(V'(X))?], EIV"(X)])dB: — G(EI(V/ (X)), E[V" (XD V/(Xo) .

Moreover, t — P(A|p) cvio t— ler(E[( V'(X)2],E[V"(X})]).

Hypothesis satisfied if ¥n > 1, X;", ..., Xg"" i.i.d. according to m.
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The functions I and G

2o (- f)+£2 "0 (0(5 - va)) itae (0,+00),
M(a b) = ﬁifa=+oo

e~ where b* = max(b,0) if a= 0,
Eze@d% (2f \/_)) |fae( ,+00),

0if a= +oo and 1(psqyfPe~ 2" if a= 0.

G(a,b) =

\ !
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The functions I and G

2(a—b)
£2¢(_%)+£2642 ¢(<2f \/—>> |fa€( +OO),
Mab)=4{% ifa—+oo
£2 22 where bt = max(b,0) if a= 0,

G(a,b) - {eze“azb)q’( (202 =) it ac (0.400)

0ifa=+ooand 1{b>0}£ e e ifa=0.
Fora> 0, (a,a) = 2G(a, a) = 202 (—(\/a/2).
If X3 iid. ~ e Y™adx, vt >0, X; ~ e~ V™ dx (X" ~ e~V dx) and

(X )2]:/RV’(V’e‘v):/RV’(—e_V)’:/RV”e_V:E[V”(X,)]

V4 2 -V
= +/h(¢)dB; — )V/(Xt) dt with h(¢) = 2/2 & (_Z\/IR( )2 exp( )j
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Properties of ' and G

Lemma 3

Q V(a,b) € [0, +o0] xR, 0 < G(a,b) <T(ab) <P,

@ the function T is continuous on [0, +oo] x R and such that
inf(a,b)e[0,4-00] x inf V77 sup v T(&, B) > 0,

@ the function G is continuous on {[0, +oc] x R} \ {(0,0)},

© 3C < +oo, Y(a,b) and (2,b') € [0, 4] x [inf V", sup V"],

F(a,b) —T(d,0)|+ (Vanva)|G(a,b) — G(a,b')
< C(|b’—b|+|a’—a|+|\/5—\/5|).

>

VI(E[(V'(X))?, E[V”(X0)]) and G(E[(V'(X:))?], E[V"(X:)]) V' (X:) the
coefs of the SDE have the same regularity in terms of B
(E[(V'(X;))?], E[V"(X})]) by 2+4=- uniqueness by comp. d(X; — X;)?
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Mean field interaction
Let (X1,..., %)) € R7, ("= 15" 6, and (G')1<j<p i.i.d. ~ N7(0,1).

~NG (VT (VR

s 2 (000 - Vo S+ S0+ L E5 ) )
i=1

:f_;]g((g(v"(x,-)m—(a’f) Ve (x) \/—(G') )2>

with x; € [x;, X; + %1 only depending on G'. For i # j,
E[V"()(1 = (G V() (1 = (G)) - V(S)(Xj)%(G’P}]
= V'(x)E[1 — (G')?|E[..] =0

With boundedness of V" and V), one concludes &1 < €.
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Mean field interaction

Let now ) = 1577, dx:n- The evolution of the RWM algorithm writes

) . ! .
,n ,n / ;
) ) </ <
Xk+1 - Xk \/ﬁ k+11{Uk+1<e£y/(;A,E,(V’)2)Gk+1—%(;A,Z,V”>+O(n*1/2)}’ T<i<n

where Gk, 1 ~ N7(0, 1) independent of the positions up to time k and

such that in
- E(V'(X)
E (G;(+1Gk+1> = Tk
Gaussian calculations + diffusion approximation techniques lead to
Theorem 1

\
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Optimisation sirategies for the algoritim LLong time convergence of the nonlinear SDE

Invariant measure

dX; = —G(E[(V'(X))?], E[V" (X)]) V' (X:) dt+ VT (E[(V'(X:))?], E[V" (X;)])dB:

Proposition 4

The probability measure e~V *)dx is the unique invariant measure for
this SDE nonlinear in the sense of McKean.

