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MFG WITH MAJOR AND MINOR PLAYERS SET-UP

R.C. - G. Zhu, R.C. - P. Wang

State equations

aX? = bo(t, X0, e, af)dt + oo(t, X0, e, af ) AW
Xy = b(ta X, ///17Xt07 at, a(t))dt + U(ta Xt /“7Xt07 Qat, a(t)dea

Costs

L) =E[f] ot X0, ue, af)dt + g°(X2, 7]
J@® @)  =E[f] (t, Xe, ul, X0, cur, )t + g( X7, 7)),



OPEN LOOP VERSION OF THE MFG PROBLEM

The controls used by the major player and the representative minor player
are of the form:

af = ¢°(t, W[%,T])7 and or = ¢(t, W[%,m Wo, 1), (1)
for deterministic progressively measurable functions
¢° [0, T] x C([0, T];R%) > Ao

and
¢ : [0, T] x ([0, T];RY) x C([0, T|; RY) — A



THE MAJOR PLAYER BEST RESPONSE

Assume representative minor player uses the open loop control given by
¢ (LW w) = ot W, w),

Major player minimizes

.
@) =E[ [t XP. ot + g0, )]
0
under the dynamical constraints:

axXP = bo(t, X7, e, af)dt + oo(t, X7, e, af )WY
de - b(tv va;u’UXto7¢(t7 VV[%,T]? M/[O,ﬂ)’a(t))dt
+U(tv Xh Mt Xt07 ¢(t7 VV[((J),T]7 VV[O,T])a a?)dWh
pe = L(Xt| W ) conditional distribution of X; given W .

Major player problem as the search for:

" (¢)=arg inf  J">) (2)

af=¢0(t, W[%Y )

Optimal control of the conditional McKean-Viasov type!



THE REP. MINOR PLAYER BEST RESPONSE

System against which best response is sought comprises
a major player
a field of minor players different from the representative minor player

Major player uses strategy of = ¢°(t, W 1)

vV v . v v

Representative of the field of minor players uses strategy
ar = ¢(t, Wg. 17, Wio, )

State dynamics

dXP = bo(t, X7, put, 6°(t, Wig, 77))alt + oot X7, e, 0°(t, W 7)) WY
axe = b(tv Xl)/“aXtO7¢(t7 VV[(())yT]a VV[O,T])7¢O(t7 VV[(())yT]))dt
+U(t7 XthXto7¢(t7 VV[%yT]: |/|/[(),T])7¢0(t7 VV[%yT]))dWH

where pr = L(Xi| VV[%J]) is the conditional distribution of X; given W[%’t].

Given ¢° and ¢, SDE of (conditional) McKean-Vlasov type



THE REP. MINOR PLAYER BEST RESPONSE (CONT.)

Representative minor player chooses a strategy @ = é(t, W[%,T], W, 1) to
minimize

T
J¢O,¢(a) = E[/ f(t7 vaxtomuf:afyqso(n VV[(()),T]))dt+ g(XT“LL[):I,
0

where the dynamics of the virtual state X; are given by:

dYt = b(t7 7“ Ht, X[07 Q_s(ty |/V[(()),T]7 VV[O,T])7 ¢O(t7 VV[(()),T]))dt
+ U(t7yt7 ity X!O7 (Z_b(ty VV[(()),T]a VV[O,T])7 d)o(tv VV[(()),T]))dWh
for a Wiener process W = (W;)o<:<r independent of the other Wiener
processes.

» Optimization problem NOT of McKean-Vlasov type.
» Classical optimal control problem with random coefficients

(@ 0)=arg _ inf I (&)

@r=4(LWy 71, Wo,m)



NASH EQUILIBRIUM

Search for Best Response Map Fixed Point

(6°.0) = (6°7(9).4"(¢°. 9)).-

Fixed point in a space of controls, not measures !!!



