

The Metropolis Hastings algorithm: introduction and optimal scaling of the transient phase

Benjamin Jourdain

Joint work with T. Lelièvre and B. Miasojedow Summer school CEMRACS 2017

July 19 2017

Outline of the talk

- Introduction to the Metropolis-Hastings algorithm
- Optimal scaling of the transient phase of RWMH
- Optimisation strategies for the RWMH algorithm
 - Long time convergence of the nonlinear SDE
 - Optimization strategies for the RWMH algorithm

Motivation

Simulation according to a measure $\pi(dx) = \frac{\eta(x)\lambda(dx)}{\int_{F} \eta(y)\lambda(dy)}$ on E where

• λ is a reference measure on (E, \mathcal{E}) ,

Optimisation strategies for the RWMH algorithm

• $\eta: E \to \mathbb{R}_+$ is measurable and such that $\int_E \eta(x) \lambda(dx) \in (0, \infty)$.

Examples

- Statistical physics : simulation according to the Boltzmann-Gibbs probability measure with density proportional to $\eta(x) = e^{-\frac{1}{k_BT}U(x)}$ w.r.t. the Lebesgue measure λ on $E = \mathbb{R}^n$ (k_B Boltzmann constant, T temperature, $U : \mathbb{R}^n \to \mathbb{R}$ potential function),
- Bayesian statistics: θ E-valued parameter with a priori density p_Θ(θ) with respect to λ.
 Denoting by p_{Y|Θ}(y|θ) the density of the observation Y when the parameter if θ, the a posteriori density of Θ is

$$\eta(\theta) = p_{\Theta|Y}(\theta|y) = \frac{p_{Y|\Theta}(y|\theta)p_{\Theta}(\theta)}{\int_{F} p_{Y|\Theta}(y|\vartheta)p_{\Theta}(\vartheta)\lambda(d\vartheta)}.$$

The computation of the normalizing constant is difficult in both cases.

The Metropolis Hastings algorithm

Let $g: E \times E \to \mathbb{R}_+$ be a mesurable function such that $\forall x \in E$,

- simulation according to the probability measure $q(x,y)\lambda(dy)$ is possible.

Let
$$\alpha(x,y) = \begin{cases} \min\left(1, \frac{\eta(y)q(y,x)}{\eta(x)q(x,y)}\right) & \text{if } \eta(x)q(x,y) > 0\\ 1 & \text{if } \eta(x)q(x,y) = 0 \end{cases}$$

No need of the normalizing constant to compute α

Starting from an initial E-valued random variable X_0 , construct a Markov chain $(X_k)_{k\in\mathbb{N}}$ by the following induction :

- Given (X_0, \ldots, X_k) , one generates a proposal $Y_{k+1} \sim q(X_k, y)\lambda(dy)$ and an independent random variable $U_{k+1} \sim \mathcal{U}[0, 1],$
- One sets $X_{k+1} = Y_{k+1} 1_{\{U_{k+1} < \alpha(X_k, Y_{k+1})\}} + X_k 1_{\{U_{k+1} > \alpha(X_k, Y_{k+1})\}}$, i.e. the proposal is accepted with probability $\alpha(X_k, Y_{k+1})$ and otherwise the position X_k is kept.

Introduction to the Metropolis-Hastings algorithm

Markov kernel of $(X_k)_k$

For $f: E \to \mathbb{R}$ measurable and bounded and $X_{0:k} = (X_0, X_1, \dots, X_k)$,

$$\mathbb{E}[f(X_{k+1})|X_{0:k}] = \mathbb{E}[\mathbb{E}[f(Y_{k+1})1_{\{U_{k+1} \leq \alpha(X_k, Y_{k+1})\}} + f(X_k)1_{\{U_{k+1} > \alpha(X_k, Y_{k+1})\}}|X_{0:k}, Y_{k+1}|X_{0:k}] = \mathbb{E}[f(Y_{k+1})\alpha(X_k, Y_{k+1}) + f(X_k)(1 - \alpha(X_k, Y_{k+1}))|X_{0:k}] = \int_{E} f(y)\alpha(X_k, y)q(X_k, y)\lambda(dy) + f(X_k)\int_{E} (1 - \alpha(X_k, y))q(X_k, y)\lambda(dy) = \int_{E} f(y)P(X_k, dy)$$

where
$$P(x, dy) = 1_{\{y \neq x\}} \alpha(x, y) q(x, y) \lambda(dy)$$

 $+ \left(\int_{E \setminus \{x\}} (1 - \alpha(x, z)) q(x, z) \lambda(dz) + q(x, x) \lambda(\{x\}) \right) \delta_x(dy).$

Thus $(X_k)_{k\in\mathbb{N}}$ is a Markov chain with kernel P.

Reversibility of π

For $y \neq x$,

$$\eta(x)q(x,y)\alpha(x,y) = \begin{cases} \eta(x)q(x,y)\min\left(1,\frac{\eta(y)q(y,x)}{\eta(x)q(x,y)}\right) & \text{if } \eta(x)q(x,y) > 0\\ \eta(x)q(x,y) \times 1 & \text{if } \eta(x)q(x,y) = 0 \end{cases} \\
= \min(\eta(x)q(x,y),\eta(y)q(y,x)).$$

is a symmetric function of (x, y). As a consequence,

$$1_{\{x \neq y\}} \eta(x) \lambda(dx) P(x, dy) = 1_{\{x \neq y\}} \eta(x) q(x, y) \alpha(x, y) \lambda(dx) \lambda(dy)$$
$$= 1_{\{x \neq y\}} \eta(y) \lambda(dy) P(y, dx).$$

