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• 33,600 (discrete) dimensions 

• Up to 108,000 decisions/episode (30 minutes) 

• 60+ games: heterogenous dynamical systems



DEEP LEARNING: 
AN AI SUCCESS STORY
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WHERE HAS MODEL-FREE CONTROL 
BEEN SO SUCCESSFUL?

• Complex dynamical systems 

• Black-box simulators 

• High-dimensional state spaces 

• Long time horizons 

• Opponent / adversarial element



PRACTICAL 
CONSIDERATIONS

• Are simulations reasonably cheap?  model-free 

• Is the notion of “state” complex?  model-free 

• Is there partial observability? maybe model-free 

• Can the state space be enumerated?  value iteration 

• Is there an explicit model available?  model-based
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WHAT’S REINFORCEMENT 
LEARNING, ANYWAY?

“ALL GOALS AND PURPOSES … CAN BE THOUGHT OF AS 
THE MAXIMIZATION OF SOME VALUE FUNCTION” 

 
– SUTTON & BARTO (2017, IN PRESS) 



• At each step t, the 
agent 

• Observes a state 

• Takes an action 

• Receives a reward

state

reward

action

at

rt

stxt



THREE LEARNING PROBLEMS 
IN ONE

Optimal control

Policy evaluation

Stochastic 
approximation

Function 
approximation



 
BACKGROUND

• Formalized as a Markov Decision Process: 
 

• R, P reward, transition functions 

• 𝛾 discount factor 

• A trajectory is a sequence of interactions with the 
environment

M := hX ,A, R, P, �i

x1, a1, r1, x2, a2, . . .



• Policy   : a probability distribution over actions: 

• Transition function:  

• Value function             : total discounted reward 
 

• As a vector in space of value functions:
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• “Maximize value function”: find 

• Bellman’s equation: 
 
 
 

• Optimality equation: 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BELLMAN 
OPERATOR

• The Bellman operator is a 𝛾-contraction: 

• Fixed point:

T ⇡

Q(x, a) := r(x, a) + � E
x

0⇠P

a

0⇠⇡

Q(x0
, a

0)

kT ⇡Q�Q⇡k1  � kQ�Q⇡k1

Q⇡ = T ⇡Q⇡

Qk

Q⇡

Qk+1 := T ⇡Qk



BELLMAN 
OPTIMALITY OPERATOR

• Also a 𝛾-contraction (beware! different proof): 

• Fixed point is optimal v.f.:
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MODEL-BASED 
ALGORITHMS

1.Value iteration: 

2.Policy iteration: 

3.Optimistic policy iteration: 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POLICY ITERATION

Optimal control

Policy evaluation
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MODEL-FREE 
REINFORCEMENT LEARNING

• Typically no access to P, R 

• Two options: 

• Learn a model (not in this talk) 

• Model-free: learn     or     directly from samplesQ⇡ Q⇤



Model-based

Model-free
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MODEL-FREE RL: 
SYNCHRONOUS UPDATES

• For all x, a, sample 

• The SARSA algorithm: 
 
 
 
 

•                is a step-size (sequence)  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MODEL-FREE RL: 
Q-LEARNING

• The Q-Learning algorithm: max. at each iteration

Qt+1(x, a) (1� ↵t)Qt(x, a)

+ ↵t

�
r(x, a) + �max

a02A
Qt(x

0
, a

0
)�Qt(x, a)

�



Optimal control

Policy evaluation

Stochastic 
approximation

• Both converge under  
Robbins-Monro conditions

• Not trivial! Interleaved 
learning problems

Q-Learning



ASYNCHRONOUS 
UPDATES

• The asynchronous case: learn from trajectories 

• Apply update at each step: 

• This is the setting we  
usually deal with 

• Convergence even  
more delicate
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OPEN QUESTIONS/ 
AREAS OF ACTIVE RESEARCH

• Rates of convergence [1] 

• Variance reduction [2] 

• Convergence guarantees for multi-step methods [3, 4] 

• Off-policy learning: control from fixed behaviour [3, 4]

[1] Konda and Tsitsiklis (2004) 
[2] Azar et al., Speedy Q-Learning (2011) 
[3] Harutyunyan, Bellemare, Stepleton, Munos (2016) 
[4] Munos, Stepleton, Harutyunyan, Bellemare (2016)
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(VALUE) FUNCTION 
APPROXIMATION

• Parametrize value function: 

• Learning now involves a projection step    : 

• This leads to additional, 
compounding error 

• Can cause divergence  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SOME CLASSIC 
RESULTS [1]

• Linear approximation: 

• SARSA converges to     satisfying 

• Q-Learning may diverge!

[1] Tsitsiklis and Van Roy (1997)
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OPEN QUESTIONS/ 
AREAS OF ACTIVE RESEARCH

• Convergent, linear-time optimal control [1] 

• Exploration under function approximation [2] 

• Convergence of multi-step extensions [3]

[1] Maei et al. (2009) 
[2] Bellemare, Srinivasan, Ostrovski, 
     Schaul, Saxton, Munos (2016) 
[3] Touati et al. (2017)
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DEEP 
LEARNING

Slide adapted from Ali Eslami



DEEP  
LEARNING

Graphic by Volodymyr Mnih
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Mnih et al., 2015



DEEP 
REINFORCEMENT LEARNING

• Value function as a Q-network 

• Objective function: mean squared error  
 
 

• Q-Learning gradient: 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Based on material by David Silver



STABILITY 
ISSUES

• Naive Q-Learning oscillates or diverges 

1. Data is sequential 

Successive samples are non-iid 

2. Policy changes rapidly with Q-values 

May oscillate; extreme data distributions 

3. Scale of rewards and Q-values is unknown 

Naive gradients can be large; unstable backpropagation

Based on material by David Silver



DEEP  
Q-NETWORKS

1. Use experience replay 

Break correlations, learn from past policies 

2. Target network to keep target values fixed 

Avoid oscillations 

3. Clip rewards 

Provide robust gradients

Based on material by David Silver



EXPERIENCE 
REPLAY

• Build dataset from agent’s experience 

• Take action according to ε-greedy policy 

• Store (x, a, r, x’, a’) in replay memory D 

• Sample transitions from D, perform 
asynchronous update: 
 

• Effectively avoids correlations within trajectories
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TARGET 
Q-NETWORK

• To avoid oscillations, fix parameters of target in loss 
function 

• Compute targets w.r.t. old parameters  
 

• As before, minimize squared loss: 
 

• Periodically update target network: 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CLIPPING 
REWARDS

• Clip rewards in range [-1, +1] 

• Ensures gradients are well-conditioned 

• Also prevents value overestimation 

• No longer can tell small, large rewards apart

Based on material by David Silver



Based on material by David Silver





Some Recent Research



ACTIVE RESEARCH: 
OFF-POLICY METHODS

• Reusing data (e.g. from experience replay) can 
diverge with approximation: 
 

• Can use importance sampling ratio: 

• But variance is high 

• Also safety issues: how to guarantee performance?
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ACTIVE RESEARCH: 
MULTI-STEP METHODS

• Greater accuracy [1] from multi-step returns: 
 
 
 
 

• Retrace(𝝺) [2] both off-policy and multi-step 
 

• Convergence surprisingly nontrivial, even without  
value approximation
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ACTIVE RESEARCH: 
GAP-INCREASING OPERATORS

• Action gap: 

• New operators that increase action gap, e.g. 
 

Not necessarily contraction operators 

Suboptimal Q-values may not converge 

• Yet: guaranteed convergence: 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