CLOSED LOOP VERSIONS OF THE MFG PROBLEM

» Closed Loop Version

Controls of the major player and the representative minor player are of
the form:

Oé? = ¢O(t, )([%,T]7MT)7 and ar= d)(t: )([O,ﬂvﬂta)([%,ﬂ)7

for deterministic progressively measurable functions

¢° : [0, T] x C([0, T]; R%®) x Pp(R?) — Ay and

¢ : [0, T] x C([0, T]; RY) x P2(RY) x C([0, T]; RY) — A.
» Markovian Version

Controls of the major player and the representative minor player are of
the form:

af = ¢°(t, X0, ), and  ar = ¢(t, X, pue, XP),

for deterministic feedback functions ¢° : [0, T] x R% x P»(RY) — Ay and
¢ : [0, T] x RY x Po(R?) x R% s A.



NASH EQUILIBRIUM

Search for Best Response Map Fixed Point

(6°.0) = (6°7(9).9"(¢°. 9)).-




CONTRACT THEORY: A STACKELBERG VERSION
R.C. - D. Possamai - N. Touzi

State equation

dX: = o(t, Xi, vt, a) [M(t, Xz, vt, ) dt + dWA],
> X; Agent output
> «; agent effort (control)
» 1, distribution of output and effort (control) of agent
Rewards
L&) =E[Up(Xo,m,vr,€)]
{J(g, a) =E[— [] f(t, X, v, ar)dt + Ua()],

» Given the choice of a contract £ by the Principal

» Each agent in the field of exchangeable agents

» chooses an effort level ot
» meets his/her reservation price
> get the field of agents in a (MF) Nash equilibrium

» Principal chooses the contract to maximize his/her expected utility



LINEAR QUADRATIC MODELS

State dynamics

adxX} = (LoX{ + Bood + FoX;)dt + DodWy
dX; = (LX; + Bay + FX; + GX?)dt + DdW,

where X; = E[Xi| F7], (F?)e>o filtration generated by W°

Costs

S, a) [ / (X — HoXe — 10) " Qo(X? — HoX¢ — mo) + o Roa,]dt}

J(@®, ) [ / [(Xe — HX® — H Xe — 1) QX — HX? — Hi X, — 1) +ajﬂa,]dt}

in which Q, Qv, R, Ry are symmetric matrices, and R, R, are assumed to be
positive definite.



EQUILIBRIA

» Open Loop Version

» Optimization problems + fixed point = large FBSDE
» affine FBSDE solved by a large matrix Riccati equation

» Closed Loop Version

v

Fixed point step more difficult
Search limited to controls of the form

af = ¢°(t, X0, Xt) = (1) + ¢ ()X + 82(1) X:
ar= o(t, X, X0, Xt) = do(t) + ¢1 (D)X + 2() X0 + da(t) X

v

v

Optimization problems + fixed point = large FBSDE
affine FBSDE solved by a large matrix Riccati equation

v

Solutions are not the same !!!!



APPLICATION TO BEE SWARMING

v

V,O’N velocity of the (major player) streaker bee at time ¢

v

V{"N the velocity of the i-th worker bee, i = 1,--- , N at time ¢

v

Linear dynamics
avPN = ofdt + ToaWy
aVviN = aidt + Taw!

» Minimization of Quadratic costs

T -
S= E[/O oll VPN = wallZ + A VPN = VYR + (1= 2o = Ap)lla?|1?) ]

» V= LN, VN the average velocity of the followers,
» deterministic function [0, T] > t — v+ € RY (leader’s free will)
» )Xo and )\ are positive real numbers satisfying Ao + A\ < 1

) T . : _ .
J = E[/0 (ol Vi™ = VM + IV = U2 + (1=l — k)l ct]

b>0andh >0, + 4 < 1.