Since the equality clearly remains true with $1_{\{x=y\}}$ replacing $1_{\{x\neq y\}}$,

$$\pi(dx)P(x, dy) = \pi(dy)P(y, dx)$$

i.e. π is reversible for the Markov kernel P. This implies that $\int_{x \in E} \pi(dx) P(x, dy) = \int_{x \in E} \pi(dy) P(y, dx) = \pi(dy) \underbrace{P(y, E)}_{t} = \pi(dy).$

Introduction to the Metropolis-Hastings algorithm

Remarks

• the reversibility of π by the kernel P is preserved when

$$\alpha(x,y) = \begin{cases} \frac{a}{a} \left(\frac{\eta(y)q(y,x)}{\eta(x)q(x,y)} \right) & \text{if } \eta(x)q(x,y) > 0 \\ 1 & \text{if } \eta(x)q(x,y) = 0 \end{cases}$$

where $\mathbf{a}: \mathbb{R}_+ \to [0,1]$ satisfies $\mathbf{a}(0) = 0$ and $\mathbf{a}(u) = u\mathbf{a}(1/u)$ for u > 0. The previous choice $\mathbf{a}(u) = \min(u,1)$ leads to better asymptotic properties (Peskun 1973). Other ex: $\mathbf{a}(u) = \frac{u}{1+u}$.

• When $E = \mathbb{R}^n$ et $q(x,y) = \varphi(y-x)$ for some symmetric probability density φ w.r.t. the Lebesgue measure λ (ex $\omega(z) = e^{-\frac{|z|^2}{2\sigma^2}}/(2\pi\sigma^2)^{n/2}$), then

$$\frac{\eta(y)q(y,x)}{\eta(x)q(x,y)} = \frac{\eta(y)\varphi(y-x)}{\eta(x)\varphi(x-y)} = \frac{\eta(y)}{\eta(x)}.$$

Algorithm called Random Walk Metroplis Hastings since the random variables $(Y_{n+1} - X_n)_{n \in \mathbb{N}}$ are i.i.d. according to $\varphi(z)dz$.

Ergodic theory for Markov chains

Conditions on P and π ensuring that as $k \to \infty$,

- the law of X_k converges weakly to π ,
- for $f: E \to \mathbb{R}$ measurable and such that $\int_E |f(x)| \pi(dx) < \infty$, $\frac{1}{k} \sum_{j=0}^{k-1} f(X_j)$ converges a.s. to $\int_E f(x) \pi(dx)$,
- $\sqrt{k}\left(\frac{1}{k}\sum_{j=0}^{k-1}f(X_j)-\int_Ef(x)\pi(dx)\right)$ converges in law to $\mathcal{N}_1(0,\sigma_f^2)$

where
$$\sigma_f^2 = \int_E \left(F^2(x) - \left(\int_E F(y) P(x, dy) \right)^2 \right) \pi(dx)$$

with F solving the Poisson equation

$$\forall x \in E, \ F(x) - \underbrace{\int_{E} F(y)P(x, dy)}_{:=PF(x)} = f(x) - \underbrace{\int_{E} f(y)\pi(dy)}_{:=\pi(f)}$$

$$\sum_{j=0}^{k-1} (f(X_j) - \pi(f)) =$$

$$\sum_{j=1}^{k-1} (F(X_j) - \mathbb{E}[F(X_j)|X_{0:j-1}]) + F(X_0) - PF(X_{k-1}).$$

- Introduction to the Metropolis-Hastings algorithm
- Optimal scaling of the transient phase of RWMH
- Optimisation strategies for the RWMH algorithm
 - Long time convergence of the nonlinear SDE
 - Optimization strategies for the RWMH algorithm

Random Walk Metropolis Hastings algorithm

- Sampling of a target probability measure with density η on \mathbb{R}^n
- $\bullet \ Y_{k+1}^n = X_k^n + {}_{\sigma}G_{k+1} \ \text{where} \ (G_k)_{k \geq 1} \ \text{i.i.d.} \sim \mathcal{N}_n(0, \mathit{I}_n)$

•
$$q(x,y) = \frac{1}{(2\pi\sigma^2)^{n/2}} \exp\left(-\frac{|x-y|^2}{2\sigma^2}\right) = q(y,x)$$

• Acceptance probability $\alpha(x, y) = \frac{\eta(y)}{\eta(x)} \wedge 1$.

How to choose σ in function of the dimension n?

Bad exploration of the space (and therefore poor ergodic properties) in the two opposite situations

- \bullet σ too large : large moves are proposed but almost always rejected,
- \bullet σ too small even if a large proportion of the proposed moves is then accepted.

Previous work: Roberts, Gelman, Gilks 97

Two fundamental assumptions:

- (H1) Product target: $\eta(x) = \eta(x_1, \dots, x_n) = \prod_{i=1}^n e^{-V(x_i)}$,
- (H2) Stationarity: $X_0^n = (X_0^{1,n}, \dots, X_0^{n,n}) \sim \eta(x) dx$ and thus $\forall k, \ X_k^n = (X_k^{1,n}, \dots, X_k^{n,n}) \sim \eta(x) dx$.

Then, pick the first component $X_k^{1,n}$, choose $\sigma_n = \frac{\ell}{\sqrt{n}}$, and rescale the time accordingly (diffusive scaling) by considering $(X_{\lfloor nt \rfloor}^{1,n})_{t \geq 0}$.

Under regularity assumptions on V, as $n \to \infty$, $(X_{\lfloor nt \rfloor}^{1,n})_{t \ge 0} \stackrel{(a)}{\Rightarrow} (X_t)_{t \ge 0}$ unique solution of the SDE

$$dX_t = \sqrt{h(\ell)} dB_t - \frac{h(\ell)}{2} V'(X_t) dt,$$

where
$$h(\ell) = 2\ell^2 \, \Phi\left(-\frac{\ell\sqrt{\int_{\mathbb{R}}(V')^2 \exp(-V)}}{2}\right)$$
 with $\Phi(x) = \int_{-\infty}^x e^{-\frac{y^2}{2}} \frac{dy}{\sqrt{2\pi}}$.

