Particle algorithm for McKean SDE: a short review on numerical analysis

CEMRACS 2017– Numerical methods for stochastic models July 17 - August 25, CIRM, Marseille

Let's start with an example of simulation with particles

Stochastic Lagrangian model for wind simulation, forced with a WRF simulation, in the Marseille navigation basin (60 km \times 60 km \times 2 km. $150 \times 150 \times 200$ computation cells, with 96 particles in each cell (432×10^6 particles). Time step is 10 seconds, with screen-out each 600 seconds.

Simulation realized in collaboration with Yann Amice (Metigate) - 2016

Outline

Stochastic particle methods for McKean SDEs

Method and introduction to the numerical analysis, for smooth coefficients

> When the interaction kernels are non smooth functions

Motivated by applications Atmospheric boundary layer simulation Wind farm simulation

Numerical analysis and numerical experiments for Stochastic Lagrangian models (toy version)

Probabilistic Interpretation of PDEs

Linear framework, forward parabolic PDE (in one dimension)

A PDE of conservation form

$$\begin{cases} \frac{\partial \rho_t}{\partial t} = \frac{1}{2} \sigma^2 \frac{\partial^2 \rho_t}{\partial x^2} - \frac{\partial}{\partial x} \left(B(t, x) \rho_t \right) \text{ in } \mathbb{R}, \\ \rho_{t=0} = \rho_0. \end{cases}$$
(1)

B(t, x), bounded measurable

(1) is a Fokker-Planck Equation. Set $(\mu, f) = \int_{\mathbb{R}} f(x) \mu(dx)$.

 ρ is a weak solution of (1), if for any test function $f \in C_b^2(\mathbb{R})$.

$$(\rho_t, f) = (\rho_0, f) + \int_0^t (\rho_s, \frac{1}{2}\sigma^2 f'' + B(s, \cdot)f')ds.$$
(2)

When ρ_0 is a probability measure, (1) (or (2)) describes the dynamics of the time-marginals of a stochastic process.

Let $(X_t)_{t\geq 0}$ the canonical process on $(C([0, +\infty), \mathbb{R}), \mathcal{B}(C([0, +\infty), \mathbb{R})))$.

For a probability P on $(C([0, +\infty), \mathbb{R}), \mathcal{B}(C([0, +\infty), \mathbb{R})))$, we set $P_t = P \circ X_t^{-1}$.

Definition - Martingale Problem

P on $(C([0, +\infty), \mathbb{R}), \mathcal{B}(C([0, +\infty), \mathbb{R})))$ is a solution of the martingale problem associated to $\mathcal{L} = \frac{1}{2}\sigma^2 \frac{\partial^2}{\partial x^2} + B(t, x) \frac{\partial}{\partial x}$ if

i)
$$P_0 = \rho_0$$
,

ii)
$$\forall f \in C_b^2(\mathbb{R})$$
, the process $f(X_t) - f(X_0) - \int_0^t \left[\frac{1}{2}\sigma^2 f''(X_s) + B(s, X_s)f'(X_s)\right] ds$ is a *P*-martingale.

Existence and uniqueness for X solution of

$$X_t = X_0 + \int_0^t B(s, X_s) ds + \sigma W_t.$$

For any test function f

$$\mathbb{E}f(X_t) = \mathbb{E}f(X_0) + \int_0^t \mathbb{E}\left[\frac{1}{2}\sigma^2 f''(X_s) + B(s, X_s)f'(X_s)\right] ds.$$
(3)

By setting $\rho_t = P \circ X_t^{-1}$ the *t*-time-marginal of P, $\mathbb{E}f(X_t) = \int_{\mathbb{R}} f(x)\rho_t(dx) = (\rho_t, f)$ and (3) rewrites (2) :

$$(\rho_t, f) = (\rho_0, f) + \int_0^t (\rho_s, \frac{1}{2}\sigma^2 f'' + B(s, \cdot)f')ds$$

Numerical approximation, particle method

Main idea : approximate the measure ρ_t by the empirical measure of a set of N independent trials of the r.v. X_t .

Introducing N particles of independent dynamics

$$X_t^i = X_0^i + \int_0^t B(s, X_s^i) ds + \sigma W_t^i, \quad i = 1, \dots, N,$$

where $((X_0^i)_{i=1,...,N})$ are i.i.d with law ρ_0 , independent of the family of independent Brownian motions $((W_t^i), i = 1, ..., N)$.

$$\overline{U}_t^N = \frac{1}{N} \sum_{i=1}^N \delta_{X_t^i}.$$

Do we have the convergence of the empirical measure \overline{U}_t^N toward ρ_t ?

(Basic) numerical analysis

• The parabolic problem has a smooth solution

 $\forall t > 0, \ \rho_t(dx) = \rho_t(x)dx.$

Introduce a smoothing empirical measure by a cut-off function

$$\overline{U}_t^{N,\varepsilon}(x) = \left(\phi_{\varepsilon} * \overline{U}_t^N\right)(x) = \frac{1}{N} \sum_{i=1}^N \phi_{\varepsilon}(x - X_t^i)$$

where $\phi_{\varepsilon}(x) = \frac{1}{\varepsilon}\phi(\frac{x}{\varepsilon})$ and $\phi: \mathbb{R} \to \mathbb{R}$ smooth and such that $\int_{\mathbb{R}} \phi(x) dx = 1$.

