
Model-Free Control
(Reinforcement Learning)

and Deep Learning

MARC G. BELLEMARE
Google Brain (Montréal)

1956 1992

2016 2015

THE ARCADE LEARNING ENVIRONMENT (BELLEMARE ET AL., 2013)

21
0

pi
xe

ls
160 pixels

60 fra
mes/second

18 actions

Reward:
change in score

• 33,600 (discrete) dimensions

• Up to 108,000 decisions/episode (30 minutes)

• 60+ games: heterogenous dynamical systems

DEEP LEARNING:
AN AI SUCCESS STORY

Q̂ = ⇧T ⇡Q̂
��Q̂�Q⇡

��
D

 1

1� �

��⇧Q⇡ �Q⇡
��
D

Q

⇤
(x, a) = r(x, a) + �E

P
max

a02A
Q

⇤
(x

0
, a

0
)

M := hX ,A, R, P, �i

Theory Practice

WHERE HAS MODEL-FREE CONTROL
BEEN SO SUCCESSFUL?

• Complex dynamical systems

• Black-box simulators

• High-dimensional state spaces

• Long time horizons

• Opponent / adversarial element

PRACTICAL
CONSIDERATIONS

• Are simulations reasonably cheap? model-free

• Is the notion of “state” complex? model-free

• Is there partial observability? maybe model-free

• Can the state space be enumerated? value iteration

• Is there an explicit model available? model-based

OUTLINE OF
TALK

Ideal
case

Practical
case

WHAT’S REINFORCEMENT
LEARNING, ANYWAY?

“ALL GOALS AND PURPOSES … CAN BE THOUGHT OF AS
THE MAXIMIZATION OF SOME VALUE FUNCTION”

 
– SUTTON & BARTO (2017, IN PRESS)

• At each step t, the
agent

• Observes a state

• Takes an action

• Receives a reward

state

reward

action

at

rt

stxt

THREE LEARNING PROBLEMS
IN ONE

Optimal control

Policy evaluation

Stochastic 
approximation

Function
approximation

 
BACKGROUND

• Formalized as a Markov Decision Process: 
 

• R, P reward, transition functions

• 𝛾 discount factor

• A trajectory is a sequence of interactions with the
environment

M := hX ,A, R, P, �i

x1, a1, r1, x2, a2, . . .

• Policy : a probability distribution over actions: 

• Transition function:

• Value function : total discounted reward 
 

• As a vector in space of value functions:

⇡

at ⇠ ⇡(· |xt)

Q

⇡(x, a)

Q⇡ 2 Q

xt+1 ⇠ P (· |xt, at)

Q

⇡(x, a) = E
P,⇡

" 1X

t=0

�

t
r(xt, at) |x0, a0 = x, a

#

at = ⇡(xt)If deterministic:

• “Maximize value function”: find 

• Bellman’s equation: 
 
 
 

• Optimality equation: 

Q

⇤
(x, a) := max

⇡
Q

⇡
(x, a)

Q

⇡(x, a) = E
P,⇡

" 1X

t=0

�

t
r(xt, at) |x0, a0 = x, a

#

= r(x, a) + � E
P,⇡

Q

⇡(x0
, a

0)

Q

⇤
(x, a) = r(x, a) + �E

P
max

a02A
Q

⇤
(x

0
, a

0
)

BELLMAN
OPERATOR

• The Bellman operator is a 𝛾-contraction: 

• Fixed point:

T ⇡

Q(x, a) := r(x, a) + � E
x

0⇠P

a

0⇠⇡

Q(x0
, a

0)

kT ⇡Q�Q⇡k1 � kQ�Q⇡k1

Q⇡ = T ⇡Q⇡

Qk

Q⇡

Qk+1 := T ⇡Qk

BELLMAN
OPTIMALITY OPERATOR

• Also a 𝛾-contraction (beware! different proof): 

• Fixed point is optimal v.f.:
Qk

Q⇤

Qk+1 := T Qk

T Q(x, a) := r(x, a) + � E
x

0⇠P

max

a

02A
Q(x

0
, a

0
)

kT Q�Q⇤k1 � kQ�Q⇤k1

Q⇤ = T Q⇤ � Q⇡

MODEL-BASED
ALGORITHMS

1.Value iteration: 

2.Policy iteration: 

3.Optimistic policy iteration: 
 

Qk+1(x, a) T Qk(x, a) = r(x, a) + �EP max

a02A
Qk(x

0
, a

0
)

Qk+1(x, a) (T ⇡k)mQk(x, a) = T ⇡k · · · T ⇡k

| {z }
m times

Qk(x, a)

⇡k = argmax

⇡
T ⇡

Qk(x, a)a. Qk+1(x, a) Q

⇡k(x, a)b.