Previous work: Roberts, Gelman, Gilks 97

Practical counterparts: scaling of the variance proposal.

Question: How to choose ℓ ?

- The function $\ell \mapsto h(\ell) = 2\ell^2 \Phi\left(-\frac{\ell\sqrt{\int_{\mathbb{R}}(V')^2 \exp(-V)}}{2}\right)$ is maximum at $\ell^* \simeq \frac{2.38}{\sqrt{\int_{\mathbb{R}}(V')^2 \exp(-V)}}$.
- Besides, the limiting average acceptance rate is

$$\mathbb{E}[\alpha(X_k^n, Y_{k+1}^n)] = \int_{\mathbb{R}^n \times \mathbb{R}^n} \underbrace{e^{\sum_{i=1}^n (V(x_i) - V(y_i))} \wedge 1}_{\alpha(x,y)} q_n(x,y) e^{-\sum_{i=1}^n V(x_i)} dx dy$$
$$\longrightarrow_{n \to \infty} a(\ell) = 2\Phi \left(-\frac{\ell \sqrt{\int_{\mathbb{R}} (V')^2 \exp(-V)}}{2} \right) \in (0,1).$$

We observe that $a(\ell^*) \simeq 0.234$, whatever V.

This justifies a constant acceptance rate strategy, with a target acceptance rate of approximately 25%.

Main result

Definition 1

A sequence $(\chi_1^n,\ldots,\chi_n^n)_{n\geq 1}$ of exchangeable random variables is said to be ν -chaotic if for fixed $k\in\mathbb{N}^*$, the law of $(\chi_1^n,\ldots,\chi_k^n)$ converges in distribution to $\nu^{\otimes k}$ as n goes to ∞ .

Equivalent to the law of large numbers :

$$\nu_n = \frac{1}{n} \sum_{i=1}^n \delta_{\chi_i^n} \xrightarrow{Pr} \nu$$

Let $(G_k^i)_{i,k\geq 1}$ be i.i.d. $\sim \mathcal{N}_1(0,1)$ indep. $(U_k)_{k\geq 1}$ i.i.d. $\sim \mathcal{U}[0,1]$.

$$\begin{cases} X_{k+1}^{i,n} = X_k^{i,n} + \frac{\ell}{\sqrt{n}} G_{k+1}^i \mathbf{1}_{\mathcal{A}_{k+1}}, \ 1 \leq i \leq n, \\ \text{with } \mathcal{A}_{k+1} = \left\{ U_{k+1} \leq e^{\sum_{i=1}^n (V(X_k^{i,n}) - V(X_k^{i,n} + \frac{\ell}{\sqrt{n}} G_{k+1}^i))} \right\}. \end{cases}$$

Main result : RWMH target
$$\eta(x) = \prod_{i=1}^{n} \exp(-V(x_i))$$

From now on, we assume that V is C^3 with V'' and $V^{(3)}$ bounded and m is a probability measure on $\mathbb R$ such that $\int_{\mathbb R} (V')^4(x) \, m(dx) < +\infty$.

Theorem 2

Assume that the initial positions $(X_0^{1,n},\ldots,X_0^{n,n})_{n\geq 1}$ are exchang., m-chaotic and s.t. $\lim_{n\to\infty}\mathbb{E}[(V'(X_0^{1,n}))^2]=\int_{\mathbb{R}}(V')^2(x)\,m(dx)$. Then the processes $((X_{\lfloor nt\rfloor}^{1,n},\ldots,X_{\lfloor nt\rfloor}^{n,n})_{t\geq 0})_{n\geq 1}$ are P-chaotic where P is the law of the unique solution to the SDE nonlinear in the sense of McKean with $X_0\sim m$

$$dX_t = \sqrt{\Gamma}(\mathbb{E}[(V'(X_t))^2], \mathbb{E}[V''(X_t)])dB_t - \mathcal{G}(\mathbb{E}[(V'(X_t))^2], \mathbb{E}[V''(X_t)])V'(X_t)dt.$$

Moreover,
$$t \mapsto \mathbb{P}(A_{\lfloor nt \rfloor})$$
 cv to $t \mapsto \frac{1}{\ell^2} \Gamma(\mathbb{E}[(V'(X_t))^2], \mathbb{E}[V''(X_t)])$.

Hypothesis satisfied if $\forall n \geq 1, X_0^{1,n}, \dots, X_0^{n,n}$ i.i.d. according to m.

The functions Γ and \mathcal{G}

$$\Gamma(a,b) = \begin{cases} \ell^2 \Phi\left(-\frac{\ell b}{2\sqrt{a}}\right) + \ell^2 e^{\frac{\ell^2(a-b)}{2}} \Phi\left(\ell\left(\frac{b}{2\sqrt{a}} - \sqrt{a}\right)\right) & \text{if } a \in (0,+\infty), \\ \frac{\ell^2}{2} & \text{if } a = +\infty, \\ \ell^2 e^{-\frac{\ell^2 b^+}{2}} & \text{where } b^+ = \max(b,0) & \text{if } a = 0, \end{cases}$$

$$\mathcal{G}(a,b) = \begin{cases} \ell^2 e^{\frac{\ell^2(a-b)}{2}} \Phi\left(\ell\left(\frac{b}{2\sqrt{a}} - \sqrt{a}\right)\right) & \text{if } a \in (0,+\infty), \\ 0 & \text{if } a = +\infty \text{ and } 1_{\{b>0\}} \ell^2 e^{-\frac{\ell^2 b}{2}} & \text{if } a = 0. \end{cases}$$

For a > 0, $\Gamma(a, a) = 2G(a, a) = 2\ell^2 \Phi(-\ell \sqrt{a}/2)$.