\ :
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LLong time convergence of the nonlinear SDE

Invariant measure

dX; = —G(E[(V'(X))?], E[V" (X)]) V' (X:) dt+ VT (E[(V'(X:))?], E[V" (X;)])dB:

Proposition 4

The probability measure e~V *)dx is the unique invariant measure for
this SDE nonlinear in the sense of McKean.

@ Choosing the X;" i.i.d. according to e~ V(*)dx in the main
theorem, one obtains that this measure is invariant.

\ :
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- Long time convergence of the nonlinear SDE

Invariant measure
dX; = —G(E[(V'(X:))2], E[V" (X)) V' (X:)adt+VT(B[(V'(X))?], E[V" (X:)])dB:.
Proposition 4

The probability measure e~V *)dx is the unique invariant measure for
this SDE nonlinear in the sense of McKean.

@ Choosing the X" i.i.d. according to e~V dx in the main
theorem, one obtains that this measure is invariant.
@ o infl > 0 = any invariant measure admits a density 1o,
@ (00, b) = & and G(+00,b) = 0 = altyec] L& [ (V')2¢hes < +00,
9 setting b[¢oo] dif Jz V", One has 1/;00 x e~ Flalvoslblve)V gng
altsc] = 5g(altec], b)) [ V(= = 25 (@Yoo, blthso])blthoc]
from which a[ibeo] = b[thoo] as M > 0 when a # b.
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Fokker-Planck equation
Denoting by ©; the density of X;, one has
Ont = 04 (G(alu, Bl V' + T (alve], Blu])t),
alur] = [[(V/(0)2un(0) o (1)
bl = [ V" (x)un(x) ox.

Question 1: Does y; converge t0 1o, = exp(—V) ?

Question 2: Is it possible to optimize the convergence, by
appropriately choosing ¢ (recall that the variance of the proposal is
/2 /n, and thus that I'(a, b) = I'(a, b, ¢) and G(a, b) = G(a, b, 1)) ?
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Fokker-Planck equation
To analyze the longtime behavior, we use entropy techniques.
Definition 5

The probability measure v satisfies a log-Sobolev inequality with

constant p > 0 (in short LSI(p)) if, for any probability measure
absolutely continuous wrt v,

Hulv) < - 1(ulv) where @)

@ H(ulv) = / In (Z‘:) du is the Kullback-Leibler divergence (or
relative entropy) of . wrt v,

o I(ulv) :/ Vin (2’5) 2

du is the Fisher information of u wrt v.
Benjamin Jourdain (Université Paris Est, CERMICS)  July 19 2017
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Convergence to the invariant density 1, =

Theorem 6

If Xo admits a density ¢ s.t. E[(V'(Xp))?] < 400 and H(tg|ts) < o0,
then

d blyer (alyr], blir]) — 2alvdG(alr], blir)
a1l = - 2(blo] — ali]) ives) <

If moreover 1., = e~V satisfies LSl(p), then there exists a positive
and non-increasing function X : [0, +oc0) — (0, +00) such thatVt > 0

H(t| oo ) < e*t/\(H(wo\woo))H(wowoo)_

Roughly speaking, e~ satisfies LSI(p) for some p > 0 if V has at
least quadratic growth at oco.

In the Gaussian case V(x) = % N1(0,1) satisfies LSI(1).
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Elements of proof
Writing a, b for a[«], b[¢], one has

%H(wt|woo):/Ratwtln¢t+/RVatwt

(a,b) 2G(a,b) —T(a,b)
2 2(b-a) }>0

w—bfz(40@%%—AVW02=(AVKW%+@%02_

= (/R V’6x|n(1/)t/e_v)1/)t)2 < ax (YY)

Hence §H (i) < — 283220200 (4 |1p,,. ). When o)., satisfies
LSI(p), it satisfies the transport inequality W2 (11, 1) < %H(wtwoo).

With £ — H(ti|toe) \o= sup, altir] < C(H(wo|tosc)) with C .

def . -
AH(Wolvse)) = 25 inf(abyascibitvolvny * a5g 2 > 0.

