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1. Motivation
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4Particles vs rational agents

Social or biological agents can be

mechanical particles subject to forces: kinetic theory

rational agents trying to optimize a goal: game theory

Our goal: try to reconcile these viewpoints

show that kinetic theory can deal with rational agents

incorporate time-dynamics in game theory

Applications:

Pedestrians with C. Appert-Rolland . . . & G. Theraulaz, JSP 2013

& KRM 2013, based on D. Helbing, . . . & G. Theraulaz,

PNAS 2011

Social herding behavior with J-G. Liu & C. Ringhofer, JNLS 2014

Economics with J-G. Liu & C. Ringhofer, JSP 2014 and PTRS A 2014
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2. Nash equilibria vs kinetic equilibria

P. D., J-G. Liu, C. Ringhofer, J. Nonlinear Sci. 24 (2014), pp. 93-115
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6Game with a finite number of players

N players j = 1, . . . , N

Each player can play a strategy Yj in strategy space Y
The cost function of player j playing strategy Yj
in the presence of the other players playing strategy
Ŷj = (Y1, . . . , Yj−1, Yj+1, . . . , YN ) is φj(Yj , Ŷj)

Players try to minimize their cost function by acting
on their strategy Yj , not touching the others’ strategies Ŷj

Nash equilibrium

Strategy Y = (Y1, . . . , YN ) such that no player can improve
on its cost function by acting on his own strategy variable

Y Nash equilibrium ⇐⇒
φj(Y ) = min

Zj

φj(Zj , Ŷj), ∀j = 1, . . . , N
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7Best reply strategy

Describe behavior of the agents in time

Agents march towards the local optimum by acting on
their own strategy variable assuming the other agents will

not change theirs

Ẏj(t) = −∇Yj
φj(Yj , Ŷj), ∀j = 1, . . . , N

Add noise to account for uncertainties

dYj(t) = −∇Yj
φj(Yj , Ŷj) dt+

√
2d dBj

t , ∀j = 1, . . . , N
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8Continuum of players

Anonymous game with a continuum of player

Players with the same strategy cannot be distinguished

Agents described by strategy probability distribution dF (y)

Non-atomic:

dF (y) = f(y) dy is absolutely continuous

Cost function is φ(y; f)

General framework of

Non-Cooperative, Non-Atomic, Anonymous game with a

Continuum of Players (NCNAACP)
Aumann, Mas Colell, Schmeidler, Shapiro & Shapley

Mean-field games Lasry & Lions, Cardaliaguet
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9Nash Equilibrium for a continuum of players

The probability distribution fNE is a Nash Equilibrium (NE)

iff

∃K s. t.







φ(y; fNE) = K, ∀y ∈ Supp fNE ,

φ(y; fNE) ≥ K, ∀y

This is equivalent to the following “mean-field equation”
∫

φ(y; fNE) fNE dy = inf
f

∫

φ(y; fNE) f dy
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10Best reply strategy for continuum of players

Distribution of players f(y, t) satisfies kinetic eq.

∂tf −∇y ·
(

∇yφf f
)

− d∆yf = 0, φf = φ(·; f)

Define: “collision operator” Q:

Q(f) = ∇y ·
(

∇yφf f
)

+ d∆yf

Kinetic Equilibria (KE) are solutions of Q(f) = 0

For a given potential φ(y), define Gibbs measure Mφ

Mφ(y) =
1

Zφ

exp
(

− φ(y)

d

)

,

∫

Mφ(y) dy = 1
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11Kinetic Equilibria

Write Q as
Q(f) = d∇y ·

(

Mφf
∇y

( f

Mφf

)

)

Implies:
∫

Q(f)
f

Mφf

dy = −d
∫

∣

∣

∣
∇y

( f

Mφf

)

∣

∣

∣

2
Mφf

dy

Theorem: fKE Kinetic Equilibrium (and normalized, i.e.
∫

fKE = 1) iff fKE is a solution of the fixed point eq.

f =Mφf

or equivalently fKE =MφKE
with φKE a solution of the fixed

point eq.

