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Simulation: The Third Pillar of Science 

• Traditional scientific and engineering paradigm:
1) Do theory or paper design.
2) Perform experiments or build system.

• Limitations:
§ Too difficult -- build large wind tunnels.
§ Too expensive -- build a throw-away passenger jet.
§ Too slow -- wait for climate or galactic evolution.
§ Too dangerous -- weapons, drug design, climate 

experimentation.

• Computational science paradigm:
3) Use high performance computer systems to simulate the 

phenomenon
• Base on known physical laws and efficient numerical methods.
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Why Turn to Simulation?
◆ When the problem is 

too . . .
Ø Complex
Ø Large / small
Ø Expensive
Ø Dangerous

◆ to do any other way.

Taurus_to_Taurus_60per_30deg.mpeg



Computational Science
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Source: Steven E. Koonin, DOE



Computational Science Fuses Three Distinct 
Elements: 
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Wide Range of Applications that Depend on 
HPC is Incredibly Broad and Diverse

• Airplane wing design, 
• Quantum chemistry, 
• Geophysical flows, 
• Noise reduction, 
• Diffusion of solid bodies in a liquid, 
• Adaptive mesh refinement, 
• Computational materials research, 
• Deep learning in neural networks,
• Stochastic simulation,
• Massively parallel data mining,
• … 6
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Weather and Economic Loss
◆ $10T U.S. economy

Ø 40% is adversely affected by 
weather and climate

◆ $1M in loss to evacuate each 
mile of coastline
Ø we now over warn by 3X!
Ø average over warning is 200 

miles, or $200M per event
◆ Improved forecasts

Ø lives saved and reduced cost
◆ LEAD

Ø Linked Environments for 
Atmospheric Discovery

» Oklahoma, Indiana, UCAR, 
Colorado State, Howard, 
Alabama, Millersville, NCSA, 
North Carolina

Source: Kelvin Droegemeier, Oklahoma



Supercomputers Touch Everyone 
with Weather Forecasting



Look at the Fastest Computers

◆ Strategic importance of supercomputing
ØEssential for scientific discovery 
ØCritical for national security 
ØFundamental contributor to the economy and 

competitiveness through use in engineering and 
manufacturing 

◆ Supercomputers are the tool for solving the 
most challenging problems through 
simulations 
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High-Performance Computing 
Today

◆ In the past decade, the world has 
experienced one of the most exciting 
periods in computer development.

◆ Microprocessors have become smaller, 
denser, and more powerful.

◆ The result is that microprocessor-based 
supercomputing is rapidly becoming the 
technology of preference in attacking 
some of the most important problems of 
science and engineering.
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Technology Trends: 
Microprocessor Capacity

2X transistors/Chip Every                         
1.5 years
Called “Moore’s Law”

Microprocessors have become smaller, 
denser, and more powerful.
Not just processors, bandwidth, 
storage, etc. 
2X memory and processor speed and 
½ size, cost, & power every 18 
months.

Gordon Moore (co-founder of 
Intel) Electronics Magazine, 1965

Number of devices/chip doubles 
every 18 months    
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Design of Ion-Implanted MOSFET’S with

Very Small Physical Dimensions

ROBERT H. DENNARD, LIEMBER, IEEE, FRITZ H. GAENSSLEN, HWA-NIEN YU, MEMBER, IEEE, V. LEO
RIDEOUT, MEMBER) IEEE, ERNEST BASSOUS, AND ANDRE R. LEBLANC, MEMBER, IEEE

Absfracf—This paper considers the design, fabrication, and
characterization of very small MOSI?ET switching devices suitable
for digital integrated circuits using dimensions of the order of 1 p.
Scaling relationships are presented which show how a conventional
MOSFET can be reduced in size. An improved small device struc-
ture is presented that uses ion implantation to provide shallow
source and drain regions and a nonuniform substrate doping pro-
file. One-dimensional models are used to predict the substrate
doping profile and the corresponding threshold voltage versus
source voltage characteristic. A two-dimensional current transport
model is used to predict the relative degree of short-channel effects
for different device parameter combinations. Polysilicon-gate
MOSFET’S with channel lengths as short as 0.5 ~ were fabricated,
and the device characteristics measured and compared with pre-
dicted values. The performance improvement expected from using
these very small devices in highly miniaturized integrated circuits
is projected.

Manuscript received May 20, 1974; revised July 3, 1974.
The aubhors are with the IBM T. J. Watson Research Center,

Yorktown Heights, N.Y. 10598.
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Inverse semilogarithmic slope of sub-
threshold characteristic.

Width of idealized step function pro-
fde for chaDnel implant.

Work function difference between gate
and substrate.

Dielectric constants for silicon and
silicon dioxide.

Drain current.
Boltzmann’s constant.
Unitless scaling constant.
MOSFET channel length.
Effective surface mobility.
Intrinsic carrier concentration.
Substrate acceptor concentration.
Band bending in silicon at the onset of
strong inversion for zero substrate
voltage.