POLICY ITERATION

Optimal control

Policy evaluation

⇡k = argmax

⇡
T ⇡

Qk(x, a)a.

Qk+1(x, a) Q

⇡k(x, a)b.

MODEL-FREE
REINFORCEMENT LEARNING

• Typically no access to P, R

• Two options:

• Learn a model (not in this talk)

• Model-free: learn or directly from samplesQ⇡ Q⇤

Model-based

Model-free

Qk

Q⇡

Qk+1 := T ⇡Qk

xt

at

EP

xt

at

xt+1 ⇠ P (· |xt, at)

state

reward

action

at

rt

stxt

MODEL-FREE RL: 
SYNCHRONOUS UPDATES

• For all x, a, sample

• The SARSA algorithm: 
 
 
 
 

• is a step-size (sequence)  

Qt+1

(x, a) (1� ↵t)Qt(x, a) + ↵tT̂ ⇡
t Qt(x, a)

= (1� ↵t)Qt(x, a) + ↵t

�
r(x, a) + �Qt(x

0
, a

0)
�

= Qt(x, a) + ↵t

�
r(x, a) + �Qt(x

0
, a

0)�Qt(x, a))
�

| {z }
TD-error �

x

0 ⇠ P (· |x, a), a0 ⇠ ⇡(· |x0)

↵t 2 [0, 1)

MODEL-FREE RL: 
Q-LEARNING

• The Q-Learning algorithm: max. at each iteration

Qt+1(x, a) (1� ↵t)Qt(x, a)

+ ↵t

�
r(x, a) + �max

a02A
Qt(x

0
, a

0
)�Qt(x, a)

�

Optimal control

Policy evaluation

Stochastic 
approximation

• Both converge under  
Robbins-Monro conditions

• Not trivial! Interleaved 
learning problems

Q-Learning

ASYNCHRONOUS
UPDATES

• The asynchronous case: learn from trajectories 

• Apply update at each step: 

• This is the setting we  
usually deal with

• Convergence even  
more delicate

Q(xt, at) Qt(x, a) + ↵t

�
rt + �Q(xt+1, at+1)�Q(xt, at)

�

x1, a1, r1, x2, a2, · · · ⇠ ⇡, P

OPEN QUESTIONS/
AREAS OF ACTIVE RESEARCH

• Rates of convergence [1]

• Variance reduction [2]

• Convergence guarantees for multi-step methods [3, 4]

• Off-policy learning: control from fixed behaviour [3, 4]

[1] Konda and Tsitsiklis (2004)
[2] Azar et al., Speedy Q-Learning (2011)
[3] Harutyunyan, Bellemare, Stepleton, Munos (2016)
[4] Munos, Stepleton, Harutyunyan, Bellemare (2016)

Optimal control

Policy evaluation

Stochastic 
approximation

Function
approximation

Optimal control

Policy evaluation

Stochastic 
approximation

Function
approximation

(VALUE) FUNCTION
APPROXIMATION

• Parametrize value function: 

• Learning now involves a projection step : 

• This leads to additional, 
compounding error

• Can cause divergence  

Q

⇡(x, a) ⇡ Q(x, a, ✓)

⇧

⇧T ⇡
Q(x, a, ✓k) : ✓k+1 argmin

✓

��T ⇡
Qk(x, a, ✓k)�Q(x, a, ✓)

��
D

SOME CLASSIC
RESULTS [1]

• Linear approximation: 

• SARSA converges to satisfying 

• Q-Learning may diverge!

[1] Tsitsiklis and Van Roy (1997)

Q

⇡(x, a) ⇡ ✓

>
�(x, a)

Q̂

Q̂ = ⇧T ⇡Q̂
��Q̂�Q⇡

��
D

 1

1� �

��⇧Q⇡ �Q⇡
��
D

OPEN QUESTIONS/
AREAS OF ACTIVE RESEARCH

• Convergent, linear-time optimal control [1]

• Exploration under function approximation [2]

• Convergence of multi-step extensions [3]

[1] Maei et al. (2009)
[2] Bellemare, Srinivasan, Ostrovski, 
 Schaul, Saxton, Munos (2016)
[3] Touati et al. (2017)

Ideal
case

Practical
case

Ideal
case

Practical
case

1956 1992

2016 2015

1956 1992

2016 2015

Q

⇡(x, a) ⇡ ✓

>
�(x, a)

1956 1992

2016 2015

DEEP
LEARNING

Slide adapted from Ali Eslami

DEEP  
LEARNING

Graphic by Volodymyr Mnih

L(✓)

�✓(x, a)

r✓L(✓)

Mnih et al., 2015

DEEP
REINFORCEMENT LEARNING

• Value function as a Q-network

• Objective function: mean squared error  
 
 

• Q-Learning gradient: 
 

Q(x, a, ✓)