φ = φMφ
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12Kinetic Equilibria vs Nash Equilibria (I)

Let a NCNAACP - game be defined by the cost function

µf = φf + d log f

Theorem: Suppose φf continuous; ∀f . Then, fKE Kinetic

Equilibrium associated to Q(f) iff it is Nash Equilibrium of this

game

Proof: “⇒”: φf is locally finite ∀f . So,
Mφf

(y) = Z−1
φf

exp(−φf (y)/d) > 0, ∀y,
and,

µMφf
= −d logZφf

= Constant, ∀y.

So, if f =Mφf
, i.e. if f = fKE Kinetic Equilibrium then, it is a

Nash Equilibrium for the game with cost function µf
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13Kinetic Equilibria vs Nash Equilibria (II)

Proof (cont): “⇐”: Suppose f = fNE Nash Equilibrium.

Then f > 0, ∀y. Otherwise ∃y s.t. f(y) = 0 and

µf (y) = −∞ ≥ K. Then K = −∞ and f ≡ 0: contradiction

with
∫

f = 1. Therefore, µf = K, ∀y, which implies f =Mφf
,

implying that f is a Kinetic Equilibrium.

Special case: potential games (Monderer & Shapley)

Suppose ∃ a functional U(f) s.t.
φf =

δU
δf

Define free energy:

F(f) = U(f) + d

∫

f log f dy.

Then, Cost function µf is a “Chemical potential”:

µf =
δF
δf
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14Potential games

In general: Q(f) = ∇y ·
(

f ∇y µf
)

If potential game, leads to gradient flow:

∂tf = ∇y ·
(

∇y

(δF
δf

)

f
)

Free-energy dissipation:

d

dt
F(f) = −D(f) < 0, D(f) =

∫

f
∣

∣

∣
∇y

(δF
δf

)

∣

∣

∣

2
dy

We have the equivalence (i) ⇔ (ii):

(i) f critical point of F subject to the constraint
∫

f dy = 1

(ii) f Nash equilibrium

Ground state, metastable equilibria, phase transition, hysteresis
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3.Hydrodynamics driven by local Nash
equilibria

P. D., J-G. Liu, C. Ringhofer, J. Nonlinear Sci. 24 (2014), pp. 93-115
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16Games with configuration variable

Add configuration (aka “type”) variable Xj (e.g. space)

Motion depends on both type Xj and strategy Yj

Ẋj = V (Xj , Yj), ∀j = 1, . . . , N

Cost function depends also on types X = (Xj)j=1,...,N

dYj(t) = −∇Yj
φj(Yj , Ŷj , X) dt+

√
2d dBj

t , ∀j = 1, . . . , N
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17Continuum of players

Probability distribution depends on type x and strategy y:

f = f(x, y, t)

Satisfies space-dependent Kinetic Eq.:

∂tf +∇x · (V (x, y) f)−∇y ·
(

∇yφf f
)

− d∆yf = 0

with
φf = φf(t)(x, y)

Goal of this work:

Provide continuum model for moments of f wrt strategy y

such as agent density ρf (x, t) or mean strategy Ῡf (x, t)

ρf (x, t) =

∫

f(x, y, t) dy, ρῩf (x, t) =

∫

f(x, y, t) y dy



↑ ↓Pierre Degond - Interplay between kinetic and game theories - Cemracs, 18/07/2017

18Mean-field game approach (Lasry & Lions)

Mean-field game approach directly provides continuum eq.

Without Kinetic Eq. step

Relies on an optimal control approach within a finite
horizon time [0, T ] and terminal data

−∂tΥ− ν∆Υ+H(x, ρ,DΥ) = 0, in R
d × (0, T ),

∂tρ− ν∆ρ− div(DpH(x, ρ,DΥ)ρ) = 0, in R
d × (0, T ),

ρ(x, 0) = ρ0(x), Υ(x, T ) = G(x, ρ(T ))

In this model
H ∼ cost function

G = cost function for reaching target at terminal time T

ρ satisfies convection-diffusion in field determined by H

Υ acts as a control variable and satisfies backwards eq.
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19Link with our approach

Best reply strategy can be recovered from MGF

Through receding horizon (aka model predictive control)

Chop [0, T ] into small intervals of size ∆t

Control defined by one step Euler discretization of HJB

[PD., M. Herty, J. G. Liu, Comm. Math. Sci. 15 (2017) 1403-1411]
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20Main hypothesis of our work