If $X_0^{i,n}$ i.i.d. $\sim e^{-V(x)}dx$, $\forall t \geq 0$, $X_t \sim e^{-V(x)}dx$ $(X_k^{i,n} \sim e^{-V(x)}dx)$ and

$$\mathbb{E}[(V'(X_t))^2] = \int_{\mathbb{R}} V'(V'e^{-V}) = \int_{\mathbb{R}} V'(-e^{-V})' = \int_{\mathbb{R}} V''e^{-V} = \mathbb{E}[V''(X_t)]$$

$$dX_t = \sqrt{h(\ell)}dB_t - \frac{h(\ell)}{2}V'(X_t) dt$$
 with $h(\ell) = 2\ell^2 \Phi\left(-\frac{\ell\sqrt{\int_{\mathbb{R}}(V_t)}}{2}\right)$

 $\ell \sqrt{\int_{\mathbb{R}} (V')^2 \exp(-V)}$

The functions Γ and \mathcal{G}

$$\Gamma(\textbf{\textit{a}},\textbf{\textit{b}}) = \begin{cases} \ell^2 \Phi\left(-\frac{\ell \textit{b}}{2\sqrt{\textit{a}}}\right) + \ell^2 e^{\frac{\ell^2(\textit{a}-\textit{b})}{2}} \Phi\left(\ell\left(\frac{\textit{b}}{2\sqrt{\textit{a}}} - \sqrt{\textit{a}}\right)\right) \text{ if } \textit{a} \in (0,+\infty), \\ \frac{\ell^2}{2} \text{ if } \textit{a} = +\infty, \\ \ell^2 e^{-\frac{\ell^2 \textit{b}^+}{2}} \text{ where } \textit{b}^+ = \max(\textit{b},0) \text{ if } \textit{a} = 0, \end{cases}$$

$$\mathcal{G}(a,b) = \begin{cases} \ell^2 e^{\frac{\ell^2(a-b)}{2}} \Phi\left(\ell\left(\frac{b}{2\sqrt{a}} - \sqrt{a}\right)\right) \text{ if } a \in (0,+\infty), \\ 0 \text{ if } a = +\infty \text{ and } \mathbf{1}_{\{b>0\}} \ell^2 e^{-\frac{\ell^2 b}{2}} \text{ if } a = 0. \end{cases}$$

For a > 0, $\Gamma(a, a) = 2\mathcal{G}(a, a) = 2\ell^2\Phi\left(-\ell\sqrt{a}/2\right)$.

If $X_0^{i,n}$ i.i.d. $\sim e^{-V(x)} dx$, $\forall t \geq 0$, $X_t \sim e^{-V(x)} dx$ $(X_t^{i,n} \sim e^{-V(x)} dx)$ and

$$\mathbb{E}[(V'(X_t))^2] = \int_{\mathbb{D}} V'(V'e^{-V}) = \int_{\mathbb{D}} V'(-e^{-V})' = \int_{\mathbb{D}} V''e^{-V} = \mathbb{E}[V''(X_t)]$$

$$dX_t = \sqrt{h(\ell)}dB_t - \frac{h(\ell)}{2}V'(X_t) dt \text{ with } h(\ell) = 2\ell^2 \Phi\left(-\frac{\ell\sqrt{\int_{\mathbb{R}}(V')^2 \exp(-V)}}{2}\right)$$

Properties of Γ and \mathcal{G}

Lemma 3

- \bullet the function Γ is continuous on $[0, +\infty] \times \mathbb{R}$ and such that $\inf_{(a,b)\in[0,+\infty]\times[\inf V'',\sup V'']}\Gamma(a,b)>0$,
- **1** the function \mathcal{G} is continuous on $\{[0, +\infty] \times \mathbb{R}\} \setminus \{(0, 0)\}$,

$$\begin{aligned} |\Gamma(a,b) - \Gamma(a',b')| + (\sqrt{a} \wedge \sqrt{a'})|\mathcal{G}(a,b) - \mathcal{G}(a',b')| \\ &\leq C\left(|b'-b| + |a'-a| + |\sqrt{a'} - \sqrt{a}|\right). \end{aligned}$$

 $\sqrt{\Gamma}(\mathbb{E}[(V'(X_t))^2], \mathbb{E}[V''(X_t)])$ and $\mathcal{G}(\mathbb{E}[(V'(X_t))^2], \mathbb{E}[V''(X_t)]) V'(X_t)$ the coefs of the SDE have the same regularity in terms of $(\mathbb{E}[(V'(X_t))^2], \mathbb{E}[V''(X_t)])$ by 2+4 \Rightarrow uniqueness by comp. $d(X_t - \tilde{X}_t)^2$

Mean field interaction

Let $(x_1, ..., x_n) \in \mathbb{R}^n$, $\zeta^n = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}$ and $(G^i)_{1 \le i \le n}$ i.i.d. $\sim \mathcal{N}_1(0, 1)$.

$$\begin{split} \mathcal{E}_{k+1} &\stackrel{\text{def}}{=} \mathbb{E} \bigg(\bigg(\sum_{i=1}^{n} (V(x_i) - V(x_i + \frac{\ell G^i}{\sqrt{n}})) + \sum_{i=1}^{n} (V'(x_i) \frac{\ell G^i}{\sqrt{n}} + \frac{V''(x_i)\ell^2}{2n}) \bigg)^2 \bigg) \\ &= \frac{\ell^4}{4n^2} \mathbb{E} \bigg(\bigg(\sum_{i=1}^{n} (V''(x_i)(1 - (G^i)^2) - V^{(3)}(\chi_i) \frac{\ell}{3\sqrt{n}} (G^i)^3 \bigg)^2 \bigg) \end{split}$$

with $\chi_i \in [x_i, x_i + \frac{\ell G^i}{\sqrt{n}}]$ only depending on G^i . For $i \neq j$,

$$\mathbb{E}[V''(x_i)(1-(G^i)^2)\{V''(x_j)(1-(G^j)^2)-V^{(3)}(\chi_j)\frac{\ell}{3\sqrt{n}}(G^j)^3\}]$$

$$=V''(x_i)\mathbb{E}[1-(G^i)^2]\mathbb{E}[...]=0$$

With boundedness of V'' and $V^{(3)}$, one concludes $\mathcal{E}_{k+1} \leq \frac{C}{n}$.

