MEAN FIELD GAMES WITH MAJOR AND MINOR PLAYERS #### René Carmona Department of Operations Research & Financial Engineering PACM Princeton University **CEMRACS - Luminy, July 17, 2017** # MFG WITH MAJOR AND MINOR PLAYERS SET-UP R.C. - G. Zhu, R.C. - P. Wang ### State equations $$\begin{cases} dX_t^0 &= b_0(t, X_t^0, \mu_t, \alpha_t^0) dt + \sigma_0(t, X_t^0, \mu_t, \alpha_t^0) dW_t^0 \\ dX_t &= b(t, X_t, \mu_t, X_t^0, \alpha_t, \alpha_t^0) dt + \sigma(t, X_t, \mu_t, X_t^0, \alpha_t, \alpha_t^0 dW_t, \end{cases}$$ #### Costs $$\begin{cases} J^0(\boldsymbol{\alpha}^0, \boldsymbol{\alpha}) &= \mathbb{E} \big[\int_0^T f_0(t, X_t^0, \mu_t, \alpha_t^0) dt + g^0(X_T^0, \mu_T) \big] \\ J(\boldsymbol{\alpha}^0, \boldsymbol{\alpha}) &= \mathbb{E} \big[\int_0^T f(t, X_t, \mu_t^N, X_t^0, \alpha_t, \alpha_t^0) dt + g(X_T, \mu_T) \big], \end{cases}$$ ## OPEN LOOP VERSION OF THE MFG PROBLEM The controls used by the major player and the representative minor player are of the form: $$\alpha_t^0 = \phi^0(t, W_{[0,T]}^0), \text{ and } \alpha_t = \phi(t, W_{[0,T]}^0, W_{[0,T]}),$$ (1) for deterministic progressively measurable functions $$\phi^0: [0, T] \times \mathcal{C}([0, T]; \mathbb{R}^{d_0}) \mapsto A_0$$ and $$\phi: [0, T] \times \mathcal{C}([0, T]; \mathbb{R}^d) \times \mathcal{C}([0, T]; \mathbb{R}^d) \mapsto A$$ ## THE MAJOR PLAYER BEST RESPONSE Assume representative minor player uses the open loop control given by $\phi:(t,w^0,w)\mapsto \phi(t,w^0,w)$, Major player minimizes $$J^{\phi,0}(lpha^0) = \mathbb{E}\Big[\int_0^T f_0(t,X_t^0,\mu_t,lpha_t^0)dt + g^0(X_T^0,\mu_T)\Big]$$ under the dynamical constraints: $$\begin{cases} dX_t^0 &= b_0(t, X_t^0, \mu_t, \alpha_t^0) dt + \sigma_0(t, X_t^0, \mu_t, \alpha_t^0) dW_t^0 \\ dX_t &= b(t, X_t, \mu_t, X_t^0, \phi(t, W_{[0,T]}^0, W_{[0,T]}, \alpha_t^0) dt \\ &+ \sigma(t, X_t, \mu_t, X_t^0, \phi(t, W_{[0,T]}^0, W_{[0,T]}), \alpha_t^0) dW_t, \end{cases}$$ $\mu_t = \mathcal{L}(X_t|W_{[0,t]}^0)$ conditional distribution of X_t given $W_{[0,t]}^0$. Major player problem as the search for: $$\phi^{0,*}(\phi) = \arg\inf_{\alpha_t^0 = \phi^0(t, W_{[0,T]}^0)} J^{\phi,0}(\alpha^0)$$ (2) Optimal control of the conditional McKean-Vlasov type! ## THE REP. MINOR PLAYER BEST RESPONSE System against which **best response** is sought comprises - a major player - a field of minor players different from the representative minor player - Major player uses strategy $\alpha_t^0 = \phi^0(t, W_{[0,T]}^0)$ - Representative of the field of minor players uses strategy $\alpha_t = \phi(t, W^0_{[0,T]}, W_{[0,T]}).$ #### State dynamics $$\left\{ \begin{array}{l} dX_t^0 = b_0(t,X_t^0,\mu_t,\phi^0(t,W_{[0,T]}^0))dt + \sigma_0(t,X_t^0,\mu_t,\phi^0(t,W_{[0,T]}^0))dW_t^0 \\ dX_t = b(t,X_t,\mu_t,X_t^0,\phi(t,W_{[0,T]}^0,W_{[0,T]}^0),\phi^0(t,W_{[0,T]}^0))dt \\ + \sigma(t,X_t,\mu_t,X_t^0,\phi(t,W_{[0,T]}^0,W_{[0,T]}^0),\phi^0(t,W_{[0,T]}^0))dW_t, \end{array} \right.