SAMPLE TRAJECTORIES IN EQUILIBRIUM

0.5

0.0

v(t) ;= [-2n sin(2xt), 27 cos(2rt)]

k0 =0.80 k1=0.19 10=0.19 11 =0.80 k0 =0.80 k1=0.19 10=0.80 I1=0.19

FIGURE: Optimal velocity and trajectory of follower and leaders

T
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SAMPLE TRAJECTORIES IN EQUILIBRIUM

2.04

0.5

0.0

v(t) := [-2r sin(2rt), 2m cos(2rt)]

k0 =0.19 k1 =0.80 10 =0.19 11 =0.80 k0 =0.19 k1=0.80 10=0.80 11 =0.19

2.04

T T T T T T T T T
0.0 0.5 1.0 1.5 2.0 -0.5 0.0 0.5 1.0

FIGURE: Optimal velocity and trajectory of follower and leaders




CONDITIONAL PROPAGATION OF CHAOS
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1 1 1
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FIGURE: Conditional correlation of 5 followers’ velocities



FINITE STATE SPACES: A CYBER SECURITY MODEL

Kolokolstov - Bensoussan, R.C. - P. Wang
» N computers in a network (minor players)
> One hacker / attacker (major player)
> Action of major player affect minor player states (even when N >> 1)
> Major player feels only uf‘\’ the empirical distribution of the minor players’ states
Finite State Space: each computer is in one of 4 states
> protected & infected
> protected & sucseptible to be infected
> unprotected & infected
» unprotected & sucseptible to be infected
Continuous time Markov chain in E = {DI, DS, Ul, US}

Each player’s action is intended to affect the rates of change from one state to
another to minimize expected costs

J(o®, ) = E[ / "ot + km)(xr)dt}

.
Sl a) = JE{/O (—folme) + kH¢°(Mt))df]



FINITE STATE MEAN FIELD GAMES

State Dynamics
(Xt)i=0 continuous time Markov chain in E with Q-matrix (g¢(X, X'))t>0,x,x cE-

Mean Field structure of the Q-matrix

qr(x, x") = (%, X', p, @)
Control Space

AC Rk, sometime A finite, e.9. A= {0,1}, or a function space
Control Strategies in feedback form
ar = ¢(t, Xp), forsome ¢ : [0, T] x E— A

Mean Field Interaction through Empirical Measures

w € P(E) = (({x}))xeE
Kolmogorov-Fokker-Planck equation: if u; = £(X;)

Orpae({x}) = 1L T ({x3)
= > m @ Pgt I ),

x'eE

= D> m{X DA X e b(t, X)) x €E,

x'eE



FINITE STATE MEAN FIELD GAMES: OPTIMIZATION

Hamiltonian

H(t7x7 l”’7 h? a) = Z At()(7xl7/”’7 a)h(xl) + f(t7X7 u? a)'
x'€eE

Hamiltonian minimizer
a(t, x, u, h) = arg alnefA H(t, x, u, h, @),
Minimized Hamiltonian
H*(t,x, p, h) = oltren‘A H(t, x, 1, h, o) = H(t, x, u, h, &(t, x, p, h)).
HJB Equation
Orut(t, x) + H* (t, x, e, uH(t,-)) = 0, 0<t<T,x€E,

with terminal condition u* (T, x) = g(x, uT).



TRANSITION RATES Q-MATRICES

DI
DS
ul
Us

DI
DS
Ul
us

Fora=0
)‘f('v Ry CVO, O) =
DI DS Ul us
e T 0 0
a®qP + Boop({DI1}) + Buppu({UL}) - 0 0
0 0 ol
0 0 a%Y, + Buup({U1}) + Boup({DI}) -
and for a = 1:
Af('> Ky aoa 1 ) -
DI DS Ul us
qucc )\ 0
0 A

a®gl; + Bpop({DI}) + Bupp({U1})
A 0 Trec
0 A a®qY + Buup({U1}) + Boup({DI})

where all the instances of - - - should be replaced by the negative of

the sum of the entries of the row in which - -- appears on the

diagonal.



EQUILIBRIUM DISTRIBUTION OVER TIME WITH
CONSTANT ATTACKER

Time evolution of the state distribution u(t) Time evolution of the state distribution u(t) Time evolution of the state distribution u(t)
2] - u(US] =
3 2 4 3 3 0 10

timet timet time t




EQUILIBRIUM OPTIMAL FEEDBACK ¢(t, -)

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn Bl Time evoluton of the optimal fesdback function (t}US]

From left to right ¢(t, DI), ¢(t,DS), ¢(t, UI), and ¢(t, US).