Mean field interaction

Let now $\mu_k^n = \frac{1}{n} \sum_{i=1}^n \delta_{X_k^{i,n}}$. The evolution of the RWM algorithm writes

$$X_{k+1}^{i,n} = X_k^{i,n} + \frac{\ell}{\sqrt{n}} G_{k+1}^i \mathbf{1}_{\left\{U_{k+1} \leq e^\ell \sqrt{\langle \mu_k^n, (V')^2 \rangle} G_{k+1} - \frac{\ell^2}{2} \langle \mu_k^n, V'' \rangle + \mathcal{O}(n^{-1/2})\right\}}, \ 1 \leq i \leq n$$

where $G_{k+1} \sim \mathcal{N}_1(0,1)$ independent of the positions up to time k and such that

$$\mathbb{E}\left(G_{k+1}^{i}G_{k+1}\right) = \frac{\mathbb{E}(V'(X_{k}^{i,n}))}{\sqrt{n}}.$$

Gaussian calculations + diffusion approximation techniques lead to Theorem 1

Long time convergence of the nonlinear SDE

- Introduction to the Metropolis-Hastings algorithm
- Optimal scaling of the transient phase of RWMH
- Optimisation strategies for the RWMH algorithm
 - Long time convergence of the nonlinear SDE
 - Optimization strategies for the RWMH algorithm

Invariant measure

$$dX_t = -\mathcal{G}(\mathbb{E}[(V'(X_t))^2], \mathbb{E}[V''(X_t)])V'(X_t)dt + \sqrt{\Gamma}(\mathbb{E}[(V'(X_t))^2], \mathbb{E}[V''(X_t)])dB_t.$$

Proposition 4

The probability measure $e^{-V(x)}dx$ is the unique invariant measure for this SDE nonlinear in the sense of McKean.

- Choosing the $X_0^{n''}$ i.i.d. according to $e^{-v(x)}dx$ in the main theorem, one obtains that this measure is invariant.
- inf $\Gamma > 0 \Rightarrow$ any invariant measure admits a density ψ_{∞}
 - $\Gamma(+\infty,b)=\frac{\varepsilon}{2}$ and $\mathcal{G}(+\infty,b)=0\Rightarrow a[\psi_{\infty}]\stackrel{\text{def}}{=}\int_{\mathbb{R}}(V')^2\psi_{\infty}<+\infty$
 - setting $b[\psi_{\infty}] \stackrel{=}{=} \int_{\mathbb{R}} V''\psi_{\infty}$, one has $\psi_{\infty} \propto e^{-\frac{1}{2}(a[\psi_{\infty}], b[\psi_{\infty}])V}$ and $a[\psi_{\infty}] = \frac{\Gamma}{2\mathcal{G}}(a[\psi_{\infty}], b[\psi_{\infty}]) \int V'(-\psi_{\infty})' = \frac{\Gamma}{2\mathcal{G}}(a[\psi_{\infty}], b[\psi_{\infty}]) b[\psi_{\infty}]$ from which $a[\psi_{\infty}] = b[\psi_{\infty}]$ as $\frac{b\Gamma(a,b) 2a\mathcal{G}(a,b)}{b-a} > 0$ when $a \neq b$.

Invariant measure

$$dX_t = -\mathcal{G}(\mathbb{E}[(V'(X_t))^2], \mathbb{E}[V''(X_t)])V'(X_t)dt + \sqrt{\Gamma}(\mathbb{E}[(V'(X_t))^2], \mathbb{E}[V''(X_t)])dB_t.$$

Proposition 4

The probability measure $e^{-V(x)}dx$ is the unique invariant measure for this SDE nonlinear in the sense of McKean.

- Choosing the $X_0^{i,n}$ i.i.d. according to $e^{-V(x)}dx$ in the main theorem, one obtains that this measure is invariant.
- inf $\Gamma>0\Rightarrow$ any invariant measure admits a density ψ_{∞}
 - $\Gamma(+\infty,b) = \frac{\varepsilon}{2} \text{ and } \mathcal{G}(+\infty,b) = 0 \Rightarrow a[\psi_{\infty}] \stackrel{\text{def}}{=} \int_{\mathbb{R}} (V')^2 \psi_{\infty} < +\infty$
 - setting $b[\psi_{\infty}] \stackrel{\cong}{=} \int_{\mathbb{R}} V''\psi_{\infty}$, one has $\psi_{\infty} \propto e^{-\frac{c}{2}} (a[\psi_{\infty}], b[\psi_{\infty}])^{V}$ and $a[\psi_{\infty}] = \frac{\Gamma}{2G} (a[\psi_{\infty}], b[\psi_{\infty}]) \int V'(-\psi_{\infty})' = \frac{\Gamma}{2G} (a[\psi_{\infty}], b[\psi_{\infty}]) b[\psi_{\infty}]$ from which $a[\psi_{\infty}] = b[\psi_{\infty}]$ as $\frac{b\Gamma(a,b) 2aG(a,b)}{b-a} > 0$ when $a \neq b$.

Invariant measure

$$dX_t = -\mathcal{G}(\mathbb{E}[(V'(X_t))^2], \mathbb{E}[V''(X_t)])V'(X_t)dt + \sqrt{\Gamma}(\mathbb{E}[(V'(X_t))^2], \mathbb{E}[V''(X_t)])dB_t.$$

Proposition 4

The probability measure $e^{-V(x)}dx$ is the unique invariant measure for this SDE nonlinear in the sense of McKean.