[Dennard, Gaensslen, Yu, Rideout, Bassous, 
Leblanc, IEEE JSSC, 1974]

Dennard Scaling :
• Decrease feature size by a factor of λ and 

decrease voltage by a factor of λ ; then
• # transistors increase by λ2

• Clock speed increases by λ
• Energy consumption does not change 

Moore’s Law put lots more transistors on a 
chip…but it’s Dennard’s Law that made them 

useful
Dennard observed that voltage 

and current should be proportional to 
the linear dimensions of a transistor 



Unfortunately Dennard Scaling is Over:
What is the Catch?
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Moore’s Law

W

W

Breakdown is the result of small feature sizes, 
current leakage poses greater challenges,
and also causes the chip to heat up

Powering the transistors without melting the chip 



Dennard Scaling Over
Evolution of processors

1971 2003

Single-core Era

2004

2013

Multicore Era

Dennard scaling
broke

740 KHz
3.4 GHz 3.5 GHz

The primary reason cited for the breakdown is that at small sizes, current 
leakage poses greater challenges, and also causes the chip to heat up, 
which creates a threat of thermal runaway and therefore further increases 
energy costs.
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Data from Kunle Olukotun, Lance Hammond, Herb Sutter, Burton 
Smith, Chris Batten, and Krste Asanoviç

Slide from Kathy Yelick

Moore’s Law is Alive and Well
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But Clock Frequency Scaling  Replaced by 
Scaling Cores / Chip
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15 Years of exponential growth ~2x year has ended
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Data from Kunle Olukotun, Lance Hammond, Herb Sutter, Burton 
Smith, Chris Batten, and Krste Asanoviç

Slide from Kathy Yelick



Performance Has Also Slowed, Along 
with Power
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Power is the root cause of all this

A hardware issue just became a 
software problem
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Data from Kunle Olukotun, Lance Hammond, Herb Sutter, Burton 
Smith, Chris Batten, and Krste Asanoviç

Slide from Kathy Yelick
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Power Cost of Frequency

• Power ∝ Voltage2 x Frequency (V2F)

• Frequency ∝ Voltage

• Power ∝Frequency3
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Power Cost of Frequency

• Power ∝ Voltage2 x Frequency (V2F)

• Frequency ∝ Voltage

• Power ∝Frequency3



Today’s Multicores
All of Top500 Systems Are Based on Multicore
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ShenWei (260 core)

Intel Xeon Phi
(72 cores)

AMD Interlagos (16 cores)

Intel Haswell (18 cores)

Fujitsu Venus (16 cores)

IBM Power 8 (12 cores)

Nvidia Kepler (2688 Cuda cores
14 “regular cores”) 



Example of typical parallel machine

Chip/Socket

Core Core Core Core22



Example of typical parallel machine

Node/Board

Chip/Socket Chip/SocketChip/Socket

Core Core Core Core

…

Core

GPUGPUGPU
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Example of typical parallel machine

Cabinet

Node/Board Node/BoardNode/Board

Chip/Socket Chip/SocketChip/Socket

Core Core Core Core

…

Core

Shared memory programming between processes on a board and
a combination of shared memory and distributed memory programming

between nodes and cabinets

… GPUGPUGPU
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Example of typical parallel machine

Switch

Cabinet Cabinet Cabinet

Node/Board Node/BoardNode/Board

Chip/Socket Chip/SocketChip/Socket

Core Core Core Core

…

…

Core

Combination of shared memory and distributed memory programming

…

25

GPUGPUGPU
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What do you mean by performance?
◆ What is a xflop/s?

Ø xflop/s is a rate of execution, some number of floating 
point operations per second. 

» Whenever this term is used it will refer to 64 bit floating point operations 
and the operations will be either addition or multiplication. 

◆ What is the theoretical peak performance?
Ø The theoretical peak is based not on an actual performance 

from a benchmark run, but on a paper computation to 
determine the theoretical peak rate of execution of floating 
point operations for the machine. 

Ø The theoretical peak performance is determined by counting 
the number of floating-point additions and multiplications (in 
full precision) that can be completed during a period of 
time, usually the cycle time of the machine. 

Ø For example, an Intel Xeon 5570 quad core at 2.93 GHz 
can complete 4 floating point operations per cycle or a 
theoretical peak performance of 11.72 GFlop/s per core or 
46.88 Gflop/s for the socket.
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H. Meuer, H. Simon, E. Strohmaier, & JD

- Listing of the 500 most powerful
Computers in the World

- Yardstick: Rmax from LINPACK MPP
Ax=b, dense problem

- Updated twice a year
SC‘xy in the States in November
Meeting in Germany in June

- All data available from www.top500.org
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Performance Development of HPC over 
the Last 24 Years from the Top500
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PERFORMANCE DEVELOPMENT
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State of Supercomputing Today
• Pflops (> 1015 Flop/s) computing fully established 

with 95 systems.
• Three technology architecture possibilities or 

“swim lanes” are thriving.
• Commodity (e.g. Intel)
• Commodity + accelerator (e.g. GPUs) (93 systems)
• Lightweight cores (e.g. ShenWei, ARM, Intel’s Knights 

Landing)

• Interest in supercomputing is now worldwide, and 
growing in many new markets (around 50% of Top500 
computers are used in industry).

• Exascale (1018 Flop/s) projects exist in many 
countries and regions.

• Intel processors have largest share, 91% followed 
by AMD, 3%. 30



Countries Share

China has 1/3 of the systems, 
while the number of systems in the 
US has fallen to the lowest point 
since the TOP500 list was created. 



June 2016: The TOP 10 Systems
Rank     Site Computer Country Cores Rmax

[Pflops]
% of 
Peak

Power
[MW]

GFlops/
Watt

1
National Super

Computer Center in 
Wuxi

Sunway TaihuLight, SW26010
(260C) + Custom China 10,649,000 93.0 74 15.4 6.04

2
National Super 

Computer Center in 
Guangzhou

Tianhe-2 NUDT, 
Xeon (12C) + IntelXeon Phi (57c) 