Scale separation hypothesis

Variation of strategy y much faster than that of type x

Fast equilibration of strategy leads to slow evolution of type
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21Passage to slow time scale

Let ε ratio of time scales. Then

ε
(

∂tf
ε +∇x · (V (x, y) f ε)

)

= ∇y ·
(

∇yφ
ε
fε f ε

)

+ d∆yf
ε

Scale separation ⇒ decoupling of slow and fast scales

φεf = φρ(x,t),νx,t(x, y) +O(ε2)

ρ(x, t) =

∫

f(x, y, t) dy, νx,t(y) =
f(x, y, t)

ρ(x, t)

Leading order cost function φ only depends on the local density
ρ(x, t) and (functionnally) on the conditional probability νx,t
conditionned on position and time being (x, t).

φ only depends on local quantities at position x

All non-local effects are contained in the O(ε2)
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22Macroscopic limit ε → 0

Kinetic Eq. with scale separation written as:

∂tf
ε +∇x · (V (x, y) fε) =

1

ε
Q(fε)

Q(f) = ∇y ·
(

f ∇yφρ(x,t),νx,t
+ d∇yf

)

ρ(x, t) =

∫

f(x, y, t) dy, νx,t(y) =
f(x, y, t)

ρ(x, t)

Using degree 1 homogeneity of Q, we write

Q(f) = ρQρ(ν), Qρ(ν) = ∇y ·
(

ν∇yφρ,ν + d∇yν
)

Local Kinetic Equilibria: f s.t. Q(f) = 0

are of the form f(x, y, t) = ρ(x, t)νKE,ρ(x,t)(y) where

νKE,ρ(y) is a solution of Qρ(ν) = 0, i.e.

νKE,ρ(y) = Z−1
φρ,νKE,ρ

exp
(

−
φρ,νKE,ρ

d

)
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23Continuity equation

We have
∫

Q(f) dy = 0

local conservation of the number of agents

Trading is so fast that the agents do not have time to move
during one trading interaction

In Kinetic Theory: “1” is a “Collision Invariant”

Integrate Eq. wrt. y, take ε → 0 limit and use equilibria

∂tρ+ ∂x
(

ρ u(ρ)
)

= 0, u(ρ) =

∫

V (x, y) νρ(x,t),KE(y) dy

However, may ∃ more than 1 equilibria νKE,ρ for a given ρ

νKE,ρ may depend on other parameters

No general theory possible: requires a case by case study



↑ ↓Pierre Degond - Interplay between kinetic and game theories - Cemracs, 18/07/2017

24

4. Wealth distribution

P. D., J-G. Liu, C. Ringhofer, J. Stat. Phys., 154 (2014), pp. 751-780.

& Phil. Trans. Roy. Soc. A 372 (2014), 20130394.
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25A model of conservative economy

Bouchaud & Mézard ; Cordier, Pareschi & Toscani ; Düring & Toscani

∂tf
ε + ∂x · (V (x, y) fε) =

1

ε
Q(fε)

Q(f) = ∂y
(

f ∂yφνx,t
+ d∂y(y

2 f)
)

νx,t(y) =
f(x, y, t)

ρ(x, t)
, ρ(x, t) =

∫

f(x, y, t) dy

Note: y > 0. Diffusion operator ∂2y(y
2 f) associated to

geometric Brownian motion (Bachelier)

Quadratic pairwise interaction potential (binary trading)

φν(y) =
κ

2

∫

(y − y′)2 ν(y′) dy′ =
κ

2
(y − Ῡν)

2, Ῡν =

∫

ν(y) y dy

Ῡν = local mean wealth
Trading operator conserves wealth:

∫

Q(f) y dy = 0
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26Equilibria are inverse Gamma distributions

Equilibria are parametrized by ρ > 0 and Υ > 0:

f = ρ νΥ(y), νΥ(y) =
1

ZΥ

1

y
κ
2
+2

exp
(

− κΥ

dy

)

Satisfy the equilibrium relation: ῩνΥ = Υ

Proof follows from a Poincaré inequality with Gamma
distribution weight by Benaim & Rossignol