$$ where $\mu_t = \mathcal{L}(X_t | W^0_{[0,t]})$ is the conditional distribution of X_t given $W^0_{[0,t]}$. Given ϕ^0 and ϕ , SDE of (conditional) McKean-Vlasov type # THE REP. MINOR PLAYER BEST RESPONSE (CONT.) Representative minor player chooses a strategy $\overline{\alpha}_t = \overline{\phi}(t, W^0_{[0,T]}, W_{[0,T]})$ to minimize $$J^{\phi^0,\phi}(\bar{\boldsymbol{\alpha}}) = \mathbb{E}\big[\int_0^T f(t,\overline{X}_t,X_t^0,\mu_t,\bar{\alpha}_t,\phi^0(t,W_{[0,T]}^0))dt + g(\overline{X}_T,\mu_t)\big],$$ where the dynamics of the virtual state \overline{X}_t are given by: $$\begin{split} d\overline{X}_{t} &= b(t, \overline{X}_{t}, \mu_{t}, X_{t}^{0}, \bar{\phi}(t, W_{[0,T]}^{0}, W_{[0,T]}), \phi^{0}(t, W_{[0,T]}^{0}))dt \\ &+ \sigma(t, \overline{X}_{t}, \mu_{t}, X_{t}^{0}, \bar{\phi}(t, W_{[0,T]}^{0}, W_{[0,T]}), \phi^{0}(t, W_{[0,T]}^{0}))d\overline{W}_{t}, \end{split}$$ for a Wiener process $\overline{\mathbf{W}} = (\overline{W}_t)_{0 \le t \le T}$ independent of the other Wiener processes. - Optimization problem NOT of McKean-Vlasov type. - Classical optimal control problem with random coefficients $$\overline{\phi}^*(\phi^0,\phi) = \arg\inf_{\overline{\alpha}_t = \overline{\phi}(t,W^0_{[0,T]},W_{[0,T]})} J^{\phi^0,\phi}(\bar{\alpha})$$ # NASH EQUILIBRIUM ## Search for **Best Response Map Fixed Point** $$(\hat{\phi}^0, \hat{\phi}) = (\phi^{0,*}(\hat{\phi}), \bar{\phi}^*(\hat{\phi}^0, \hat{\phi})).$$ Fixed point in a space of controls, not measures !!! ## **CLOSED LOOP VERSIONS OF THE MFG PROBLEM** #### Closed Loop Version Controls of the major player and the representative minor player are of the form: $$\alpha_t^0 = \phi^0(t, X_{[0,T]}^0, \mu_t), \quad \text{and} \quad \alpha_t = \phi(t, X_{[0,T]}, \mu_t, X_{[0,T]}^0),$$ for deterministic progressively measurable functions $\phi^0: [0,T] \times \mathcal{C}([0,T];\mathbb{R}^{d_0}) \times \mathcal{P}_2(\mathbb{R}^d) \mapsto A_0$ and $\phi: [0,T] \times \mathcal{C}([0,T];\mathbb{R}^d) \times \mathcal{P}_2(\mathbb{R}^d) \times \mathcal{C}([0,T];\mathbb{R}^d) \mapsto A$. #### Markovian Version Controls of the major player and the representative minor player are of the form: $$\alpha_t^0 = \phi^0(t, X_t^0, \mu_t), \quad \text{and} \quad \alpha_t = \phi(t, X_t, \mu_t, X_t^0),$$ for deterministic feedback functions $\phi^0: [0, T] \times \mathbb{R}^{d_0} \times \mathcal{P}_2(\mathbb{R}^d) \mapsto A_0$ and $\phi: [0, T] \times \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \times \mathbb{R}^{d_0} \mapsto A$. # NASH EQUILIBRIUM ## Search for **Best Response Map Fixed Point** $$(\hat{\phi}^{0}, \hat{\phi}) = (\phi^{0,*}(\hat{\phi}), \bar{\phi}^{*}(\hat{\phi}^{0}, \hat{\phi})).