- Choosing the $X_0^{i,n}$ i.i.d. according to $e^{-V(x)}dx$ in the main theorem, one obtains that this measure is invariant.
- inf $\Gamma > 0 \Rightarrow$ any invariant measure admits a density ψ_{∞} ,
 - $\Gamma(+\infty,b)=\frac{\ell^2}{2}$ and $\mathcal{G}(+\infty,b)=0\Rightarrow a[\psi_\infty]\stackrel{\mathrm{def}}{=}\int_{\mathbb{R}}(V')^2\psi_\infty<+\infty,$
 - setting $b[\psi_{\infty}] \stackrel{\mathrm{def}}{=} \int_{\mathbb{R}} V''\psi_{\infty}$, one has $\psi_{\infty} \propto e^{-\frac{2G}{\Gamma}(a[\psi_{\infty}],b[\psi_{\infty}])V}$ and $a[\psi_{\infty}] = \frac{\Gamma}{2G}(a[\psi_{\infty}],b[\psi_{\infty}])\int V'(-\psi_{\infty})' = \frac{\Gamma}{2G}(a[\psi_{\infty}],b[\psi_{\infty}])b[\psi_{\infty}]$ from which $a[\psi_{\infty}] = b[\psi_{\infty}]$ as $\frac{b\Gamma(a,b)-2aG(a,b)}{b-a} > 0$ when $a \neq b$.

Long time convergence of the nonlinear SDE

Fokker-Planck equation

Denoting by ψ_t the density of X_t , one has

$$\begin{cases} \partial_t \psi_t = \partial_x \Big(\mathcal{G}(\boldsymbol{a}[\psi_t], \boldsymbol{b}[\psi_t]) V' \psi_t + \frac{1}{2} \Gamma(\boldsymbol{a}[\psi_t], \boldsymbol{b}[\psi_t]) \partial_x \psi_t \Big), \\ a[\psi_t] = \int (V'(x))^2 \psi_t(x) \, dx, \\ b[\psi_t] = \int V''(x) \psi_t(x) \, dx. \end{cases}$$
(1)

Question 1: Does ψ_t converge to $\psi_{\infty} = \exp(-V)$?

Question 2: Is it possible to optimize the convergence, by appropriately choosing ℓ (recall that the variance of the proposal is ℓ^2/n , and thus that $\Gamma(a,b) = \Gamma(a,b,\ell)$ and $\mathcal{G}(a,b) = \mathcal{G}(a,b,\ell)$)?

Fokker-Planck equation

To analyze the longtime behavior, we use entropy techniques.

Definition 5

The probability measure ν satisfies a log-Sobolev inequality with constant $\rho > 0$ (in short LSI(ρ)) if, for any probability measure μ absolutely continuous wrt ν ,

$$H(\mu|\nu) \le \frac{1}{2\rho}I(\mu|\nu)$$
 where (2)

- $H(\mu|\nu) = \int \ln\left(\frac{d\mu}{d\nu}\right) d\mu$ is the Kullback-Leibler divergence (or relative entropy) of μ wrt ν ,
- $I(\mu|\nu) = \int \left| \nabla \ln \left(\frac{d\mu}{d\nu} \right) \right|^2 d\mu$ is the Fisher information of μ wrt ν .

Long time convergence of the nonlinear SDE

Convergence to the invariant density $\psi_{\infty} = e^{-V}$

Theorem 6

If X_0 admits a density ψ_0 s.t. $\mathbb{E}[(V'(X_0))^2] < +\infty$ and $H(\psi_0|\psi_\infty) < \infty$, then

$$\frac{d}{dt}H(\psi_t|\psi_\infty) \leq -\frac{b[\psi_t]\Gamma(a[\psi_t],b[\psi_t]) - 2a[\psi_t]\mathcal{G}(a[\psi_t],b[\psi_t])}{2(b[\psi_t] - a[\psi_t])}I(\psi_t|\psi_\infty) < 0.$$

If moreover $\psi_{\infty}=e^{-V}$ satisfies $LSI(\rho)$, then there exists a positive and non-increasing function $\lambda:[0,+\infty)\to(0,+\infty)$ such that $\forall t\geq 0$

$$H(\psi_t|\psi_\infty) \leq e^{-t\lambda(H(\psi_0|\psi_\infty))}H(\psi_0|\psi_\infty).$$

Roughly speaking, e^{-V} satisfies LSI(ρ) for some $\rho > 0$ if V has at least quadratic growth at ∞ .

In the Gaussian case $V(x) = \frac{x^2 + \ln(2\pi)}{2}$, $\mathcal{N}_1(0, 1)$ satisfies LSI(1).

Optimisation strategies for the RWMH algorithm

Long time convergence of the nonlinear SDE

Elements of proof

Writing a, b for $a[\psi_t], b[\psi_t]$, one has

$$\begin{split} \frac{d}{dt}H(\psi_t|\psi_\infty) &= \int_{\mathbb{R}} \partial_t \psi_t \ln \psi_t + \int_{\mathbb{R}} V \partial_t \psi_t \\ &= -\frac{\Gamma(a,b)}{2} I(\psi_t|\psi_\infty) + (a-b)^2 \times \left\{ \frac{2\mathcal{G}(a,b) - \Gamma(a,b)}{2(b-a)} \right\}_{\geq 0} \\ (a-b)^2 &= \left(\int_{\mathbb{R}} (V')^2 \psi_t - \int_{\mathbb{R}} V'' \psi_t \right)^2 = \left(\int_{\mathbb{R}} V'(V'\psi_t + \partial_x \psi_t) \right)^2 \\ &= \left(\int_{\mathbb{R}} V' \partial_x \ln(\psi_t/e^{-V}) \psi_t \right)^2 \leq a \times I(\psi_t|\psi_\infty). \end{split}$$