At a given time t, we want the rate of convergence of the error :

$$\sup_{x\in\mathbb{R}} \mathbb{E} \left| \rho_t(x) - \overline{U}_t^{N,\varepsilon}(x) \right|.$$

Set
$$\rho_t^{\varepsilon}(x) = (\rho_t * \phi_{\varepsilon})(x).$$

If ϕ is a θ -order cut-off $(\int_{\mathbb{R}} x^q \phi(x) dx = 0, \forall q \leq \theta - 1, \int_{\mathbb{R}} |x|^{\theta} |\phi(x)| dx < \infty)$ and if ρ_t is smooth enough

$$\|\rho_t^{\varepsilon}(x) - \rho_t(x)\|_{L^{\infty}(\mathbb{R})} \le C\varepsilon^{\theta} \left\| \frac{\partial^{\theta} \rho_t}{\partial x^{\theta}} \right\|_{L^{\infty}(\mathbb{R})}$$

and

$$\sup_{x \in \mathbb{R}} \frac{\mathbb{E}}{|\rho(t, x) - \overline{U}_t^{N, \varepsilon}(x)|} \le C\varepsilon^{\theta} + \sup_{x \in \mathbb{R}} \frac{\mathbb{E}}{|\rho_t^{\varepsilon}(x) - \overline{U}_t^{N, \varepsilon}(x)|}$$

with

$$\rho_t^{\varepsilon}(x) = \int_{\mathbb{R}} \phi_{\varepsilon}(x-y)\rho_t(y)dy = \mathbb{E}\phi_{\varepsilon}(x-X_t)$$
$$\overline{U}_t^{N,\varepsilon}(x) = \frac{1}{N} \sum_{i=1}^N \phi_{\varepsilon}(x-X_t^i).$$

The convergence is ensured by the strong law of large numbers.

More precisely,

$$\mathbb{E} \left| \overline{U}_t^{N,\varepsilon}(x) - \rho_t^{\varepsilon}(x) \right| = \mathbb{E} \left| \frac{1}{N} \sum_{i=1}^N \left[\phi_{\varepsilon}(x - X_t^i) - \mathbb{E}\phi_{\varepsilon}(x - X_t) \right] \right|$$

$$\leq \frac{1}{\sqrt{N}} \sqrt{\mathbb{E} \left(\phi_{\varepsilon}(x - X_t) - \mathbb{E}\phi_{\varepsilon}(x - X_t) \right)^2}$$

$$\leq \frac{1}{\sqrt{N}} \sqrt{\mathbb{E} \left(\phi_{\varepsilon}(x - X_t) \right)^2}$$

$$\leq \frac{1}{\sqrt{N}} \frac{1}{\sqrt{\varepsilon}} \left\| \phi \right\|_{L^{\infty}(\mathbb{R})}^2 \sqrt{\mathbb{E}\phi_{\varepsilon}(x - X_t)}$$

$$= \frac{1}{\sqrt{N}} \frac{1}{\sqrt{\varepsilon}} \left\| \phi \right\|_{L^{\infty}(\mathbb{R})}^2 \sqrt{\mathbb{E}\rho_t(Y^{\varepsilon} - x)}$$

$$\leq \frac{1}{\sqrt{\varepsilon N}} \|\phi\|_{L^{\infty}(\mathbb{R})}^{\frac{1}{2}} \|\rho_t\|_{L^{\infty}(\mathbb{R})}^{\frac{1}{2}}$$

Adding a time discretisation of $X^i \label{eq:constraint}$

$$\overline{X}_{(k+1)\Delta t}^{i} = \overline{X}_{k\Delta t}^{i} + \Delta t B(k\Delta t, \overline{X}_{k\Delta t}^{i}) + \sigma(W_{(k+1)\Delta t}^{i} - W_{k\Delta t}^{i}).$$

$$\begin{split} \mathbb{E} \left| \overline{U}_{k\Delta t}^{N,\varepsilon}(x) - \overline{U}_{k\Delta t}^{N,\varepsilon,\Delta t}(x) \right| &\leq \frac{1}{N} \sum_{i=1}^{N} \mathbb{E} \left| \phi_{\varepsilon}(x - X_{k\Delta t}^{i}) - \phi_{\varepsilon}(x - \overline{X}_{k\Delta t}^{i}) \right| \\ &\leq \sup_{x \in \mathbb{R}} \left| \phi_{\varepsilon}'(x) \right| \mathbb{E} \left| X_{k\Delta t}^{1} - \overline{X}_{t\Delta t}^{1} \right| \\ &\leq C \frac{\Delta t}{\varepsilon^{2}} \text{ (could by reduced to } C \frac{\Delta t}{\varepsilon} \text{)}. \end{split}$$

Lemma

$$\begin{split} \sup_{x \in \mathbb{R}} \mathbb{E} \left| u(t,x) - \overline{U}_t^{N,\varepsilon,\Delta t}(x) \right| + \mathbb{E} \left\| u(t,x) - \overline{U}_t^{N,\varepsilon,\Delta t}(x) \right\|_{L^1(\mathbb{R})} \\ &\leq C_1 \varepsilon^{\theta} + \frac{C_2}{\sqrt{\varepsilon N}} + C_3 \frac{\Delta t}{\varepsilon}. \end{split}$$

$$\begin{cases} \frac{\partial \rho_t}{\partial t} = \frac{1}{2} \sum_{i,j=1}^d \frac{\partial^2}{\partial x_i \partial x_j} \left(a_{ij}[x,\rho_t]\rho_t \right) - \sum_{i=1}^d \frac{\partial}{\partial x_i} \left(b_i[x,\rho_t]\rho_t \right) \\ \rho_0 \text{ a given probability measure on } \mathbb{R}^d. \end{cases}$$
(4)

where, for a probability measure u

$$\begin{split} b[x,u] &= \int_{\mathbb{R}^d} b(x,y) u(dy); \text{for } b(x,y) \ \mathbb{R}^d\text{-valued}, \\ a[x,u] &= \sigma[x,u]^t \sigma[x,u], \\ \sigma[x,u] &= \int_{\mathbb{R}^d} \sigma(x,y) u(dy); \sigma(x,y) \ (d \times k) \text{ matrix-valued}. \end{split}$$