$$ ## CONTRACT THEORY: A STACKELBERG VERSION R.C. - D. Possamaï - N. Touzi ### State equation $$dX_t = \sigma(t, X_t, \nu_t, \alpha_t)[\lambda(t, X_t, \nu_t, \alpha_t)dt + dW_t],$$ - X_t Agent output - α_t agent effort (control) - \triangleright ν_t distribution of output and effort (control) of agent #### Rewards $$\begin{cases} J^{0}(\xi) &= \mathbb{E}\left[U_{P}(X_{[0,T]}, \nu_{T}, \xi)\right] \\ J(\xi, \alpha) &= \mathbb{E}\left[-\int_{0}^{T} f(t, X_{t}, \nu_{t}, \alpha_{t}) dt + U_{A}(\xi)\right], \end{cases}$$ - Given the choice of a contract ξ by the Principal - Each agent in the field of exchangeable agents - chooses an effort level α_t - meets his/her reservation price - get the field of agents in a (MF) Nash equilibrium - Principal chooses the contract to maximize his/her expected utility # LINEAR QUADRATIC MODELS ### State dynamics $$\begin{cases} dX_t^0 = (L_0X_t^0 + B_0\alpha_t^0 + F_0\bar{X}_t)dt + D_0dW_t^0 \\ dX_t = (LX_t + B\alpha_t + F\bar{X}_t + GX_t^0)dt + DdW_t \end{cases}$$ where $\bar{X}_t = \mathbb{E}[X_t|\mathcal{F}^0_t],\, (\mathcal{F}^0_t)_{t\geq 0}$ filtration generated by \mathbf{W}^0 #### Costs $$\begin{split} J^0(\boldsymbol{\alpha}^0, \boldsymbol{\alpha}) &= \mathbb{E}\left[\int_0^T [(X_t^0 - H_0 \bar{X}_t - \eta_0)^\dagger Q_0 (X_t^0 - H_0 \bar{X}_t - \eta_0) + \alpha_t^{0\dagger} R_0 \alpha_t^0] dt\right] \\ J(\boldsymbol{\alpha}^0, \boldsymbol{\alpha}) &= \mathbb{E}\left[\int_0^T [(X_t - HX_t^0 - H_1 \bar{X}_t - \eta)^\dagger Q (X_t - HX_t^0 - H_1 \bar{X}_t - \eta) + \alpha_t^\dagger R \alpha_t] dt\right] \end{split}$$ in which Q, Q_0 , R, R_0 are symmetric matrices, and R, R_0 are assumed to be positive definite. # **EQUILIBRIA** ## Open Loop Version - ▶ Optimization problems + fixed point ⇒ large FBSDE - affine FBSDE solved by a large matrix Riccati equation ## Closed Loop Version - Fixed point step more difficult - Search limited to controls of the form $$\alpha_t^0 = \phi^0(t, X_t^0, \bar{X}_t) = \phi_0^0(t) + \phi_1^0(t)X_t^0 + \phi_2^0(t)\bar{X}_t$$ $$\alpha_t = \phi(t, X_t, X_t^0, \bar{X}_t) = \phi_0(t) + \phi_1(t)X_t + \phi_2(t)X_t^0 + \phi_3(t)\bar{X}_t$$ - ▶ Optimization problems + fixed point ⇒ large FBSDE - affine FBSDE solved by a large matrix Riccati equation #### Solutions are not the same !!!! ## APPLICATION TO BEE SWARMING - $V_t^{0,N}$ velocity of the (major player) streaker bee at time t - $V_t^{i,N}$ the velocity of the *i*-th worker bee, $i=1,\cdots,N$ at time t - Linear dynamics $$\begin{cases} dV_t^{0,N} = \alpha_t^0 dt + \Sigma_0 dW_t^0 \\ dV_t^{i,N} = \alpha_t^i dt + \Sigma dW_t^i \end{cases}$$ Minimization of Quadratic costs $$J^{0} = \mathbb{E}\Big[\int_{0}^{T} (\lambda_{0} \|V_{t}^{0,N} - \nu_{t}\|^{2} + \lambda_{1} \|V_{t}^{0,N} - \bar{V}_{t}^{N}\|^{2} + (1 - \lambda_{0} - \lambda_{1}) \|\alpha_{t}^{0}\|^{2}) dt\Big]$$ - $\bar{V}_t^N := \frac{1}{N} \sum_{i=1}^N V_t^{i,N}$ the average velocity of the followers, - ▶ deterministic function $[0, T] \ni t \to \nu_t \in \mathbb{R}^d$ (leader's free will) - \blacktriangleright λ_0 and λ_1 are positive real numbers satisfying $\lambda_0+\lambda_1\leq 1$ $$J^{i} = \mathbb{E}\Big[\int_{0}^{T} (I_{0}||V_{t}^{i,N} - V_{t}^{0,N}||^{2} + I_{1}||V_{t}^{i,N} - \bar{V}_{t}^{N}||^{2} + (1 - I_{0} - I_{1})||\alpha_{t}^{i}||^{2})dt\Big]$$ $$I_{0} \geq 0 \text{ and } I_{1} \geq 0, I_{0} + I_{1} \leq 1.