Hence $\frac{d}{dt}H(\psi_t|\psi_\infty) \leq -\frac{b\Gamma(a,b)-2a\mathcal{G}(a,b)}{2(b-a)}I(\psi_t|\psi_\infty)$. When ψ_∞ satisfies LSI(ρ), it satisfies the transport inequality $W_2^2(\psi_t,\psi_\infty) \leq \frac{2}{\rho}H(\psi_t|\psi_\infty)$. With $t\mapsto H(\psi_t|\psi_\infty)\searrow\Rightarrow \sup_t a[\psi_t] < C(H(\psi_0|\psi_\infty))$ with $C\nearrow$. $\lambda(H(\psi_0|\psi_\infty))\stackrel{\text{def}}{=} \frac{1}{2\rho}\inf_{(a,b):a\leq C(H(\psi_0|\psi_\infty))}\frac{b\Gamma(a,b)-2a\mathcal{G}(a,b)}{2(b-a)}>0$.

- Introduction to the Metropolis-Hastings algorithm
- Optimal scaling of the transient phase of RWMH
- Optimisation strategies for the RWMH algorithm
 - Long time convergence of the nonlinear SDE
 - Optimization strategies for the RWMH algorithm

Decrease of the Kullback-Leibler divergence

When $b \leq 0$, one has $\frac{d}{dt}H(\psi_t|\psi_\infty) \leq -\frac{\Gamma(a,b)}{2}\int_{\mathbb{R}}(\partial_x \ln \psi_t)^2\psi_t$ with $\lim_{\ell\to\infty}\Gamma(a,b)=+\infty$. So one should choose ℓ as large as possible. From now on, suppose that b>0 (recall that in the longtime limit b=a>0).

$$\frac{d}{dt}H(\psi_t|\psi_\infty) \leq -\underbrace{\frac{b\Gamma(a,b)-2a\mathcal{G}(a,b)}{2(b-a)}}_{\frac{1}{b}F(\frac{a}{b},\ell\sqrt{b})}I(\psi_t|\psi_\infty) < 0,$$

where

$$F(s,\ell) = \begin{cases} \ell^2 e^{-\frac{\ell^2}{2}} \text{ if } s = 0\\ 2\ell^2 \left(\left(1 + \frac{\ell^2}{4} \right) \Phi \left(-\frac{\ell}{2} \right) - \frac{\ell}{2\sqrt{2\pi}} e^{-\frac{\ell^2}{8}} \right) \text{ if } s = 1\\ \frac{\ell^2}{1-s} \left(\Phi \left(-\frac{\ell}{2\sqrt{s}} \right) + (1-2s) e^{\frac{\ell^2(s-1)}{2}} \Phi \left(\frac{\ell}{2\sqrt{s}} - \ell\sqrt{s} \right) \right) \text{ if } 0 < s \neq 1 \end{cases}$$

Optimisation strategies for the RWMH algorithm

Optimization strategies for the RWMH algorithm

Choice of ℓ maximizing the exponential rate of cv

Lemma 7

Let b > 0. Then $\tilde{\ell}^*(a,b) = \operatorname{argmax}_{\ell > 0} \frac{1}{b} F(\frac{a}{b}, \ell \sqrt{b}) = \frac{1}{\sqrt{b}} \ell^*(\frac{a}{b})$ where for any s > 0, $\ell^*(s)$ realizes the unique maximum of $\ell \mapsto F(s,\ell)$. Moreover, $s \mapsto \ell^{\star}(s)$ is continuous on $[0, +\infty)$ and

$$\bullet \ \tilde{\ell}^{\star}(a,b) \sim_{a/b \to 0} \frac{\ell^{\star}(0)}{\sqrt{b}} = \frac{\sqrt{2}}{\sqrt{b}}.$$

$$\bullet \ \tilde{\ell}^{\star}(a,b) \sim_{a/b \to 1} \frac{\ell^{\star}(1)}{\sqrt{b}}.$$

•
$$\tilde{\ell}^{\star}(a,b) \sim_{a/b \to +\infty} \frac{x^{\star} \sqrt{a}}{b}$$
 where $x^{\star} \simeq$ 1.22.

Notice that

$$dV(X_t) = V'(X_t) \left(\sqrt{\Gamma(a,b)} dB_t - \mathcal{G}(a,b) V'(X_t) \right) dt + \frac{1}{2} \Gamma(a,b) V''(X_t) dt$$

so that $\frac{d}{dt}\mathbb{E}[V(X_t)] = \frac{1}{2}(b\Gamma(a,b) - 2a\mathcal{G}(a,b)) = \frac{b-a}{b}F(\frac{a}{b},\ell\sqrt{b})$ and $\tilde{\ell}^{\star}(a,b)$ also maximizes $|\frac{d}{dt}\mathbb{E}[V(X_t)]|$.

Comparison with constant acceptance rate strategies

The limiting mean acceptance rate in Theorem 2 is

$$\begin{split} acc(a,b,\ell) &= \frac{1}{\ell^2} \Gamma(a,b) = H\left(\frac{a}{b},\ell\sqrt{b}\right) \\ \text{where } H(s,\ell) &= \Phi\left(-\frac{\ell}{2\sqrt{s}}\right) + e^{\frac{\ell^2(s-1)}{2}} \Phi\left(\ell\left(\frac{1}{2\sqrt{s}} - \sqrt{s}\right)\right). \end{split}$$

Lemma 8

For s>0, the function $\ell\mapsto H(s,\ell)$ is decreasing. Moreover, for $\alpha\in(0,1)$, the unique ℓ s.t. $acc(a,b,\ell)=\alpha$ is $\tilde{\ell}^{\alpha}(a,b)=\frac{1}{\sqrt{b}}\ell^{\alpha}\left(\frac{a}{b}\right)$ where $\ell^{\alpha}(s)$ is the unique solution to $H(s,\ell^{\alpha}(s))=\alpha$. Last,

- $\tilde{\ell}^{\alpha}(a,b) \sim_{a/b \to 0} \frac{\sqrt{-2 \ln(\alpha)}}{\sqrt{b}}$.
- $\tilde{\ell}^{\alpha}(a,b) \sim_{a/b \to 1} \frac{\ell^{\alpha}(1)}{\sqrt{b}}$.
- $\tilde{\ell}^{\alpha}(a,b) \sim_{a/b \to \infty} -2\Phi^{-1}(\alpha) \frac{\sqrt{a}}{b}$.