Distribution equation : for any test function $f \in C_b^2(\mathbb{R}^d)$,

$$(\rho_t, f) = (\rho_0, f) + \int_0^t \left(\rho_s, \frac{1}{2} \sum_{i,j=1}^d a_{ij} [x, \rho_s] \frac{\partial^2 f}{\partial x_i \partial x_j} + \sum_{i=1}^d b_i [x, \rho_s] \frac{\partial f}{\partial x_i} \right) ds \tag{5}$$

Theorem [Méléard 95]

for b and σ Lipschitz on \mathbb{R}^{2d} , for ρ_0 admitting a second order moment, there is existence and trajectorial uniqueness (given $X_0 \in L^2(\Omega)$ and (W_t)) and in law of the solution to the SDE

$$X_t = X_0 + \int_0^t \sigma[X_s, \rho_s] dW_s + \int_0^t b[X_s, \rho_s] ds,$$

where ρ_s is the law of X_s .

(Proof from Sznitman 89, with $\sigma = 1$, and bounded b). $\mathcal{P}_2 = \{ \text{probability } P \text{ on } C([0,T], \mathbb{R}^d) \text{ such that } \mathbb{E}_P(\sup_{t \in [0,T]} |X_t^2|) < \infty \}, \text{ endowed with the Wasserstein metric.}$

$$\begin{split} \Phi : & \mathcal{P}_2 \ni m \mapsto \mathsf{Law}(X_t^m, t \in [0, T]) \in \mathcal{P}_2 \\ & X_t^m = X_0 + \int_0^t \sigma[X_s^m, m_s] dW_s + \int_0^t b[X_s^m, m_s] ds \end{split}$$

admits a fix point in \mathcal{P}_2 .

Associated particle system

Idea : replace $\rho_t = {\rm Law}(X_t)$ by the empirical measure $\mu^N = \frac{1}{N}\sum_{i=1}^{\prime *} \delta_{X^{i,N}}.$

$$X_t^{i,N} = X_0^i + \int_0^t \sigma[X_s^{i,N}, \mu_s^N] dW_s^i + \int_0^t b[X_s^{i,N}, \mu_s^N] ds, \ i = 1, \dots, N.$$
(6)

where $((X_0^i)_{i=1,...,N})$ are i.i.d with law ρ_0 , independent of the family of independent Brownian motions $((W_t^i), i = 1, ..., N)$.

(6) is well-posed when $b(x, y) \sigma(x, y)$ are Lipschitz.

What convergence of μ_t^N toward ρ_t ?

Propagation of chaos (Sznitman 89)

Let *E* be a separable metric space and ν a probability measure on *E*. A sequence of symmetric probabilities ν^N on E^N is ν -chaotic if for any $\phi_1, \ldots, \phi_k \in C_b(E; \mathbb{R}), k \ge 1$,

$$\lim_{N\to\infty} \left\langle \nu^N, \phi_1 \otimes \ldots \otimes \phi_k \otimes 1 \ldots \otimes 1 \right\rangle = \prod_{l=1}^k \langle \nu, \phi_l \rangle.$$

Application : Let $(X^{1,N}, \ldots, X^{N,N})$, the set of N particles satisfying (6), valued in $(C([0,T]; \mathbb{R}^d))^N$, with law P^N .

Theorem (Méléard 95)

If the initial of $(X_0^{1,N},\ldots,X_0^{N,N})$ is ρ_0 -chaotic, the chaos propagates and P^N is P-chaotic where P is the unique law of the McKean SDE.

The tow following assertions are equivalent : (Tanaka 82)

- P^N is P-chaotic
- $\bullet \ \mu^N$ converges weakly toward the (deterministic) measure P

Theorem (Méléard 95)

$$\begin{split} \sup_{N} \mathbb{E} \left(\sup_{0 \le t \le T} |X_{t}^{i,N}|^{2} \right) + \sup_{N} \mathbb{E} \left(\sup_{0 \le t \le T} |X_{t}^{i}|^{2} \right) < \infty \\ \sup_{N} N \mathbb{E} \left(\sup_{0 \le t \le T} |X_{t}^{i,N} - X_{t}^{i}|^{2} \right) < \infty, \end{split}$$

where

$$X^i_t = X^i_0 + \int_0^t \sigma[X^i_s, \rho_s] dW^i_s + \int_0^t b[X^i_s, \rho_s] ds$$

with $\rho_t = P \circ X_t^{-1}$.