Are Nash equilibria for game associated to cost

µν = (κ+ 2d) log y + κ
Ῡν

y
+ d log ν

Have “fat” Pareto tails as y → ∞
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27Macroscopic limit

Collision Invariant (CI)

Function ψ(y) s.t.
∫

Q(f)ψ dy = 0, ∀f
The only CI are linear combination of 1 (mass) and
y (wealth)

There are as many parameters (ρ, Υ) in the equilibrium
as independent CI (1, y)

In the limit ε→ 0, leads to conservation eqs. for (ρ,Υ)

∂tρ+ ∂x
(

ρu0(x; Υ(x, t))
)

= 0, u0(x; Υ) =

∫

V (x, y)MΥ(y) dy

∂t(ρΥ) + ∂x
(

ρu1(x; Υ(x, t))
)

= 0, u1(x; Υ) =

∫

V (x, y)MΥ(y) y dy
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28An example of non-conservative economy

Modern trading is trading with market rather than binary
trading

Potential coefficients depend on market (i.e. νx,t)

φν(y) =
1

2
aνy

2 + bνy + cν ∼ aν
2

(

y +
bν
aν

)2
+ c′ν

Define mean wealth Ῡ1(ν) and variance Ῡ2(ν)− Ῡ1(ν)
2 by

Ῡ1(ν) =

∫

ν y dy, Ῡ2(ν) =

∫

ν y2 dy

Choose: aν = d
Ῡ2(ν)

Ῡ2(ν)− Ῡ1(ν)2
, bν = −(1 + λ)dῩ1(ν)

Trading frequency aν ր when variance
(market uncertainty) Ῡ2(ν)− Ῡ1(ν)

2 ց
Risk averse strategy
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29Equilibria

Note:
∫

Q(f) y dy 6= 0: no wealth conservation in trading

Same inverse gamma equilibria as before

νΥ(y) =
1

ZΥ

1

yλ+3
exp

(

− (1 + λ)Υ

y

)

νΥ satisfies: Ῡ1(νΥ) = Υ, Ῡ2(νΥ) =
(

1 + 1
λ

)

Υ2

Market uncertainty is λ−1Υ2

How to find eq. for Υ ?

y is not a CI ⇒ lacks a CI to close macroscopic system . . .

Answer: use Generalized Collision Invariant (GCI) concept

GCI = CI which depends on (moments of) ν

Here GCI is: χῩ1(ν) =
y2

2 − Ῡ1(ν)y
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30Macroscopic limit

We have
∫

Q(νε)χῩ1(νε) dy = 0

Then
∫

(

∂t(ρ
ενε) + ∂x · (V (x, y) ρενε)

)

χῩ1(νε) dy = 0

And when ε→ 0
∫

(

∂t(ρνΥ) + ∂x · (V (x, y) ρνΥ)
)

χΥ dy = 0

Leads to a non-conservative eq. for evolution of Υ
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31Macroscopic non-conservative economy

Macroscopic system for local agent density ρ and mean

wealth Υ is

∂tρ+ ∂x
(

ρu0)
)

= 0,

ρ∂tΥ+
λ

2Υ
∂x(ρu2)− λ∂x(ρu1)−

1− λ

2
Υ∂x(ρu0) = 0

uk = uk(x; Υ) =

∫

V (x, y) νΥ(y) y
k dy

Remark: GCI concept first proposed in the context of
herding model

D. & Motsch, Continuum limit of self-driven particles with
orientation interaction, M3AS 18 Suppl. (2008) 1193-1215
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5. Conclusion
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33Summary

Interplay between Kinetic Theory and Game Theory

Best-reply strategy

Nash equilibria are Kinetic equilibria of associated dynamics

Provides a receding horizon approximation of MFG

Used this analogy to derive:

large-scale evolution of system of agents

subject to fast relaxation towards Nash equilibrium

Hydrodynamic models of games

Application to wealth distribution

Equilibria are inverse gamma distributions

Parameters evolve through system of macroscopic equations

Applied to non-conservative economy through GCI concept
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34Perspective

Development in other contexts of social dynamics

Comparisons with data in real-world applications

Rigorous proofs
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