+ Custom
China 3,120,000 33.9 62 17.8 1.91

3 DOE / OS                 
Oak Ridge Nat Lab

Titan, Cray XK7, AMD (16C) + 
Nvidia Kepler GPU (14c) + 

Custom
USA 560,640 17.6 65 8.21 2.14

4 DOE / NNSA                 
L Livermore Nat Lab

Sequoia, BlueGene/Q (16C)       
+ custom USA 1,572,864 17.2 85 7.89 2.18

5 RIKEN Advanced
Inst for Comp Sci

K computer Fujitsu SPARC64 
VIIIfx (8C) + Custom Japan 705,024 10.5 93 12.7 .827

6 DOE / OS                 
Argonne Nat Lab

Mira, BlueGene/Q (16C)          
+ Custom USA 786,432 8.16 85 3.95 2.07

7 DOE / NNSA /    
Los Alamos & Sandia 

Trinity, Cray XC40,Xeon (16C) + 
Custom USA 301,056 8.10 80 4.23 1.92

8 Swiss CSCS Piz Daint, Cray XC30, Xeon (8C) 
+ Nvidia Kepler (14c) + Custom Swiss 115,984 6.27 81 2.33 2.69

9 HLRS Stuttgart Hazel Hen, Cray XC40, Xeon 
(12C) + Custom Germany 185,088 5.64 76 3.62 1.56

10 KAUST Shaheen II, Cray XC40, Xeon 
(16C) + Custom

Saudi
Arabia 196,608 5.54 77 2.83 1.96

500 Internet company Inspur Intel (8C) + Nnvidia China 5440        .286 71



Countries Share

33

Number of systems

Performance / Country



Future Computer Systems
• Most likely be a hybrid design
• Think standard multicore chips and accelerator 

(GPUs)
• Today accelerators are attached over slow links
• Next generation more integrated
• Intel’s Xeon Phi

§ 288 “threads” 72 cores

• AMD’s Fusion
§ Multicore with embedded graphics ATI

• Nvidia’s Kepler with 2688 “Cuda cores”, 14 cores 

34
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Commodity plus Accelerator Today

37

Intel Xeon
8 cores
3 GHz

8*4 ops/cycle
96 Gflop/s (DP)

Commodity
Intel Xeon Phi (KNL)

72 “cores” 
32 flops/cycle/core

1.4 GHz
72*1.4*32  ops/cycle

3.22 Tflop/s (DP) or 6.45 Tflop/s (SP)

Accelerator/Co-Processor 

6 GBInterconnect
PCI-X 16 lane

64 Gb/s (8 GB/s)
1 GW/s



Accelerator Today
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Intel Xeon Phi (KNL)
72 “cores” 

32 flops/cycle/core
1.4 GHz

72*1.4*32  ops/cycle
3.22 Tflop/s (DP) or 6.45 Tflop/s (SP)

6 GB



Sunway TaihuLight http://bit.ly/sunway-2016
• SW26010 processor
• Chinese design, fab, and ISA
• 1.45 GHz
• Node = 260 Cores (1 socket)

• 4 – core groups
• 64 CPE, No cache, 64 KB scratchpad/CG
• 1 MPE w/32 KB L1 dcache & 256KB L2 cache

• 32 GB memory total, 136.5 GB/s
• ~3 Tflop/s, (22 flops/byte)

• Cabinet = 1024 nodes
• 4 supernodes=32 boards(4 cards/b(2 node/c))
• ~3.14 Pflop/s

• 40 Cabinets in system
• 40,960 nodes total
• 125 Pflop/s total peak

• 10,649,600 cores total
• 1.31 PB of primary memory (DDR3) 
• 93 Pflop/s HPL, 74% peak 
• 0.32 Pflop/s HPCG, 0.3% peak 
• 15.3 MW, water cooled

• 6.07 Gflop/s per Watt
• 3 of the 6 finalists Gordon Bell Award@SC16
• 1.8B RMBs ~ $280M, (building, hw, apps, sw, …)











• China, 2013: the 34 PetaFLOPS
• Developed in cooperation between 

NUDT and Inspur for National 
Supercomputer Center in Guangzhou

• Peak performance of 54.9 PFLOPS
• 16,000 nodes contain 32,000 Xeon Ivy 

Bridge processors and 48,000 Xeon Phi 
accelerators totaling 3,120,000 cores

• 162 cabinets in 720m2 footprint
• Total 1.404 PB memory (88GB per node)
• Each Xeon Phi board utilizes 57 cores for 

aggregate 1.003 TFLOPS at 1.1GHz clock
• Proprietary TH Express-2 interconnect 

(fat tree with thirteen 576-port 
switches)

• 12.4 PB parallel storage system
• 17.6MW power consumption under load; 

24MW including (water) cooling
• 4096 SPARC V9 based Galaxy FT-1500 

processors in front-end system

Tianhe-2 (Milkyway-2)
3+ years old



ORNL’s “Titan” Hybrid System:
Cray XK7 with AMD Opteron and 
NVIDIA Tesla processors

SYSTEM SPECIFICATIONS:
• Peak performance of 27 PF

• 24.5 Pflop/s GPU + 2.6 Pflop/s AMD
• 18,688 Compute Nodes each with:

• 16-Core AMD Opteron CPU
• NVIDIA Tesla “K20x” GPU
• 32 + 6 GB memory

• 512 Service and I/O nodes
• 200 Cabinets
• 710 TB total system memory
• Cray Gemini 3D Torus Interconnect
• 9 MW peak power

4,352 ft2

404 m2

45

4 years old



Cray XK7 Compute Node

Y

X

Z

XK7	Compute	Node	
Characteristics

AMD	Opteron	6274	Interlagos
16	core	processor

Tesla K20x	@	1311	GF

Host	Memory
32GB

1600	MHz	DDR3

Tesla	K20xMemory
6GB	GDDR5

Gemini	High	Speed	Interconnect

Slide courtesy of Cray, Inc.
46



Titan: 
Cray XK7 System

Board:
4 Compute Nodes
5.8 TF
152 GB

Cabinet:
24 Boards
96 Nodes
139 TF
3.6 TB

System:
200 Cabinets
18,688 Nodes
27 PF
710 TB

Compute Node:
1.45 TF
38 GB

47



Sequoia
• USA, 2012: BlueGene strikes 

back
• Built by IBM for NNSA and 

installed at LLNL
• 20,123.7 TFLOPS peak 

performance
• Blue Gene/Q architecture
• 1,572,864 total PowerPC A2 cores
• 98,304 nodes in 96 racks occupy 