Numerical approximation

$$X_t = X_0 + \int_0^t \sigma[X_s, \rho_s] dW_s + \int_0^t b[X_s, \rho_s] ds, \text{ with } \rho_s = \text{Law}(X_s).$$

Spatial discretisation :

$$X_{t}^{i,N} = X_{0}^{i} + \int_{0}^{t} \sigma[X_{s}^{i,N}, \mu_{s}^{N}] dW_{s}^{i} + \int_{0}^{t} b[X_{s}^{i,N}, \mu_{s}^{N}] ds, i \leq N.$$

Time-Discretisation : $\Delta t > 0$, such that $T = K \Delta t$ for $K \in \mathbb{N}$,

$$\begin{cases} \bar{X}_{(k+1)\Delta t}^{i,N} = \bar{X}_{k\Delta t}^{i,N} + (\frac{1}{N} \sum_{j=1}^{N} \sigma(\overline{X}_{k\Delta t}^{i,N}, \overline{X}_{k\Delta t}^{j,N}))(W_{(k+1)\Delta t}^{i} - W_{k\Delta t}^{i}) \\ + \Delta t(\frac{1}{N} \sum_{j=1}^{N} b(\overline{X}_{k\Delta t}^{i,N}, \overline{X}_{k\Delta t}^{j,N})), \\ \bar{X}_{t=0}^{i,N} = X_{0}^{i}. \end{cases}$$

$$\overline{U}_{k\Delta t}^{N,\varepsilon,\Delta t}(x) = \frac{1}{N}\sum_{i=1}^{N}\phi_{\varepsilon}(x-\bar{X}_{k\Delta t}^{i,N}), \text{ pour un cut-off donné }\phi.$$

Theorem (Bossy & Talay 97)

Dimension d = 1. Assume that $\rho_0(\cdot) \in C_K^2(\mathbb{R})$, $b(\cdot, \cdot) \in C_b^{2,2}(\mathbb{R}^2)$ and $s(\cdot, \cdot) \in C_b^3(\mathbb{R}^2)$. Assume the strong ellipticity of the differential operator \mathcal{L} . Then $\rho_t(\cdot) \in W^{2,1}(\mathbb{R})$ for all $t \in [0, T]$. For a 2-order cut-off $\phi(x)$, $\forall k \leq K$,

$$\mathbb{E} \| \overline{U}_{k\Delta t}^{N,\varepsilon,\Delta t} - \rho_{k\Delta t} \|_{L^1(\mathbb{R})} \le C_{b,\sigma,T,\rho_0} \left(\frac{1}{\varepsilon \sqrt{N}} + \varepsilon^2 + \frac{\sqrt{\Delta t}}{\varepsilon} \right)$$

 $H(x):=\mathbbm{1}_{\{x\geq 0\}},$ Heaviside function

$$\mathbb{E}\|(H*\rho_{k\Delta t})(x) - \frac{1}{N}\sum_{i=1}^{N}H(x - \overline{X}_{k\Delta t}^{i,N})\|_{L^{1}(\mathbb{R})} \leq C_{b,\sigma,T,\rho_{0}}\left(\frac{1}{\sqrt{N}} + \sqrt{\Delta t}\right).$$

Theorem (Antonelli & Kohatsu-Higa 02)

d = 1. $b(\cdot, \cdot)$ and $s(\cdot, \cdot) C^{\infty}(\mathbb{R}^2)$, with bounded derivatives. A non degenerescency condition for \mathcal{L} (needed by the use of Malliavin calculus framework). $\phi(x)$ is the Gaussian density on \mathbb{R} .

 $\varepsilon^2 = \Delta t.$

$$\mathbb{E} \| \overline{U}_{k\Delta t}^{N,\varepsilon,\Delta t} - \rho_{k\Delta t} \|_{L^1(\mathbb{R})} \le C_{b,\sigma,T,\rho_0} \left(\frac{1}{\sqrt{\Delta tN}} + \Delta t + \frac{1}{\sqrt{N}} \right).$$

 $H(x) := \mathbb{1}_{x \ge 0}$, Heaviside function,

$$\mathbb{E}\|(H*\rho_{k\Delta t})(x) - \frac{1}{N}\sum_{i=1}^{N}H(x - \overline{X}_{k\Delta t}^{i,N})\|_{L^{1}(\mathbb{R})} \leq C_{b,\sigma,T,\rho_{0}}\left(\frac{1}{\sqrt{N}} + \Delta t\right)$$

Outline

Stochastic particle methods for McKean SDEs

Method and introduction to the numerical analysis, for smooth coefficients

and when the interaction kernels are non smooth functions

Motivated by applications Atmospheric boundary layer simulation Wind farm simulation

Numerical analysis and numerical experiments for Stochastic Lagrangian models (toy version) ► Lagrangian McKean SDEs for fluid turbulent subscale models [Pope 95, 03; Durbin Speziale 94, Dreeben Pope 98, Waclawczyk Pozorski Minier 04, Bossy et al. 16]

$$\begin{cases} X_t = X_0 + \int_0^t U_s ds \\ (U_t, \Theta_t) = (U_0, \Theta_0) + \int_0^t \mathbb{E}_{\mathbb{P}} \left[\ell(U_s, \Theta_s) \mid X_s \right] ds + \int_0^t \mathbb{E}_{\mathbb{P}} \left[\gamma(U_s, \Theta_s) \mid X_s \right] dW_s, \end{cases}$$

Ingredient of the problem :

- Singular interaction (mean field) kernel in the diffusion term.
- degenerate diffusion coefficient

Simplified the fluid particle model Goal : analyze the rate of convergence

$$\begin{cases} X_t = \left[X_0 + \int_0^t U_s \, ds\right] \mod \mathbf{1} \\ U_t = U_0 + \int_0^t B[X_s; \rho_s] \, ds + W_t, \quad \rho_t = \mathcal{L}(X_t, U_t), \quad \text{for all } t \le T \end{cases}$$
$$\mathbb{T} \times L^1(\mathbb{T} \times \mathbb{R}^d) \ni (x, \gamma) \mapsto B[x; \gamma] = \frac{\int_{\mathbb{R}^d} b(v)\gamma(x, v) \, dv}{\int_{\mathbb{R}^d} \gamma(x, v) dv} \mathbb{1}_{\{\int_{\mathbb{R}^d} \gamma(x, v) dv > 0\}}$$
$$(t, x) \mapsto B[x; \rho(t)] = \mathbb{E}[b(U_t)|X_t = x]$$