«mwmrua—mzx{
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Decrease of the Kullback-Leibler divergence
When b < 0, one has & H(1¢|ve) < — @2 [ (8, In )24, with
lim;—. (@, b) = +00. So one should choose ¢ as large as possible.
From now on, suppose that b > 0 (recall that in the longtime limit
b=a>D0).

bl (a, b) — 2ag(a, b)

d
EH(ZZHWoo) < - I(Yt]hss) < 0,

2(b-a)
5F(E.0VB)
where
e %ifs=0
Fisy=1 22((1+5)0(-5) — 5507 ) ifs=1

1

—~

2 .
fTs(¢ ﬁg)jt 2s)e 2 ¢(ﬁ§—£\/§)> if0<s#1

\ :
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Choice of ¢ maximizing the exponential rate of cv
Lemma 7

Letb > 0. Then 7*(a, b) = argmax,., 5 F(&,6v/b) = J5¢* (§) where
for any s > 0, ¢*(s) realizes the unique maximum of £ — F(s,?).
Moreover, s — ¢*(s) is continuous on [0, +oc0) and

@ 7*(a,b) ~a/b0 Z\/(E) = %~

o Z*(aa b) ~a/b—1 @:/(%)

@ 7*(a,b) ~a/bs 100 “3L2 where x* ~1.22.

Notice that
av(X;) = V'(X) (v/T(a b)aB; — G(a b V’(Xt))d>+%r(a, b)V"(X:)dlt
so that ZE[V(X;)] = 2(bl‘(a b) —2agG(a, b)) = 252F(2,¢v/b) and

/*(a, b) also maximizes \d,IE[V(Xt)]\
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A

Comparison with constant acceptance rate strategies

The limiting mean acceptance rate in Theorem 2 is
1 a
acc(a.b,() = zM(ab) = H (E,Z\/B)

where H(s, () = ¢ (—%) + e 0 (f (2%/5 - \/§>> .

Lemma 8

For s > 0, the function ¢ — H(s, () is decreasing. Moreover, for
€ (0,1), the unique ¢ s.t. acc(a, b,?) = « is {*(a, b) = \/1—56‘” (2)
where (*(s) is the unique solution to H(s, (*(s)) = «. Last,
&2 —2In(«x
o é"‘(a, b) ~a/b—0 @
(1
5
® 72(a,b) ~aspo0 —207 () %E.

® [%(a,b) ~a/bs1
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Comparison with constant acceptance rate strategies

Remark 1: Notice that 7*(a, b) = Jz¢* (8) and (*(a,b) = _-* (%)
have the same scaling in (a, b).
— Constant acceptance rate strategy seems sensible.

S

Remark 2: Choice of a: how to choose « to get /*(a, b) ~ 7*(a, b) ?
®a/b—0:a=1~037.
@ a/b— 1: a such that /(1) = ¢*(1), namely « ~ 0.35.
® a/b— ool a=d(—x*/2) ~0.27.
(The standard choice for the RWM, under the stationarity assumption,
is @ =0.234.)
— Constant acceptance rate with o € (1/4,1/3) seems sensible.
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A

Gaussian target : V(x) = 3(x® + In(27))
We assume that ¢y Gaussian = ; Gaussian.

Setting m(t) et E[X{] = [ xv¢(x)dx and
s(t) L E[(X:)2] = [, X%4x(x)dx, one has

H(Wsc) =  (s(2) — In(s(t) — m(t)?) ~ 1),

9 Hilne) = 5 (F(s H—s) -

s—m?

It is possible to approximate ¢°™(m, s) maximizing |- & H(v|to)|-
To assess the convergence, we compute

b+T
o+ X,:’n—i- _+X£,n

- 1
m
fo—= Iy = T n
k=tp+1

o+T 1,n\2 n,n\2
N 1 (X" + . (XD
tOHIg,tO'FT:T Z n .
\ k=t

F(s,0)(1 —s)+2mg(s, 1,£)>
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n= 1 00(@0'27 — A — adaptive scaling Metropolis algorithm and 0027 _ N — numerical approximation of 40‘27(5, 1)4)
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Conclusions:
@ The constant ¢ strategy is bad ;

@ The constant average acceptance rate strategy (using ¢) leads
to very close convergence curves compared to the optimal
exponential rate of convergence strategy (using £*) ;

@ The optimal exponential rate of convergence strategy is as good
as the most optimal strategy one could design in terms of
entropy decay (using ¢°™).
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