280m2

• 1,572,864 GB DDR3 memory
• 5-D torus interconnect
• 768 I/O nodes
• 7890kW power, or 2.07 GFLOPS/W
• Achieves 16,324.8 TFLOPS in HPL 

(#1 in June 2012), about 14 
PFLOPS in HACC (cosmology 
simulation), and 12 PFLOPS in 
Cardioid code (electrophysiology)

Systems
4+ years old



Japanese K Computer

49Linpack run with 705,024 cores at 10.51 Pflop/s (88,128 CPUs), 12.7 MW; 29.5 hours
Fujitsu to have a 100 Pflop/s system in 2014

5.5 years old



12 - Top500 Systems in UK

7/15/16
50

Rank Name Computer Site # Cores Rmax Efficiency 
17 Cray XC40, Xeon E5-2695v4 18C 

2.1GHz, Aries
ECMWF 126468 3944680 93%

18 Cray XC40, Xeon E5-2695v4 18C 
2.1GHz, Aries

ECMWF 126468 3944680 93%

29 Cray XC40, Xeon E5-2695v4 18C 
2.1GHz, Aries

UK Meteorological Office 89856 2801782 93%

30 Cray XC40, Xeon E5-2695v4 18C 
2.1GHz, Aries

UK  Meteorological Office 89856 2801782 93%

50 ARCHER Cray XC30, Intel Xeon E5 v2 12C 
2.700GHz, Aries

EPSRC/University of 
Edinburgh

118080 1642536 64%

56 Blue Joule BlueGene/Q, Power BQC 16C 
1.60GHz, Custom

STFC Daresbury Lab 131072 1431102 85%

82 DiRAC BlueGene/Q, Power BQC 16C 
1.60GHz, Custom

University of Edinburgh 98304 1073327 85%

100 Spruce A SGI ICE X, Intel Xeon E5-2680v2  
10C 2.8GHz, Infiniband FDR

AWE 44520 958734 96%

126 Spruce B SGI ICE X, Intel Xeon E5-2680v2  
10C 2.8GHz, Infiniband FDR

AWE 35640 767504 96%

399 Grace Lenovo NeXtScale nx360M5, 
Xeon E5-2630v3 8C 2.4GHz, 
Infiniband QDR

University College London 
(UCL)

10944 341300 81%

435 Blackthorn Bullx B510, Xeon E5-2670 8C 
2.600GHz, Infiniband QDR

AWE 17856 318000 86%

500 Helen SGI ICE X, Xeon E5-2670 8C/ E5-
2680v3 12C 2.5GHz, Infiniband 
FDR

Imperial College London 9792 285908 77%



Customer Segments
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Industrial Use of Supercomputers
• Of the 500 Fastest 

Supercomputer 
• Worldwide, Industrial 

Use is ~48%

• Aerospace  
• Automotive 
• Biology 
• CFD 
• Database 
• Defense 
• Digital Content Creation 
• Digital Media 
• Electronics 
• Energy 
• Environment 
• Finance 
• Gaming 
• Geophysics 
• Image Proc./Rendering 
• Information Processing Service 
• Information Service 
• Life Science 
• Media 
• Medicine 
• Pharmaceutics 
• Research 
• Retail 
• Semiconductor 
• Telecomm 
• Weather and Climate Research 
• Weather Forecasting 



Multi- to Many-Core

53

All Complex Cores
e.g. Intel Xeon

Mixed Big & Small 
Cores

All Small 
Cores

e.g. Intel Xeon Phi

• Complex cores: huge, complex, lots of 
internal concurrency latency hiding

• Simple cores: small, simpler core little 
internal concurrency latency-sensitive



Problem with Multicore

• As we put more processing power on the 
multicore chip, one of the problems is 
getting the data to the cores

• Next generation will be 
more integrated, 3D

54



3D Stacked
Memory

(Low Capacity, High Bandwidth)

Fat
Core

Fat
Core

Thin Cores / Accelerators

DRAM
NVRAM

(High Capacity, 
Low Bandwidth)

Coherence DomainCoreIntegrated NIC
for Off-Chip

Communication

55

Abstract Machine Model for Exascale
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Moore’s Law Reinterpreted
• Number of cores per chip 

doubles every 2 year, while 
clock speed decreases (not 
increases).
• Need to deal with systems with 

millions of concurrent threads
• Future generation will have 

billions of threads!

• Need to be able to easily replace 
inter-chip parallelism with intro-
chip parallelism

• Number of threads of 
execution doubles every 2 
year
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Cores	in	the	Top	20	Systems	Over	Time



Dense Linear Algebra
• Common Operations

• A major source of large dense linear systems is problems 
involving the solution of boundary integral equations.
• The price one pays for replacing three dimensions with two 

is that what started as a sparse problem in O(n3) variables 
is replaced by a dense problem in O(n2).