The smoothed process $(X^{\epsilon}, U^{\epsilon}, \epsilon > 0)$ converges in law to (X, U), by substituting the conditional expectation $B[x; \rho_t]$ with the kernel regression estimate

$$B_{\epsilon}[x;\rho] := \frac{\int_{\mathbb{T}\times\mathbb{R}^d} b(v) K_{\epsilon}(x-y) \,\rho(dy,dv)}{\int_{\mathbb{T}\times\mathbb{R}^d} K_{\epsilon}(x-y) \,\rho(dy,dv)},$$

where $K_{\epsilon}(x):=rac{1}{\epsilon^d}K(rac{x}{\epsilon})$ and K is a kernel function.

$$\begin{cases} X_t^{\epsilon} = \left[X_0 + \int_0^t U_s^{\epsilon} \, ds\right] \mod \mathbf{1} \\ U_t^{\epsilon} = U_0 + \int_0^t B_{\epsilon}[X_s^{\epsilon}, \rho_s^{\epsilon}] \, ds + W_t, \quad \rho_t^{\epsilon} = \mathcal{L}(X_t^{\epsilon}, U_t^{\epsilon}), \quad \text{for all } t \le T. \end{cases}$$

Numerical analysis of a non degenerate toy model (d=1)

$$Y_t = Y_0 + \int_0^t b[Y_s; \rho_s] ds + \sigma w_t, \quad \rho_t = \mathcal{L}(Y_t).$$

Assume b symmetric b(x, y) = b(x - y). $b[x, \rho_t] = \mathbb{E}b(x - Y_t)$.

Introduce N particles:

Let $(w^i, i = 1, ..., N)$ N-Brownian motion, independent of the i.i.d. $(Y_0^i, i = 1, ..., N)$ with law ρ_0 . We consider

$$Y_t^{i,N} = Y_0^i + \int_0^t \frac{1}{N} \sum_{j=1}^N b(Y_s^{i,N} - Y_s^{j,N}) ds + \sigma w_t^i, \qquad \mu_t^N = \frac{1}{N} \sum_{i=1}^N \delta_{Y_t^{i,N}} ds + \sigma w_t^i,$$

Lemma

Assume that there exists $r \geq 2$ such that $b(\cdot)$ is in $C_b^{r+1}(\mathbb{R})$, and $\rho_0 \in W^{r,\infty}(\mathbb{R}) \cap W^{r,1}(\mathbb{R})$.

Then $\rho_t \in W^{r,\infty}$, and for all test function $\phi \in C^3_c(\mathbb{R})$, there exists a positive constant C such that

$$\sup_{t \in [0,T]} \mathbb{E} \left| \langle \phi, \mu_t^N - \rho_t \rangle \right| \le \frac{C}{\sqrt{N}}.$$

where the constant C is of the form $\beta \exp(\alpha \|b'\|_{\infty} t).$

Control of the drift error term

$$\forall t \in [0,T], \quad \mathcal{E}_{\mathrm{drift}}(t) := \mathbb{E} \Big| b[Y_t^{1,N},\rho_t] - \frac{1}{N} \sum_{j=1}^N b(Y_t^{1,N} - Y_t^{j,N}) \Big|.$$

Notice that, with $Y_t^i = Y_0^i + \int_0^t b[Y_s^i; \rho_s] ds + \sigma w_t^i$,

$$\mathbb{E}|Y_t^1 - Y_t^{1,N}| = \mathbb{E} \Big| \int_0^t \left(b[Y_s^1, \rho_s] - \frac{1}{N} \sum_{j=1}^N b(Y_s^{1,N} - Y_s^{j,N}) \right) ds \Big| = 0$$

Since b is Lipschitz with constant $L=\|b'\|_{\infty}, x\mapsto b[x,\rho_t]$ is Lipschitz, and applying Gronwall Lemma

$$\mathbb{E}|Y_t^1 - Y_t^{1,N}| \leq \int_0^t L\mathbb{E}|Y_s^1 - Y_s^{1,N}| ds + \int_0^t \mathcal{E}_{\mathsf{drift}}(s) ds \leq \int_0^t \exp(L(t-s))\mathcal{E}_{\mathsf{drift}}(s) ds.$$

$$\mathcal{E}_{\text{drift}}(t) \le 3L\mathbb{E}|Y_t^{1,N} - Y_t^1| + \mathbb{E}\Big|b[Y_t^1,\rho_t] - \frac{1}{N}\sum_{j=1}^N b(Y_t^1 - Y_t^j)\Big|$$

$$\leq \int_0^t 3L \exp(L(t-s)) \mathcal{E}_{\mathsf{drift}}(s) ds + \mathbb{E}\Big[\Big| \mathbb{E}b(x-Y_t) - \frac{1}{N} \sum_{j=1}^N b(x-Y_t^j) \Big|_{x=Y_t^1} \Big].$$

The
$$(Y^j, j \neq 1)$$
 being i.i.d. $\mathbb{E}\left[\left|\mathbb{E}b(x - Y_t) - \frac{1}{N}\sum_{j=1}^N b(x - Y_t^j)\right|_{x=Y_t^1}^2\right] \le \frac{C}{N}$

$$\mathcal{E}_{\mathsf{drift}}(t) \leq \int_0^t 3L \exp(L(t-s)) \mathcal{E}_{\mathsf{drift}}(s) ds + \frac{C}{\sqrt{N}} \leq \exp(4Lt) \frac{C \exp(-Lt)}{\sqrt{N}} \leq \exp(3Lt) \frac{C}{\sqrt{N}}$$