CONVERGENCE MAY BE ELUSIVE

Time evoluton of the state disibution ({) ‘Time evolution of the state distrbution (1) Time evoluton of the state distibution u(t) Time evoluton of the state distibution ()
- p—— s —— B H
0S) os)
] i)
US| HIUS)
[ oz ‘ N sl P FRZN. Zas e
B alil N { { i / y /
o 2 ‘ o s 0 o 2 4 o [ 0 0 2 . o [ 0 . 2 . [ [ 0
et ine et et

From left to right, time evolution of the distribution p; for the parameters given in the
text, after 1, 5, 20, and 100 iterations of the successive solutions of the HJB equation
and the Kolmogorov Fokker Planck equation.



THE MASTER EQUATION EQUATION

. Y nOU(t, x, 1)
8U+H t,X,,LL, 77# h t,LL, 77/1’ X O roy
t ( = ))( ) au({x })

where the RE-valued function h* is defined on [0, T] x P(E) x RE by:

Wt u) = /E Ne(X, - s 6t X, 1, 1)) dp(x)
= Z)\t(xa'7”7&(1.7)(71“7“))#({)(})'

xeE

System of Ordinary Differential Equations (ODEs)

If and when the Master equation is solved

8,ut({X}) = h*(ta Kt U(tv '»Nt))(x)

)



(4t EVOLUTION FROM THE MASTER EQUATION

Time evolution of the state distribution p(t) Time evolution of the state distribution u(t)
o ] 2
— (DN
n(HIDS]
[ROICD]
2 | - u([us] 2
< | < |
3 3
= - =

time t time t

As before, we used the initial conditions po: 1o = (0.25,0.25,0.25,0.25) in
the left and o = (1,0, 0,0) on the right.



IN THE PRESENCE OF A MAJOR (HACKER) PLAYER

u(t)

Time evolution of the state distribution u(t) Time evolution of the state distribution u(t) ‘Time evolution of the state distribution (t)

1t}
10}

Time evolution in equilibrium, of the distribution u; of the states of the computers in the
network for the initial condition 1g: 1o = (0.25,0.25,0.25,0.25) when the major player
is not rewarded for its attacks, i.e. when f(x) = 0 (leftmost pane), in the absence of
major player and v = 0 (middle plot), and with (1) = ko(({UI}) + n({DI})) with

ko = 0.05 (rightmost plot).



POA BOUNDS FOR CONTINUOUS TIME MFGS

Price of Anarchy Bounds
compare Social Welfare for NE to what a Central Planer would achieve
Koutsoupias-Papadimitriou

Usual Game Model for Cyber Security
» Zero-Sum Game between Attacker and Network Manager

» Compute Expected Cost to Network for Protection

MFG Model for Cyber Security
> Let the individual computer owners take care of their security
> Hope for a Nash Equilibrium
» Compute Expected Cost to Network for Protection

How much worse the NE does is the PoA



POA BOUNDS FOR CONTINUOUS TIME MFGS WITH
FINITE STATE SPACES

X =

>
>
>

(X}, , XN) state at time ¢, with X/ € {eq,-- , eq4}

Use distributed feedback controls, for state to be a continuous time Markov Chain
Dynamics given by Q-matrices (qt(X, X')>0,x,x’ cE

Empirical measures

N d
1
ILL!(V =N Zéx" = Zp@éez
N i=1 =1

where p, = #{i; 1 <i < N, x' = e,}/N is the proportion of elements x' of the
sample which are equal to e,.