$$ # SAMPLE TRAJECTORIES IN EQUILIBRIUM $$\nu(t) := [-2\pi \sin(2\pi t), 2\pi \cos(2\pi t)]$$ FIGURE: Optimal velocity and trajectory of follower and leaders # SAMPLE TRAJECTORIES IN EQUILIBRIUM $$\nu(t) := [-2\pi \sin(2\pi t), 2\pi \cos(2\pi t)]$$ FIGURE: Optimal velocity and trajectory of follower and leaders ## CONDITIONAL PROPAGATION OF CHAOS FIGURE: Conditional correlation of 5 followers' velocities ## FINITE STATE SPACES: A CYBER SECURITY MODEL #### Kolokolstov - Bensoussan, R.C. - P. Wang - N computers in a network (minor players) - One hacker / attacker (major player) - \blacktriangleright Action of major player affect minor player states (even when N >> 1) - \blacktriangleright Major player feels only μ_t^N the empirical distribution of the minor players' states #### Finite State Space: each computer is in one of 4 states - protected & infected - protected & sucseptible to be infected - unprotected & infected - unprotected & sucseptible to be infected Continuous time Markov chain in $E = \{DI, DS, UI, US\}$ Each **player's action** is intended to affect the **rates of change** from one state to another to minimize **expected costs** $$J(\alpha^{0}, \alpha) = \mathbb{E}\left[\int_{0}^{T} (k_{D} \mathbf{1}_{D} + k_{I} \mathbf{1}_{I})(X_{t}) dt\right]$$ $$J^0(oldsymbol{lpha}^0,oldsymbol{lpha}) = \mathbb{E}igg[\int_0^T ig(-f_0(\mu_t) + k_H\phi^0(\mu_t)ig)dtigg]$$ ## FINITE STATE MEAN FIELD GAMES #### **State Dynamics** $(X_t)_{t\geq 0}$ continuous time Markov chain in E with Q-matrix $(q_t(x,x'))_{t\geq 0,x,x'\in E}$. #### Mean Field structure of the Q-matrix $$q_t(x, x') = \lambda_t(x, x', \mu, \alpha)$$ #### **Control Space** $A \subset \mathbb{R}^k$, sometime A finite, e.g. $A = \{0, 1\}$, or a function space #### Control Strategies in feedback form $$\alpha_t = \phi(t, X_t), \quad \text{for some } \phi : [0, T] \times E \mapsto A$$ Mean Field Interaction through Empirical Measures $$\mu \in \mathcal{P}(E) = (\mu(\lbrace x \rbrace))_{x \in E}$$ Kolmogorov-Fokker-Planck equation: if $\mu_t = \mathcal{L}(X_t)$ $$\begin{split} \partial_t \mu_t(\{x\}) &= [L_t^{\mu_t, \phi(t, \cdot), \dagger} \mu_t](\{x\}) \\ &= \sum_{x' \in E} \mu_t(\{x'\}) \hat{q}_t^{\mu_t, \phi(t, \cdot)}(x', x), \\ &= \sum_{x' \in E} \mu_t(\{x'\}) \lambda_t(x, x', \mu_t, \phi(t, x)) \qquad x \in E, \end{split}$$ ## FINITE STATE MEAN FIELD GAMES: OPTIMIZATION #### Hamiltonian $$H(t, x, \mu, h, \alpha) = \sum_{x' \in E} \lambda_t(x, x', \mu, \alpha) h(x') + f(t, x, \mu, \alpha).$$ #### Hamiltonian minimizer $$\hat{\alpha}(t, x, \mu, h) = \arg\inf_{\alpha \in A} H(t, x, \mu, h, \alpha),$$ #### Minimized Hamiltonian $$H^*(t,x,\mu,h) = \inf_{\alpha \in A} H(t,x,\mu,h,\alpha) = H(t,x,\mu,h,\hat{\alpha}(t,x,\mu,h)).