A symptomatic case

$$Y_t = Y_0 + \int_0^t \frac{1}{2} \rho_s(Y_s) ds + w_t, \quad \rho_t = \mathcal{L}(Y_t).$$

McKean 1967, Calderoni & Pulvirenti 1983, Sznitman & Varadhan 1986, Sznitman 1986.

$$Y_t^{i,N} = Y_0^i + \int_0^t K_{\epsilon}[Y_s^{i,N};\mu_s^N] ds + \sigma w_t^i, \quad \mu_t^N = \sum_{i=1}^N \delta_{Y_t^{i,N}}$$

with $K_{\epsilon}[x;\gamma] := \int_{\mathbb{R}} K_{\epsilon}(x-y)\gamma(dy)$ with $K_{\epsilon}(z) = \frac{1}{\epsilon}K(\frac{z}{\epsilon})$ and K positive function of mass equal to 1.

When $\rho_0 \in W^{2,1}(\mathbb{R}) \cap W^{2,\infty}(\mathbb{R})$ then $\rho_t \in W^{2,1}(\mathbb{R}) \cap W^{2,\infty}(\mathbb{R})$ for all finite t > 0 and

$$\|\rho_t - \rho_t^\epsilon\|_{L^1(\mathbb{R})} \le C\epsilon^2,$$

where $Y_t^{\epsilon} = Y_0 + \int_0^t \frac{1}{2} K_{\epsilon}[Y_s^{\epsilon}; \rho_s^{\epsilon}] ds + w_t, \quad \rho_t^{\epsilon} = \mathcal{L}(Y_t^{\epsilon}).$

From the previous lemma: $\sup_{t \in [0,T]} \mathbb{E} \left| \langle \phi, \mu^{N,\epsilon} - \rho_t \rangle \right| \leq C \left(\epsilon^2 + \frac{\exp(C/\epsilon)}{\sqrt{N}} \right).$

Numerical experiments are more optimistic :

 $(\rho_0(dx) = \dot{\mathbb{1}}_{[0,1]}$ with $N = 16000, T = 0.2, \sigma = 1, \epsilon = 0.510^{-2}$ left, $\epsilon = 0.1$ right)

A symptomatic case

$$Y_t = Y_0 + \int_0^t \frac{1}{2} \rho_s(Y_s) ds + w_t, \quad \rho_t = \mathcal{L}(Y_t).$$

McKean 1967, Calderoni & Pulvirenti 1983, Sznitman & Varadhan 1986, Sznitman 1986. When

 $\rho_0 \in W^{2,1}(\mathbb{R}) \cap W^{2,\infty}(\mathbb{R})$ then $\rho_t \in W^{2,1}(\mathbb{R}) \cap W^{2,\infty}(\mathbb{R})$ for all finite t > 0 and $\|\rho_t - \rho_t^\epsilon\|_{L^1(\mathbb{R})} \le C\epsilon^2,$

Define

$$Y_{t}^{i,N} = Y_{0}^{i} + \int_{0}^{t} \hat{K}_{\epsilon}[Y_{s}^{i,N}; \mu_{s}^{N}] ds + \sigma w_{t}^{i}, \quad \mu_{t}^{N} = \sum_{i=1}^{N} \delta_{Y_{t}^{i,N}}$$

with $\hat{K}_{\epsilon}[x;\gamma] := \|\rho_t\| \wedge K_{\epsilon}[x;\gamma] \vee - \|\rho_t\|$

Lemma

Assume that $\rho_0(\cdot) \in C^2_K(\mathbb{R})$, for a 2-order cut-off $\phi(x), \forall k \leq K$,

$$\mathbb{E} \|\phi_{\varepsilon} * \mu_t^N - \rho_t\|_{L^1(\mathbb{R}) \text{ or } L^{\infty}(\mathbb{R})} \leq C_{b,\sigma,T,\rho_0} \left(\frac{1}{\varepsilon \sqrt{N}} + \varepsilon^2\right).$$

Go back to McKean kinetic particle system

 $(X^i_t, U^i_t, t \leq T, i = 1, \dots, N)$ are the strong solution of

$$\begin{cases} X_t^i = \left[X_0^i + \int_0^t U_s^i \, ds\right] \mod 1\\ U_t^i = U_0^i + \int_0^t B[X_s^i, \rho_s] \, ds + W_t^i, \quad \rho_t = \mathcal{L}(X_t^i, U_t^i), \quad \text{for all } t \le T \end{cases}$$

where we recall that $(X_0^i, U_0^i, i = 1, \dots, N)$ are i.i.d. with density ρ_0 . $(X_t^{i,\epsilon}, U_t^{i,\epsilon}, t \leq T, i = 1, \dots, N)$ are the strong solution of

$$\begin{cases} X_t^{i,\epsilon} = \left[X_0^i + \int_0^t U_s^{i,\epsilon} \, ds\right] \mod 1\\ U_t^{i,\epsilon} = U_0^i + \int_0^t B_\epsilon[X_s^{i,\epsilon}, \rho_s^\epsilon] \, ds + W_t^i, \quad \rho_t^\epsilon = \mathcal{L}(X_t^{i,\epsilon}, U_t^{i,\epsilon}), \quad \text{for all } t \le T, \end{cases}$$

► Control the error seen by the particles : $\mathbb{E} |F[X_t^1; \rho_t] - F_{\epsilon}[X_t^{1,N}; \mu_t^N]|$.