Cost Functionals

Player i minimizes:

) T ) . .
J(al,- aM) :E[/ (6, XL uN=! od) dt + g(X5, uNZ1 |,
0 Xt XT



SocCIAL CoST

If the N players use distributed Markovian control strategies of the form a’,' = ¢(t, X,’)
we define the cost (per player) to the system as the quantity J;N)

N
N 1 i
Jé ) — N;Jl(a1v"' 7CXN)
=
In the limit N — oo the social cost should be

Jim J = Jim_ ZJ’(a -,y

N— oo

A , , ,
= lim NZE{/O f(t,X,’,u%,Q‘)(t,Xt'))dt+g(X%7u)A!T)},
=1

)
= Jjim E[/ <At ol ), Y > dt+<g(-,u%>,u%7>]
N— oo 0
@)

if we use the notation < ¢, v > for the integral [ ¢(z)v(dz).
Now if p% converge toward a deterministic r, the social cost becomes:

T
SC(b(IJ’) :/0 < f(t7 . 7,“!795(17 '))7“? > dt+ < g( : 7/1/7—)7MT >,



ASYMPTOTIC REGIME N = o

Two alternatives

> ¢ is the optimal feedback function for a MFG equilibrium for which p is the
equilibrium flow of statistical distributions of the state, in which case we use the
notation SCMFG for SC,(w);

.
B [ 0. Xe e ot X))ot + (X7 u7)]

;
= [ <t 0).£06) > it < o). £0X7) >
= SCy(p) = SCMFG  in equilibrium

> ¢ is the feedback (chosen by a central planner) minimizing the social cost SCy (1)
without having to be an MFG Nash equilibrium, in which case we use the notation
SCMKY for SCy4(w);

T
o= arglng < f(tv'vl"/tv ¢(t7 '))7/’” > di+ < 9(‘7MT)7M >

where p; satisfies Kolmogorov-Fokker-Planck forward dynamics



POA: SOCIAL COST COMPUTATION
Minimize ;
\/0 < f(t’ ':ﬂfv¢(t7')))/“ > dt+ < g(':/'LT)HU'I >

under the dynamical constraint

Be({x3) = 070 DT = S0 m(X DA x, X, 61, X)), x € E,
x'€E

ODE in the d-dimensional probability simplex Sy C R4!!!
Hamiltonian H(t, 11, ¢, ¢) by

H(t, 10, 6) =< @, LTl > + < (L, -, 1, 6()), 1 >
=< L;L7¢Lp + f(tv Ty ¢())7 >
minimized Hamiltonian:
H*(t, 1, ) = Inf H(t, i, 0, ¢).
PeA
Assume infimum is attained for a unique @:
H* (b 1, 0) = H(t, 1, 0, B8, 1, 0)) =< L PP o 1(8 -1, (1t 1, 0) () 1> -

HJB equation

. dv(t,
vt )+ H* (t s, %) =0, WT.w)=<g(m)p>



REMARKS ON DERIVATIVES W.R.T. MEASURES
Standard identification
P(E) BNHp:(ph“' 7Pd) € Sq
via < p = (p1,- -+ ,pg) With pj = p({e}) fori =1, die p=7, pide,
> ov/éu when v is defined on an open neighborhood of the probability simplex Sy.
> Jv(t,n)/0u({x’'}) is the derivative of v with respect to the weight p.({x’}).
Important Remark L;Mbgo does not change if we add a constant to the function ¢, so
does (1, i, ¢).
Consequence (for numerical purposes):
av(tnu) _ 8V(t,X,/J)) ) :O
ou({x'})  ou({x}) "x<E

8tV(t,,U4) + H* (t’ Ky (

We can identify

ov(t, p) ov(t, p)

ou({x'})  on({x})’
for x # x, with the partial derivative of v(t, -) with respect to u({x’}) whenever v(t, )
is regarded as a smooth function of the (d — 1) tuple (({x"}))x e£\¢x}, Which we can
see as an element of the (d — 1)-dimensional domain

Sa—1,< ={(P1,-+ ,Pg—1) € [0,1]° ZP,<1}



MFGS OF TIMING WITH MAJOR AND MINOR PLAYERS

The Example of Corporate Bonds

» Major Player = bond issuer

» Bond is Callable
» Major Player (issuer) chooses a stopping time to

>
>
>

pay-off the investors
stop coupon payments to the investors
refinance his debt with better terms

» Minor Players = field of investors

» Bond is Convertible
» Each Minor Player (investor) chooses a stopping time at which to

>

convert the bond certificate in a fixed number (conversion ratio) of
stock shares

if and when owning the stock is more profitable

creating Dilution of the stock