• Dense systems of linear equations are found in numerous 
other applications, including:
• airplane wing design;
• radar cross-section studies;
• flow around ships and other off-shore constructions;
• diffusion of solid bodies in a liquid;
• noise reduction; and
• diffusion of light through small particles.
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Ax = b;    min
x

|| Ax − b ||;    Ax = λx

7/15/16



Existing Math Software - Dense LA

• http://www.netlib.org/utk/people/JackDongarra/la-sw.html

• LINPACK, EISPACK, LAPACK, ScaLAPACK
• PLASMA, MAGMA 597/15/16



DLA Solvers

¨We are interested in developing 
Dense Linear Algebra Solvers

¨Retool LAPACK and ScaLAPACK for 
multicore and hybrid architectures

7/15/16
60



40 Years Evolving SW and Alg
Tracking Hardware Developments

Software/Algorithms follow hardware evolution in time

EISPACK (70’s) 
(Translation of Algol)

Rely on
- Fortran, but row oriented

LINPACK (80’s)
(Vector operations)

Rely on 
- Level-1 BLAS operations
- Column oriented

LAPACK (90’s)
(Blocking, cache friendly)

Rely on 
- Level-3 BLAS operations

ScaLAPACK (00’s)
(Distributed Memory)

Rely on 
- PBLAS Mess Passing

PLASMA (10’s)
New Algorithms 
(many-core friendly)

Rely on 
- DAG/scheduler
- block data layout
- some extra kernels



Peak Performance - Per Core

Floating point operations per cycle per core
Ê Most of the recent computers have FMA (Fused multiple add): (i.e. 

x ←x + y*z in one cycle)
Ê Intel Xeon earlier models and AMD Opteron have SSE2

Ê 2 flops/cycle DP & 4 flops/cycle SP

Ê Intel Xeon Nehalem (’09) & Westmere (’10) have SSE4 
Ê 4 flops/cycle DP & 8 flops/cycle SP

Ê Intel Xeon Sandy Bridge(’11) & Ivy Bridge (’12) have AVX & AVX2
Ê 8 flops/cycle DP & 16 flops/cycle SP

Ê Intel Xeon Haswell (’13) & (Broadwell (’14)) AVX2
Ê 16 flops/cycle DP & 32 flops/cycle SP

Ê Xeon Phi (per core) is at 16 flops/cycle DP & 32 flops/cycle SP

Ê Intel Xeon Skylake (’15)
Ê 32 flops/cycle DL & 64 flops/cycle SP

We 
are
here



Memory	transfer
(Its	All	About	Data	Movement)

Example	on	my	laptop:	One	level	of	memory	

25.6	GB/sec

Cache
(6	MB)

CPU

Main	memory
(8 GB)

The	model	IS	simplified	(see	next	slide)	but	it	provides	an	upper	bound	on	
performance	as	well.	I.e.,	we	will	never	go	faster	than	what	the	model	predicts.	(	
And,	of	course,	we	can	go	slower	…	)

(	Omitting	 latency	here.	)

56	GFLOP/sec/core	x	2	cores

Intel	Core	i7	4850HQ
Haswell,	2.3	GHz

Turbo	Boost	3.5	GHz

16 flops/cycle * 3.5 GHz =
56 Gflop/s per core



FMA:	fused	multiply-add
α +	AXPY:

y x y

DOT:
y xT yα

for (	j	=	0;	j	<	n;	j++)
y[i]	+=	a	*	x[i];

(without increment)

alpha =	0e+00;
for (	j	=	0;	j	<	n;	j++)

alpha +=	x[i]	*	y[i];

(without increment)

n	MUL
n	ADD
2n	FLOP
n FMA

n	MUL
n	ADD
2n	FLOP
n FMA

Note:	 It	is	reasonable	 to	expect	the	one	loop	codes	shown	here	to	perform	as	well	as	
their	Level	1	BLAS	counterpart	(on	multicore	with	an	OpenMP pragma	for	example).	

The	true	gain	these	 days	with	using	the	BLAS	is	 (1)	Level	3	BLAS,	and	(2)	portability.



• Take	two	double	precision	vectors	x	and	y	of	size	
n=375,000.

• Data	size:	
– (	375,000	double	)	*	(	8	Bytes	/	double	)	=	3	MBytes
per	vector

(	Two	vectors	fit	in	cache	(6	Mbytes) )	

• Time	to	move	the	vectors	from	memory	to	cache:
– (	6	MBytes )	/	(	25.6	GBytes/sec	)	=	0.23	ms

• Time	to	perform	computation	of	DOT:
– (	2n	flop	)	/	(	56	Gflop/sec	)	=	0.01	ms

DOT:
y xT yα



Vector	Operations	

total_time ≥ max	(	time_comm ,	time_comp )
=	max	(	0.23ms	,	0.01ms	)	=	0.23ms

Performance	 =	(2	x	375,000	flops)/.23ms	=	3.2	Gflop/s

Performance	for	DOT	≤	3.2	Gflop/s
Peak	is	56	Gflop/s

We	say	that	the	operation	is	communication	
bounded.	No	reuse	of	data.



Level	1,	2	and	3	BLAS

Level	2	BLAS		Matrix-Vector	operations

Level	1	BLAS		Matrix-Vector	operations

Level	3	BLAS		Matrix-Matrix	operations

C A C
B

α +	β

α +	AXPY:
y x y

DOT:
y xT yα

α +	GEMV:
y x y

A

GEMM:

2n	FLOP
2n	memory reference
AXPY:	2n	READ,	n	WRITE
DOT:			2n	READ

RATIO:	1

2n2 FLOP
n2 memory references

RATIO:	2

2n3 FLOP
3n2 memory references
3n2	READ,	n2	WRITE

RATIO:	2/3	n



• Double	precision	matrix	A	and	vectors	x	and	y	of	
size	n=860.

• Data	size:	
– (	8602 +	2*860	double	)	*	(	8	Bytes	/	double	)	~	6	
MBytes

Matrix	and	two	vectors	fit	in	cache	(6	MBytes).