L(✓) := E
h⇣

r + �max

a02A
Q(x

0
, a

0
, ✓)

| {z }
target

�Q(x, a, ✓)

⌘2i

r✓L(✓) = E
h⇣

r + �max

a02A
Q(x

0
, a

0
, ✓)�Q(x, a, ✓)

⌘
r✓Q(x, a, ✓)

i

Based on material by David Silver

STABILITY
ISSUES

• Naive Q-Learning oscillates or diverges

1. Data is sequential

Successive samples are non-iid

2. Policy changes rapidly with Q-values

May oscillate; extreme data distributions

3. Scale of rewards and Q-values is unknown

Naive gradients can be large; unstable backpropagation

Based on material by David Silver

DEEP  
Q-NETWORKS

1. Use experience replay

Break correlations, learn from past policies

2. Target network to keep target values fixed

Avoid oscillations

3. Clip rewards

Provide robust gradients

Based on material by David Silver

EXPERIENCE
REPLAY

• Build dataset from agent’s experience

• Take action according to ε-greedy policy

• Store (x, a, r, x’, a’) in replay memory D

• Sample transitions from D, perform
asynchronous update: 
 

• Effectively avoids correlations within trajectories

L(✓) = E
x,a,r,x

0
,a

0⇠D

h⇣
r + �max

a

02A
Q(x

0
, a

0
, ✓)�Q(x, a, ✓)

⌘2i

Equivalent to
planning with

empirical model

Based on material by David Silver

TARGET
Q-NETWORK

• To avoid oscillations, fix parameters of target in loss
function

• Compute targets w.r.t. old parameters  
 

• As before, minimize squared loss: 
 

• Periodically update target network: 

r + �max

a02A
Q(x

0
, a

0
, ✓

�
)

✓� ✓
Similar to

policy iteration!
Based on material by David Silver

L(✓) = ED

h⇣
r + �max

a02A
Q(x

0
, a

0
, ✓

�
)�Q(x, a, ✓)

⌘2i

CLIPPING
REWARDS

• Clip rewards in range [-1, +1]

• Ensures gradients are well-conditioned

• Also prevents value overestimation

• No longer can tell small, large rewards apart

Based on material by David Silver

Based on material by David Silver

Some Recent Research

ACTIVE RESEARCH:
OFF-POLICY METHODS

• Reusing data (e.g. from experience replay) can
diverge with approximation: 
 

• Can use importance sampling ratio:

• But variance is high

• Also safety issues: how to guarantee performance?

Q(x, a, ✓)

r✓ r(x, a) + � E
x

0⇠Pa

max

a

02A
Q(x

0
, a

0
, ✓)

a ⇠ µ
⇡(a | s)
µ(a | s)

Precup, Sutton, and Singh (2000)
Thomas and Brunskill (2016)

ACTIVE RESEARCH:
MULTI-STEP METHODS

• Greater accuracy [1] from multi-step returns: 
 
 
 
 

• Retrace(𝝺) [2] both off-policy and multi-step 
 

• Convergence surprisingly nontrivial, even without  
value approximation

RQ(x, a) := Q(x, a) +
1X

t=0

(��)t
� t�1Y

s=0

cs

�
�(xt, at)

[1] Tsitsiklis and Van Roy (1997)
[2] Munos, Stepleton, Harutyunyan, Bellemare (2016)

cs := min
n

1,
⇡(as |xs)

µ(as |xs)

o

T �
Q(x, a) :=

1X

k=0

�

k
h kX

t=0

�

t
r(xt, at) + �

k+1
Q(xk+1, ak+1)

| {z }
n-step return

i

= Q(x, a) +
1X

t=0

(��)t�(xt, at)

ACTIVE RESEARCH:
GAP-INCREASING OPERATORS

• Action gap:

• New operators that increase action gap, e.g. 
 

Not necessarily contraction operators

Suboptimal Q-values may not converge

• Yet: guaranteed convergence: 
 

lim

k!1
max

a2A
(

˜T)

k
Q(x, a) = max

a2A
Q

⇤
(x, a)

max

a02A
Q

⇤
(x, a

0
)�Q

⇤
(x, a)

˜T Q(x, a) := T Q(x, a)� �

max

a02A
Q(x, a

0
)�Q(x, a)

�
, � 2 [0, 1)

Bellemare, Ostrovski, Guez, Thomas, Munos (2016)

IN  
CONCLUSION

Optimal control

Policy evaluation

Stochastic 
approximation

Function
approximation

Model-Free Control with Deep Learning
MARC G. BELLEMARE

M. BowlingY. NaddafJ. Veness

G. Ostrovski Arthur Guez

Philip Thomas

Rémi Munos

A. Harutyunyan

T. Stepleton S. Srinivasan

T. Schaul

D. Saxton