$$ #### **HJB Equation** $$\partial_t u^{\boldsymbol{\mu}}(t, x) + H^*(t, x, \mu_t, u^{\boldsymbol{\mu}}(t, \cdot)) = 0, \qquad 0 \le t \le T, \ x \in E,$$ with terminal condition $u^{\mu}(T, x) = g(x, \mu_T)$. # TRANSITION RATES Q-MATRICES UI US UI US where all the instances of \cdots should be replaced by the negative of the sum of the entries of the row in which \cdots appears on the diagonal. # EQUILIBRIUM DISTRIBUTION OVER TIME WITH CONSTANT ATTACKER # EQUILIBRIUM OPTIMAL FEEDBACK $\phi(t,\cdot)$ From left to right $\phi(t, DI)$, $\phi(t, DS)$, $\phi(t, UI)$, and $\phi(t, US)$. ## CONVERGENCE MAY BE ELUSIVE From left to right, time evolution of the distribution μ_t for the parameters given in the text, after 1, 5, 20, and 100 iterations of the successive solutions of the HJB equation and the Kolmogorov Fokker Planck equation. # THE MASTER EQUATION EQUATION $$\partial_t U + H^*(t,x,\mu,U(t,\cdot,\mu)) + \sum_{x'\in E} h^*(t,\mu,U(t,\cdot,\mu))(x') \frac{\partial U(t,x,\mu)}{\partial \mu(\{x'\})} = 0,$$ where the \mathbb{R}^E -valued function h^* is defined on $[0, T] \times \mathcal{P}(E) \times \mathbb{R}^E$ by: $$h^*(t,\mu,u) = \int_{\mathcal{E}} \lambda_t(x,\cdot,\mu,\hat{\alpha}(t,x,\mu,u)) d\mu(x)$$ = $$\sum_{x\in\mathcal{E}} \lambda_t(x,\cdot,\mu,\hat{\alpha}(t,x,\mu,u)) \mu(\{x\}).$$ System of Ordinary Differential Equations (ODEs) ## If and when the Master equation is solved $$\partial_t \mu_t(\{x\}) = h^*(t, \mu_t, U(t, \cdot, \mu_t))(x)$$ # μ_t EVOLUTION FROM THE MASTER EQUATION As before, we used the initial conditions μ_0 : $\mu_0 = (0.25, 0.25, 0.25, 0.25)$ in the left and $\mu_0 = (1, 0, 0, 0)$ on the right. # IN THE PRESENCE OF A MAJOR (HACKER) PLAYER Time evolution in equilibrium, of the distribution μ_t of the states of the computers in the network for the initial condition μ_0 : $\mu_0=(0.25,0.25,0.25,0.25)$ when the major player is not rewarded for its attacks, i.e. when $f_0(\mu)\equiv 0$ (leftmost pane), in the absence of major player and v=0 (middle plot), and with $f_0(\mu)=k_0(\mu(\{UI\})+\mu(\{DI\}))$ with $k_0=0.05$ (rightmost plot). ## POA BOUNDS FOR CONTINUOUS TIME MFGS ## **Price of Anarchy Bounds** compare Social Welfare for NE to what a Central Planer would achieve ## Koutsoupias-Papadimitriou Usual Game Model for Cyber Security - Zero-Sum Game between Attacker and Network Manager - Compute Expected Cost to Network for Protection #### MFG Model for Cyber Security - Let the individual computer owners take care of their security - Hope for a Nash Equilibrium - Compute Expected Cost to Network for Protection How much worse the NE does is the PoA # POA BOUNDS FOR CONTINUOUS TIME MFGS WITH FINITE STATE SPACES $X_t = (X_t^1, \dots, X_t^N)$ state at time t, with $X_t^i \in \{e_1, \dots, e_d\}$ - Use distributed feedback controls, for state to be a continuous time Markov Chain - ▶ Dynamics given by Q-matrices $(q_t(x, x')_{t>0, x, x' \in E})$ - Empirical measures $$\mu_{\mathsf{x}}^{\mathsf{N}} = \frac{1}{\mathsf{N}} \sum_{i=1}^{\mathsf{N}} \delta_{\mathsf{x}^i} = \sum_{\ell=1}^{\mathsf{d}} p_{\ell} \delta_{\mathsf{e}_{\ell}}$$ where $p_{\ell} = \#\{i; 1 \le i \le N, x^i = e_{\ell}\}/N$ is the proportion of elements x^i of the sample which are equal to e_{ℓ} . Cost Functionals Player i minimizes: $$J^{i}(\alpha^{1}, \cdots, \alpha^{N}) = \mathbb{E}\left[\int_{0}^{T} f(t, X_{t}^{i}, \mu_{X_{t}^{-i}}^{N-1}, \alpha_{t}^{i}) dt + g(X_{t}^{i}, \mu_{X_{t}^{-i}}^{N-1})\right],$$ ## SOCIAL COST If the N players use distributed Markovian control strategies of the form $\alpha_t^i = \phi(t, X_t^i)$ we define the **cost (per player) to the system** as the quantity $J_\phi^{(N)}$ $$J_{\phi}^{(N)} = \frac{1}{N} \sum_{j=1}^{N} J^{j}(\boldsymbol{\alpha}^{1}, \cdots, \boldsymbol{\alpha}^{N})$$ In the limit $N \to \infty$ the social cost should be $$\lim_{N \to \infty} J_{\phi}^{(N)} = \lim_{N \to \infty} \frac{1}{N} \sum_{j=1}^{N} J^{j}(\boldsymbol{\alpha}^{1}, \dots, \boldsymbol{\alpha}^{N})$$ $$= \lim_{N \to \infty} \frac{1}{N} \sum_{j=1}^{N} \mathbb{E} \left[\int_{0}^{T} f(t, X_{t}^{i}, \mu_{X_{t}}^{N}, \phi(t, X_{t}^{i})) dt + g(X_{T}^{i}, \mu_{X_{T}}^{N}) \right],$$ $$= \lim_{N \to \infty} \mathbb{E} \left[\int_{0}^{T} \langle f(t, \cdot, \mu_{X_{t}}^{N}, \phi(t, \cdot)), \mu_{X_{t}}^{N} \rangle dt + \langle g(\cdot, \mu_{X_{T}}^{N}), \mu_{X_{T}}^{N} \rangle \right],$$ (3) if we use the notation $<\varphi,\nu>$ for the integral $\int \varphi(z)\nu(dz)$. Now if $\mu_{X_*}^N$ converge toward a deterministic μ_t , the social cost becomes: $$SC_{\phi}(\mu) = \int_0^T \langle f(t,\cdot,\mu_t,\phi(t,\cdot)),\mu_t \rangle dt + \langle g(\cdot,\mu_T),\mu_T \rangle,$$ ## **ASYMPTOTIC REGIME** $N = \infty$ Two alternatives • ϕ is the optimal feedback function for a **MFG equilibrium** for which μ is the equilibrium flow of statistical distributions of the state, in which case we use the notation SC^{MFG} for $SC_{\phi}(\mu)$; $$\begin{split} \mathbb{E}\Big[\int_0^T f(t, X_t, \mu_t, \phi(t, X_t)) dt + g(X_T, \mu_T)\Big] \\ &= \int_0^T \langle f(t, \cdot, \mu_t, \phi(t, \cdot)), \mathcal{L}(X_t) \rangle dt + \langle g(\cdot, \mu_T), \mathcal{L}(X_T) \rangle \\ &= SC_\phi(\mu) = SC^{MFG} \quad \text{in equilibrium} \end{split}$$ ϕ is the feedback (**chosen by a central planner**) minimizing the social cost $SC_{\phi}(\mu)$ without having to be an MFG Nash equilibrium, in which case we use the notation SC^{MKV} for $SC_{\phi}(\mu)$; $$\hat{\phi} = \arg\inf_{\phi} \int_{0}^{T} < f(t,\cdot,\mu_{t},\phi(t,\cdot)), \mu_{t} > \textit{d}t + < g(\cdot,\mu_{T}), \mu_{t} >$$ where μ_t satisfies Kolmogorov-Fokker-Planck forward dynamics ## PoA: Social Cost Computation Minimize $$\int_0^T \langle f(t,\cdot,\mu_t,\phi(t,\cdot)),\mu_t \rangle dt + \langle g(\cdot,\mu_T),\mu_t \rangle$$ under the dynamical constraint $$\partial_t \mu_t(\{x\}) = [L_t^{\mu_t,\phi(t,\,\cdot\,),\dagger}\mu_t](\{x\}) = \sum_{x'\in E} \mu_t(\{x'\})\lambda(t,x,x',\mu_t,\phi(t,x)), \qquad x\in E,$$ **ODE** in the *d*-dimensional **probability simplex** $\mathcal{S}_d \subset \mathbb{R}^d$!!! **Hamiltonian** $H(t, \mu, \varphi, \phi)$ by $$H(t, \mu, \varphi, \phi) = \langle \varphi, [L_t^{\mu, \phi, \dagger} \mu] \rangle + \langle f(t, \cdot, \mu, \phi(\cdot)), \mu \rangle$$ $$= \langle L_t^{\mu, \phi} \varphi + f(t, \cdot, \mu, \phi(\cdot)), \mu \rangle$$ minimized Hamiltonian: $$H^*(t,\mu,\varphi) = \inf_{\phi \in \tilde{A}} H(t,\mu,\varphi,\phi).$$ Assume infimum is attained for a unique $\hat{\phi}$: $$H^*(t,\mu,\varphi) = H(t,\mu,\varphi,\hat{\phi}(t,\mu,\varphi)) = < L_t^{\mu,\hat{\phi}(t,\mu,\varphi)}\varphi + f(t,\cdot,\mu,\hat{\phi}(t,\mu,\varphi)(\cdot)), \mu > .$$ **HJB** equation $$\partial_t v(t,\mu) + H^*(t,\mu,\frac{\delta v(t,\mu)}{\delta \mu}) = 0, \qquad v(T,\mu) = \langle g(\cdot,\mu),\mu \rangle.$$ ## REMARKS ON DERIVATIVES W.R.T. MEASURES Standard identification $$\mathcal{P}(E) \ni \mu \leftrightarrow \boldsymbol{p} = (p_1, \cdots, p_d) \in \mathcal{S}_d$$ via $$\mu \leftrightarrow \boldsymbol{p} = (p_1, \cdots, p_d)$$ with $p_i = \mu(\{e_i\})$ for $i = 1, \cdots, d$ i.e. $\mu = \sum_{i=1}^d p_i \delta_{e_i}$ - $ightharpoonup \delta v/\delta \mu$ when v is defined on an open neighborhood of the probability simplex S_d . - $ightharpoonup \partial v(t,\mu)/\partial \mu(\{x'\})$ is the derivative of v with respect to the weight $\mu(\{x'\})$. **Important Remark** $L_t^{\mu,\phi}\varphi$ does not change if we add a constant to the function φ , so does $\hat{\phi}(t,\mu,\varphi)$. Consequence (for numerical purposes): $$\partial_t v(t,\mu) + H^*\left(t,\mu,\left(\frac{\partial v(t,\mu)}{\partial \mu(\{x'\})} - \frac{\partial v(t,x,\mu)}{\partial \mu(\{x\})}\right)_{x \in E}\right) = 0.$$ We can identify $$\frac{\partial v(t,\mu)}{\partial \mu(\{x'\})} - \frac{\partial v(t,\mu)}{\partial \mu(\{x\})},$$ for $x' \neq x$, with the partial derivative of $v(t,\cdot)$ with respect to $\mu(\{x'\})$ whenever $v(t,\cdot)$ is regarded as a smooth function of the (d-1) tuple $(\mu(\{x'\}))_{x'\in E\setminus \{x\}}$, which we can see as an element of the (d-1)-dimensional domain $$S_{d-1,\leq} = \{(p_1,\cdots,p_{d-1}) \in [0,1]^{d-1}: \sum_{i=1}^{d-1} p_i \leq 1\}$$ # MFGS OF TIMING WITH MAJOR AND MINOR PLAYERS ## The Example of Corporate Bonds - Major Player = bond issuer - ► Bond is Callable - Major Player (issuer) chooses a stopping time to - pay-off the investors - stop coupon payments to the investors - refinance his debt with better terms - Minor Players = field of investors - Bond is Convertible - Each Minor Player (investor) chooses a stopping time at which to - convert the bond certificate in a fixed number (conversion ratio) of stock shares - if and when owning the stock is more profitable - creating Dilution of the stock