Rate of convergence

For any f measurable bounded on \mathbb{R}^d , we set the kernel regression version of the conditional expectation :

$$\begin{aligned} &(x,t)\mapsto F[x;\rho_t] = \mathbb{E}[f(U_t)|X_t = x],\\ &(x,t)\mapsto F_{\epsilon}[x;\rho_t] = \frac{\int_{\mathbb{R}^d\times\mathbb{R}^d}f(v)K_{\epsilon}(x-y)\,\rho_t(dy,dv)}{\int_{\mathbb{R}^d\times\mathbb{R}^d}K_{\epsilon}(x-y)\,\rho_t(dy,dv)} = \frac{\mathbb{E}[f(U_t)K_{\epsilon}(x-X_t)]}{\mathbb{E}[K_{\epsilon}(x-X_t)]} \end{aligned}$$

Assume that f and b smooth and bounded function with bounded derivatives; K > 0 Lipschitz bounded, with compact support.

Theorem (Bossy and Violeau, preprint)

$$\begin{split} & [\text{Measure discretization error] For any } 1 0 \text{, there exists a constant } C \text{ such that} \\ & \text{for all } \alpha > 0, \epsilon > 0 \text{ and } N > 1 \text{ satisfying } \frac{1}{\alpha^2 \epsilon^d N^{\frac{1}{p}}} \leq c \text{, we bound the error seen by the particles by} \\ & \mathbb{E} \Big| F[X_t^1; \rho_t] - F_\epsilon[X_t^{1,N}; \mu_t^N] \Big| \leq C \Big(\epsilon + \frac{1}{\alpha \epsilon^d N} + \frac{1}{\epsilon^{(d+1)p}N} + \frac{1}{(\epsilon^d N)^{\frac{1}{p}}} + \frac{1}{\epsilon^{\frac{dp}{2}}\sqrt{N}} \Big). \end{split}$$

If we choose $\alpha = \epsilon$, the optimal rate of convergence is achieved for $N = \epsilon^{-(d+2)p}$ and

$$\mathbb{E}\left[\left|F[X_t^1;\rho_t] - F_{\epsilon}[X_t^{1,N};\mu_t^N]\right|\right] \le N^{-\frac{1}{(d+2)p}}.$$

Nonparametric regression estimate

Let (X_i, U_i) be an **i.i.d** sequence of *n* random variables.

Local averaging estimate :

approximate $F(x) = \mathbb{E}[f(U)|X = x]$ with:

$$F_n(x) = \sum_{i=1}^n W_{n,i}(x) \cdot f(U_i),$$

where the weight $W_{n,i}$ depends only on x and $(X_j, f(U_j)), j \leq n$.

Kernel estimate :

$$W_{n,i}(x) = \frac{K_{\epsilon}(x - X_i)}{\sum_{j=1}^{n} K_{\epsilon}(x - X_j)},$$

where $K_{\epsilon}(x) = K(\frac{x}{\epsilon})$. Related to the minimization:

$$F_n(x) = \arg\min_{c} \left\{ \frac{1}{n} \sum_{i=1}^{n} K_{\epsilon}(x - X_i) (f(U_i) - c)^2 \right\}$$

Partitioning estimate :

Let $\mathcal{P}_n = \{A_{n,1}, A_{n,2}, \dots\}$ be a partition of the domain. Set

$$W_{n,i}(x) = \frac{\mathbbm{1}_{\{X_i \in A_{n,j}\}}}{\sum_{i=1}^n \mathbbm{1}_{\{X_i \in A_{n,j}\}}}, \quad \text{for } x \in A_{n,j}.$$

Related to the least squares estimate:

$$F_n = \arg\min_{f_n} \left\{ \frac{1}{n} \sum_{i=1}^n (f(U_i) - f_n(X_i))^2 \right\},\$$

where the $\arg \min$ is taken on the set of piecewise constant functions adapted to \mathcal{P}_n .

Also: local modeling estimates (e.g. local polynomial estimates), global modeling/least squares estimates, penalized modeling...

Convergence rate of the nonparametric estimates

• Consider the mean L^2 error:

$$\mathbb{E}\Big[\int_{\mathcal{D}} \big|F(x) - F_n(x)\big|^2 \rho(x) \, dx\Big].$$

Variance-Bias decomposition:

$$\mathbb{E}\left[\int_{\mathcal{D}} \left|F(x) - F_n(x)\right|^2 \rho(x) \, dx\right] = \int \operatorname{Var} F_n(x) \rho(x) \, dx + \int |\mathsf{bias}(x)|^2 \rho(x) \, dx.$$

- The previous estimators are weakly universally consistent (Stone's theorem).
- For (p, C) smooth conditional expectations, the lower optimal convergence rate is of order $n^{-\frac{2p}{2p+d}}$.

Theorem (Bossy and Violeau, preprint)

For Lipschitz continuous regression functions, we have

$$E||F_n - F||^2 \le C\frac{1}{n\epsilon^d} + dC\epsilon^2,$$

for both partitioning estimate and kernel estimate (with naive kernel). This gives an optimal rate of $n^{-\frac{2}{d+2}}$.