• Time	to	move	the	data	from	memory	to	cache:
– (	6	MBytes )	/	(	25.6	GBytes/sec	)	=	0.23	ms

• Time	to	perform	computation	of	DOT:
– (	2n2 flop	)	/	(	56	Gflop/sec	)	=	0.26	ms

α" +""GEMV:"
y" x" y"

A"



Matrix	- Vector	Operations	

total_time ≥ max	(	time_comm ,	time_comp )
=	max	(	0.23ms	,	0.26ms	)	=	0.26ms

Performance	 =	(2	x	8602 flops)/.26ms	 =	5.7	Gflop/s

Performance	for	GEMV	≤	5.7	Gflop/s

Peak	is	56	Gflop/s

We	say	that	the	operation	is	communication	
bounded.	Very	little	reuse	of	data.

Performance for DOT ≤ 3.2 
Gflop/s



• Take	two	double	precision	vectors	x	and	y	of	size	
n=500.

• Data	size:	
– (	5002 double	)	*	(	8	Bytes	/	double	)	=	2	MBytes per	
matrix

(	Three	matrices	fit	in	cache	(6	MBytes).	OK.)	

• Time	to	move	the	matrices	in	cache:
– (	6	MBytes )	/	(	25.6	GBytes/sec	)	=	0.23	ms

• Time	to	perform	computation	in	GEMM:
– (	2n3	flop	)	/	(	56	Gflop/sec	)	=	4.46	ms

C CBA
α +	βGEMM:



Matrix	Matrix	Operations
total_time ≥ max	(	time_comm ,	time_comp )

=	max(	0.23ms	,	4.46ms	)	=	4.46ms
For	this	example,	communication	 time	is	less	than	6%	of	the	computation	time.	

Performance	 =	(2	x	500	3 flops)/4.69ms	=	53.3	Gflop/s
There	 is	a	lots	of	data	reuse	 in	a	GEMM;	2/3n	per	data	element.	Has	good	
temporal	locality.

If	we	assume	total_time ≈	time_comm +time_comp,	we	get	
Performance	 for	GEMM	≈	53.3	Gflop/sec

Performance	 for	DOT	≤	3.2	Gflop/s
Performance	 for	GEMV	≤	5.7	Gflop/s

(Out	of	56	Gflop/sec	possible,	 so	that	would	be	95%	peak	performance	 efficiency.)
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Matrix	(Vector)	Size	N	

dgemm	Level-3	BLAS
dgemv	Level-2	BLAS
daxpy	Level-1	BLAS

Level 1, 2 and 3 BLAS
1 core Intel Haswell i7-4850HQ, 2.3 GHz (Turbo Boost at 3.5 GHz); 

Peak = 56 Gflop/s

1 core Intel Haswell i7-4850HQ, 2.3 GHz, Memory: DDR3L-1600MHz
6 MB shared L3 cache, and each core has a private 256 KB L2 and 64 KB L1.
The theoretical peak per core double precision is 56  Gflop/s per core.
Compiled with gcc and using Veclib

1.6 Gflop/s
3.4 Gflop/s

54 Gflop/s



CPU Access Latencies in Clock Cycles

In 167 cycles can do 2672 DP Flops

Cycles

Cycles



Sunway TainhuLight
22 Flops / 1 Byte

Ratio of CPU speed to memory 
bandwidth increases 15–33% yearly

74

• Flops “free,”
memory expensive

• Good for dense,
BLAS-3 operations
(matrix multiply)

• Flops & memory
access balanced

• Good for sparse &
vector operations

Data from Stream benchmark (McCalpin) and vendor information sheets

NEC SX-ACE
1 Flop / 1 Byte

K Computer
2 Flop / 1 Byte



The Standard LU Factorization LINPACK
1970’s HPC of the Day: Vector Architecture

Factor column
with Level 1
BLAS

Divide by 
Pivot 
row

Schur
complement
update
(Rank 1 update)

Main points
• Factorization column (zero) mostly sequential due to memory bottleneck
• Level 1 BLAS
• Divide pivot row has little parallelism
• Rank -1 Schur complement update is the only easy parallelize task
• Partial pivoting complicates things even further
• Bulk synchronous parallelism (fork-join)

• Load imbalance
• Non-trivial Amdahl fraction in the panel
• Potential workaround (look-ahead) has complicated implementation

Next Step

7/15/16 75



The Standard LU Factorization LAPACK
1980’s HPC of the Day: Cache Based SMP

Factor panel
with Level 1,2
BLAS

Triangular
update

Schur
complement
update

Main points
• Panel factorization mostly sequential due to memory bottleneck
• Triangular solve has little parallelism
• Schur complement update is the only easy parallelize task
• Partial pivoting complicates things even further
• Bulk synchronous parallelism (fork-join)

• Load imbalance
• Non-trivial Amdahl fraction in the panel
• Potential workaround (look-ahead) has complicated implementation

Next Step

7/15/16 76



Last Generations of DLA Software

MAGMA
Hybrid Algorithms
(heterogeneity friendly) 

Rely on
- hybrid scheduler
- hybrid kernels

Software/Algorithms follow hardware evolution in time
LINPACK (70’s)
(Vector operations)

Rely on 
- Level-1 BLAS

operations

LAPACK (80’s)
(Blocking, cache 
friendly)

Rely on 
- Level-3 BLAS 

operations

ScaLAPACK (90’s)
(Distributed Memory)

Rely on 
- PBLAS Mess Passing

PLASMA
New Algorithms 
(many-core friendly)

Rely on 
- a DAG/scheduler
- block data layout
- some extra kernels

7/15/16
77



Parallelization of LU and QR.
Parallelize the update:

• Easy and done in any reasonable software.
• This is the 2/3n3 term in the FLOPs count.
• Can be done efficiently with LAPACK+multithreaded BLAS

-
dgemm

-

lu( )

dgetf2

dtrsm	(+	dswp)

dgemm

\

L

U

A(1)

A(2)
L

U

Fork - Join parallelism
Bulk Sync Processing

7/15/16
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C
or

es

Time

Synchronization (in LAPACK LU)

•  Fork-join, bulk synchronous processing 27 
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Ø fork join
Ø bulk synchronous processing

797/15/16



PLASMA LU Factorization
Dataflow Driven

xTRSM

xGEMM

xGEMM

xGETF2

xTRSM

xTRSM

xTRSM

xGEMM
xGEMM

xGEMM

xGEMM xGEMM
xGEMM

xGEMM

xGEMM xGEMM

Numerical program generates tasks and
run time system executes tasks respecting 
data dependences.

7/15/16
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Data Layout is Critical 

¨Tile data layout where each data 
tile is contiguous in memory

¨Decomposed into several fine-
grained tasks, which better fit the 
memory of the small core caches817/15/16



OpenMP Tasking

• Added with OpenMP 3.0 
(2009)

• Allows parallelization of 
irregular problems

• OpenMP 4.0 (2013) -
Tasks can have 
dependencies
• DAGs

82



Tiled Cholesky Decomposition

83



Öbjectives
Ø High utilization of each core
Ø Scaling to large number of cores
Ø Synchronization reducing algorithms

M̈ethodology
Ø Dynamic DAG scheduling 
Ø Explicit parallelism
Ø Implicit communication
Ø Fine granularity / block data layout

Ärbitrary DAG with dynamic scheduling

84

Fork-join parallelism
Notice the synchronization 
penalty in the presence of
heterogeneity.

The Purpose of a QUARK Runtime

DAG scheduled
parallelism

7/15/16
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PLASMA Local Scheduling
Dynamic Scheduling: Sliding Window

• DAGs get very big, very 
fast
• So windows of active 

tasks are used; this 
means no global critical 
path 

• Matrix of NBxNB tiles; 
NB3 operation

• NB=100 gives 1 million 
tasks 

85



PLASMA Local Scheduling
Dynamic Scheduling: Sliding Window

• DAGs get very big, very 
fast
• So windows of active 

tasks are used; this 
means no global critical 
path 

• Matrix of NBxNB tiles; 
NB3 operation

• NB=100 gives 1 million 
tasks 
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PLASMA Local Scheduling
Dynamic Scheduling: Sliding Window

• DAGs get very big, very 
fast
• So windows of active 

tasks are used; this 
means no global critical 
path 

• Matrix of NBxNB tiles; 
NB3 operation

• NB=100 gives 1 million 
tasks 

87



PLASMA Local Scheduling
Dynamic Scheduling: Sliding Window

• DAGs get very big, very 
fast
• So windows of active 

tasks are used; this 
means no global critical 
path 

• Matrix of NBxNB tiles; 
NB3 operation

• NB=100 gives 1 million 
tasks 
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PLASMA_[scdz]potrf[_Tile][_Async]() 

l Algorithm
l equivalent to LAPACK

l Numerics

l same as LAPACK

l Performance

l comparable to vendor on few cores

l much better than vendor on many cores

Algorithms
Cholesky
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Cholesky Performance (double prec.)

AMD Istanbul, 2.8 GHz, 8 sockets (48 cores)
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PLASMA

MKL

LAPACK
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PLASMA_[scdz]getrf[_Tile][_Async]() 

l Algorithm
l equivalent to LAPACK

l same pivot vector

l same L and U factors

l same forward substitution procedure

l Numerics

l same as LAPACK

l Performance

l comparable to vendor on few cores

l much better than vendor on many cores

Algorithms
LU

16 Sandy Bridge cores

7/15/16 90



PLASMA_[scdz]geqrt[_Tile][_Async]() 

l Algorithm
l the same R factor as LAPACK (absolute values)

l different set of Householder reflectors

l different Q matrix

l different Q generation / application procedure

l Numerics

l same as LAPACK

l Performance

l comparable to vendor on few cores

l much better than vendor on many cores

Algorithms
incremental QR Factorization

7/15/16 91



Algorithms
incremental QR Factorization (Communication Avoiding)

PLASMA_[scdz]geqrt[_Tile][_Async]() 

PLASMA_Set(
PLASMA_HOUSEHOLDER_MODE,
PLASMA_TREE_HOUSEHOLDER);

l Algorithm
l the same R factor as LAPACK (absolute values)

l different set of Householder reflectors

l different Q matrix

l different Q generation / application procedure

l Numerics

l same as LAPACK

l Performance

l absolutely superior for tall matrices

7/15/16 92



Communication Avoiding QR 
Example

Quad-socket, quad-core machine Intel Xeon 
EMT64 E7340 at 2.39 GHz. 
Theoretical peak is 153.2 Gflop/s with 16 
cores.
Matrix size 51200 by 3200

7/15/16 93



PLASMA_[scdz]syev[_Tile][_Async]() 

l Algorithm
l two-stage tridiagonal reduction + QR Algorithm

l fast eigenvalues, slower eigenvectors

(possibility to calculate a subset)

l Numerics

l same as LAPACK

l Performance

l comparable to MKL for very small problems

l absolutely superior for larger problems

Algorithms
three-stage symmetric EVP
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PLASMA_[scdz]gesvd[_Tile][_Async]() 

l Algorithm
l two-stage bidiagonal reduction + QR iteration

l fast singular values, slower singular vectors

(possibility of calculating a subset)

l Numerics

l same as LAPACK

l Performance

l comparable with MKL for very small problems

l absolutely superior for larger problems

Algorithms
three-stage SVD

DGESDD on 48 AMD cores DGESDD on 16 Sandy Bridge cores
7/15/16 95



Pipelining: Cholesky Inversion
3 Steps: Factor, Invert L, Multiply L’s

96

POTRF+TRTRI+LAUUM: 25 (7t-3)
Cholesky Factorization alone: 3t-2

48 cores
POTRF, TRTRI and LAUUM.
The matrix is 4000 x 4000,tile size is 200 x 200,

Pipelined: 18 (3t+6)



Mixed Precision Methods

• Mixed precision, use the lowest 
precision required to achieve a given 
accuracy outcome
§ Improves runtime, reduce power 

consumption, lower data movement
§ Reformulate to find correction to 

solution, rather than solution; Δx rather 
than x.

