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Optimal vector quantization has been originally introduced in Signal pro-
cessing as a discretization method of random signals, leading to an optimal
trade-off between the speed of transmission and the quality of the transmit-
ted signal. In machine learning, similar methods applied to a dataset are
the historical core of unsupervised classification methods known as “clus-
tering”. In both case it appears as an optimal way to produce a set of
weighted prototypes (or codebook) which makes up a kind of skeleton of a
dataset, a signal and more generally, from a mathematical point of view, of
a probability distribution.

Quantization has encountered in recent years a renewed interest in var-
ious application fields like automatic classification, learning algorithms, op-
timal stopping and stochastic control, Backward SDEs and more generally
numerical probability. In all these various applications, practical implemen-
tation of such clustering/quantization methods more or less rely on two
procedures (and their countless variants): the Competitive Learning Vector
Quantization (CLV Q) which appears as a stochastic gradient descent de-
rived from the so-called distortion potential and the (randomized) Lloyd’s
procedure (also known as k-means algorithm, nuées dynamiques) which is
but a fixed point search procedure. Batch version of those procedures can
also be implemented when dealing with a dataset (or more generally a dis-
crete distribution).

In a more formal form, if µ is probability distribution on an Euclidean
space Rd, the optimal quantization problem at level N boils down to ex-
hibiting an N -tuple (x∗1, . . . , x

∗
N ), solution to

argmin(x1,...,xN )∈(Rd)N

∫
Rd

min
1≤i≤N

|xi − ξ|2µ(dξ)



and its distribution i.e. the weights (µ(C(x∗i ))1≤i≤N where (C(x∗i ) is a (Borel)

partition of Rd satisfying

C(x∗i ) ⊂
{
ξ∈ Rd : |x∗i − ξ| ≤ min

1≤j≤N
|x∗j − ξ|

}
.

To produce an unsupervised classification (or clustering) of a (large) dataset
(ξk)1≤k≤n, one considers its empirical measure

µ =
1

n

n∑
k=1

δξk

whereas in numerical probability µ = L(X) where X is an Rd-valued simu-
lable random vector. In both situations, CLV Q and Lloyd’s procedures rely
on massive sampling of the distribution µ.

As for clustering, the classification into N clusters is produced by the
partition of the dataset induced by the Voronoi cells C(x∗i ), i = 1, . . . , N of
the optimal quantizer.

In this second case, which is of interest for solving non linear problems
like Optimal stopping problems (variational inequalities in terms of PDEs)
or Stochastic control problems (HJB equations) in medium dimensions, the
idea is to produce a quantization tree optimally fitting the dynamics of (a
time discretization) of the underlying structure process.

We will explore (briefly) this vast panorama with a focus on the algo-
rithmic aspects where few theoretical results coexist with many heuristics in
a burgeoning literature. We will present few simulations in two dimensions.
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