Local averaging based particle algorithm

Particle algorithm :

- 1. Initialization of (X_0^i, U_0^i) for $1 \le i \le n$
- 2. Time loop : for $t_k = k\Delta_t$ up to T :
 - for each particle $1 \le i \le n$:
 - 2.1 update the position : $\boldsymbol{X}_k^{i,n} = \boldsymbol{X}_{k-1}^{i,n} + \boldsymbol{U}_{k-1}^{i,n}$
 - 2.2 add gaussian noise: $U_k^{i,n} = U_{k-1}^{i,n} + (W_k^i W_{k-1}^i)$
 - 2.3 drift computation : loop over each particle to calculate the $W_{n,j}(X_{k-1}^{i,n})$:

$$U_{k}^{i,n} + = \frac{\sum_{j=1}^{N} b(U_{k-1}^{j,n}) K_{n}(X_{k-1}^{i,n} - X_{k-1}^{j,n})}{\sum_{j=1}^{N} K_{n}(X_{k-1}^{i,n} - X_{k-1}^{j,n})} \Delta_{t}$$

- End loop particles
- 3. Final mean field evaluation at x: Loop on all particles

$$\frac{\sum_{j=1}^{n} f(U_T^{j,n}) K_n(x - X_T^{j,n})}{\sum_{j=1}^{n} K_n(x - X_T^{j,n})}$$

Complexity up to $\mathcal{O}(n^2)$ for kernel estimates, and only $\mathcal{O}(n)$ for partitioning estimates.

Numerical simulation

For d=2

Test case

$$dU_t = Cdt - \underbrace{\nabla V(X_t)dt}_{\text{"pressure"}} + \underbrace{(\langle U_t \rangle - 2U_t)dt}_{\text{conditional drift}} + dW_t,$$

with

$$V(x, y) = \frac{1}{2\pi} \cos(2\pi x) \sin(2\pi y) - \frac{1}{2}x,$$

 $X_0 = \sigma Z$ with $\mathcal{L}(Z) = \mathcal{N}(0, 1), \quad \mathcal{L}(U_0) = \mathcal{N}(0, 1), \quad \sigma = 0.3.$

Reference simulation

Regression estimate implemented with Epanechnikov kernel T=2, 128 times step, $\bar{N}=10^5$ particles, $\underline{\epsilon}=\frac{1}{16}.$

(a) Density

We want to observe the error of the scheme as

$$\int_{\mathcal{D}} |F[x;\rho_T] - F_{\epsilon}[x;\mu_T^{\epsilon,N}]|\rho_T(x)\,dx,$$

First we approximate the mean field $F[x; \rho_T]$ by

$$\overline{F_{\underline{\epsilon}}[x;\mu^{\underline{\epsilon},\bar{N}}]} := \frac{1}{N_{mc}} \sum_{k=1}^{N_{mc}} F_{\underline{\epsilon}}[x;\mu^{\underline{\epsilon},\bar{N}}(\omega_k)],$$

Using spline interpolation on a mesh of size Δx , we observe the approximate L^1 error

Observe the approximate L^1 error:

in-line with what we expected from the theoretical rate where the optimal value of window size is given by $\frac{1}{N^{\frac{1}{d+2}}}$.

Observe the kernel regression estimation error

$$\text{variance}: \quad \frac{1}{N_{mc}} \sum_{j=1}^{N_{mc}} \int_{\mathcal{D}} \left| \overline{F_{\epsilon}[x; \mu^{\epsilon, N}]}^{\Delta x} - F_{\epsilon}^{\Delta x}[x; \mu^{\epsilon, N}(\omega_j)] \right|^2 \bar{\rho}_{\epsilon}^{\Delta x}(x) \, dx.$$

Impact of the choice of the kernel

Velocity field and its error

0.040

0.032

-0.016

0.040

0.032

0.000

-0.008

-0.016

0.032

0.024

0.016

0.008

0.000

-0.008

-0.016

Regression kernels :

hat kernel

0.024 0.016 0.008

triangle kernel

epanechnikov kernel

Impact of the choice of the kernel : Partitioning

Thank you for your attention

Bibliography

Bernardin, et al. Stochastic Downscaling Methods : Application to Wind Refinement. *Stoch. Environ. Res. Risk. Assess.*, 23(6), 2009. Bernardin, et al. Stochastic Lagrangian Method for Downscaling Problems in Computational Fluid Dynamics. *ESAIM: M2AN*, 44(5):885–920, 2010. B., Jabir. and Talay. On conditional McKean Lagrangian stochastic models. PTRF 2011.

B. and Jabir. On confined McKean Langevin processes satisfying the mean no-permeability boundary condition. SPA 2011

B., Fontbona, Jabin, Jabir. Local existence of analytical solutions to an incompressible Lagrangian stochastic model in a periodic domain.CoPDE, 2013.

B. and Jabir. Lagrangian stochastic models with specular boundary condition. JFA 2015

B., J. Espina, etal. Modeling the wind circulation around mills with a Lagrangian stochastic approach. SMAI-JCM 2016.

B. and Jabir. Some McKean models with non smooth nonlinear diffusion coefficients Preprint.

B. and Violeau. Particles method for Lagrangian Stochastic Models Preprint

References

Antonnelli and Kohatsu-Higa. Rate of convergence of the particle method to the solution of the MC Kean–Vlasov's equation. Annals of Applied Probability, 2002.

Durbin and Speziale Realizability of second-moment closure via stochastic analysis. J. Fluid Mech. 1994

Jourdain, and Méléard. Propagation of chaos and fluctuations for a moderate model with smooth initial data, Ann. Inst. H. P Probab. Statist., 1998.

Pope. Lagrangian pdf methods for turbulent flows Annu. Rev. Fluid Mech. 1994

Minier and Pozorski Wall-boundary conditions in probability density function methods and application to a turbulent channel flow Physics of Fluids, 1999.