Comparison with constant acceptance rate strategies

Remark 1: Notice that $\tilde{\ell}^{\star}(a,b) = \frac{1}{\sqrt{b}} \ell^{\star}\left(\frac{a}{b}\right)$ and $\tilde{\ell}^{\alpha}(a,b) = \frac{1}{\sqrt{b}} \ell^{\alpha}\left(\frac{a}{b}\right)$ have the same scaling in (a,b).

→ Constant acceptance rate strategy seems sensible.

Remark 2: Choice of α : how to choose α to get $\tilde{\ell}^{\star}(a,b) \sim \tilde{\ell}^{\alpha}(a,b)$?

- $a/b \to 0$: $\alpha = \frac{1}{e} \simeq 0.37$.
- $a/b \rightarrow 1$: α such that $\ell^{\alpha}(1) = \ell^{\star}(1)$, namely $\alpha \simeq 0.35$.
- $a/b \rightarrow \infty$: $\alpha = \Phi(-x^*/2) \simeq 0.27$.

(The standard choice for the RWM, under the stationarity assumption, is $\alpha = 0.234$.)

 \longrightarrow Constant acceptance rate with $\alpha \in (1/4, 1/3)$ seems sensible.

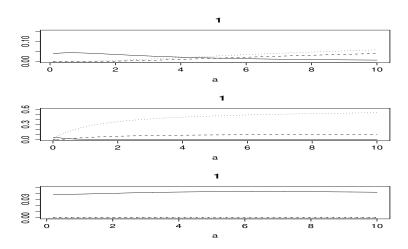


Figure : $\frac{F(\frac{a}{b},\tilde{l}^{\star}(a,b)\sqrt{b})-F(\frac{a}{b},\tilde{l}^{\alpha}(a,b)\sqrt{b})}{F(\frac{a}{b},\tilde{l}^{\star}(a,b)\sqrt{b})}$ as function of a for b=1,0.1,10 and

Gaussian target : $V(x) = \frac{1}{2}(x^2 + \ln(2\pi))$

We assume that ψ_0 Gaussian $\Rightarrow \overline{\psi}_t$ Gaussian.

Setting
$$m(t) \stackrel{\text{def}}{=} \mathbb{E}[X_t] = \int_{\mathbb{R}} x \psi_t(x) dx$$
 and

$$s(t) \stackrel{\text{def}}{=} \mathbb{E}[(X_t)^2] = \int_{\mathbb{R}} x^2 \psi_t(x) dx$$
, one has

$$H(\psi_t|\psi_{\infty}) = \frac{1}{2} \left(s(t) - \ln(s(t) - m(t)^2) - 1 \right),$$

$$\frac{d}{dt}H(\psi_t|\psi_\infty) = \frac{1}{2}\left(F(s,\ell)(1-s) - \frac{F(s,\ell)(1-s) + 2m\mathcal{G}(s,1,\ell)}{s-m^2}\right).$$

It is possible to approximate $\ell^{ent}(m,s)$ maximizing $\left|\frac{d}{dt}H(\psi_t|\psi_\infty)\right|$. To assess the convergence, we compute

$$t_0 \mapsto \hat{I}_{t_0,t_0+T}^m = \frac{1}{T} \sum_{k=t_0+1}^{t_0+T} \frac{X_k^{1,n} + \ldots + X_k^{n,n}}{n}$$

$$t_0 \mapsto \hat{I}_{t_0,t_0+T}^s = \frac{1}{T} \sum_{k=t_0+1}^{t_0+T} \frac{(X_k^{1,n})^2 + \ldots + (X_k^{n,n})^2}{n}.$$

Optimisation strategies for the RWMH algorithm
Optimization strategies for the RWMH algorithm

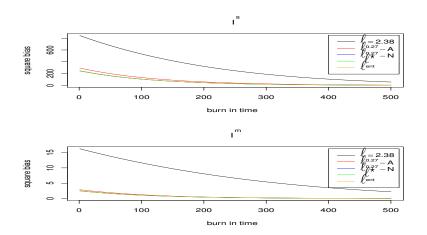


Figure : $t_0 \mapsto$ square bias of $(\hat{I}^s_{t_0, T+t_0}, \hat{I}^m_{t_0, T+t_0}), (X_0^{1,n}, \dots, X_0^{n,n}) = (10, \dots, 10),$ $n = 100(\ell^{0.27} - A \rightarrow \text{adaptive scaling Metropolis algorithm and } \ell^{0.27} - N \rightarrow \text{numerical approximation of } \ell^{0.27(s, 1)}.)$

Optimisation strategies for the RWMH algorithm

Optimization strategies for the RWMH algorithm

Conclusions:

- The constant ℓ strategy is bad;
- ② The constant average acceptance rate strategy (using ℓ^{α}) leads to very close convergence curves compared to the optimal exponential rate of convergence strategy (using ℓ^{\star});
- The optimal exponential rate of convergence strategy is as good as the most optimal strategy one could design in terms of entropy decay (using \(\ell^{ent}\)).