97 97
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Idea Goes Something Like This…
• Exploit 32 bit floating point as much as 

possible.
§ Especially for the bulk of the computation

• Correct or update the solution with selective 
use of 64 bit floating point to provide a 
refined results

• Intuitively: 
§ Compute a 32 bit result, 
§ Calculate a correction to 32 bit result using 

selected higher precision and,
§ Perform the update of the 32 bit results with the 

correction using high precision. 



L U = lu(A) SINGLE O(n3)
x = L\(U\b) SINGLE O(n2)
r = b – Ax DOUBLE O(n2)
WHILE || r || not small enough

z = L\(U\r) SINGLE O(n2)
x = x + z DOUBLE O(n1)
r = b – Ax DOUBLE O(n2)

END

Mixed-Precision Iterative Refinement
• Iterative refinement for dense systems,   Ax = b, can work this 

way.

§ Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt 
results when using DP fl pt.
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L U = lu(A) SINGLE O(n3)
x = L\(U\b) SINGLE O(n2)
r = b – Ax DOUBLE O(n2)
WHILE || r || not small enough

z = L\(U\r) SINGLE O(n2)
x = x + z DOUBLE O(n1)
r = b – Ax DOUBLE O(n2)

END

Mixed-Precision Iterative Refinement
• Iterative refinement for dense systems,   Ax = b, can work this 

way.

§ Wilkinson, Moler, Stewart, & Higham provide error bound for SP fl pt 
results when using DP fl pt.

§ It can be shown that using this approach we can compute the solution 
to 64-bit floating point precision.

• Requires extra storage, total is 1.5 times normal;
• O(n3) work is done in lower precision
• O(n2) work is done in high precision
• Problems if the matrix is ill-conditioned in sp; O(108) 100
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Conventional Wisdom is Changing

• Peak clock frequency as 
primary limiter for 
performance improvement

• Cost: FLOPs are biggest 
cost for system: optimize 
for compute

• Concurrency: Modest 
growth of parallelism by 
adding nodes

• Memory scaling: maintain 
byte per flop capacity and 
bandwidth

• Uniformity: Assume 
uniform system 
performance

• Reliability: It’s the 
hardware’s problem

• Power is primary design
constraint for future HPC 
system design

• Cost: Data movement 
dominates optimize to 
minimize data movement

• Concurrency: Exponential 
growth of parallelism within 
chips

• Memory Scaling: Compute 
growing 2x faster than 
capacity or bandwidth

• Heterogeneity: Architectural 
and performance non-uniformity 
increase

• Reliability: Cannot count on 
hardware protection alone

Old Conventional Wisdom New Conventional Wisdom



We Can Build an Exascale System Today?

104
Require 150 MW of power, programming for 100 M threads, and $2.7B price tag

Connect together 10 Sunway TaihuLight systems



Systems 2016
Sunway TaihuLight

2022 
(may be 2024)

Difference
Today & Exa

System peak 125.4 Pflop/s 1 Eflop/s ~10x

Power 15 MW
(8 Gflops/W)

~20 MW
(50 Gflops/W)

O(1)
~6x

System memory 1.31 PB 32 - 64 PB ~50x

Node performance 3.06 TF/s 1.2 or 15TF/s O(1) 

Node concurrency 260 cores  O(1k) or 10k ~5x - ~50x

Node Interconnect BW 16 GB/s 200-400GB/s ~25x

System size (nodes) 40,960 O(100,000) or O(1M) ~6x - ~60x

Total concurrency 10.6 M O(billion) ~100x

MTTF Few / day Many / day O(?)

Today’s #1 System



Systems 2016
Sunway TaihuLight

2022 
(may be 2024)

Difference
Today & Exa

System peak 125.4 Pflop/s 1 Eflop/s ~10x

Power 15 MW
(8 Gflops/W)

~20 MW
(50 Gflops/W)

O(1)
~6x

System memory 1.31 PB 32 - 64 PB ~50x

Node performance 3.06 TF/s 1.2 or 15TF/s O(1) 

Node concurrency 260 cores  O(1k) or 10k ~5x - ~50x

Node Interconnect BW 16 GB/s 200-400GB/s ~25x

System size (nodes) 40,960 O(100,000) or O(1M) ~6x - ~60x

Total concurrency 10.6 M O(billion) ~100x

MTTF Few / day Many / day O(?)

Exascale System Architecture
with a cap of $200M and 20MW 



Systems 2016
Sunway TaihuLight

2020 
(may be 2023)

Difference
Today & Exa

System peak 125.4 Pflop/s 1 Eflop/s ~10x

Power 15 MW
(8 Gflops/W)

~20 MW
(50 Gflops/W)

O(1)
~6x

System memory 1.31 PB 32 - 64 PB ~50x

Node performance 3.06 TF/s 1.2 or 15TF/s O(1) 

Node concurrency 260 cores  O(1k) or 10k ~5x - ~50x

Node Interconnect BW 16 GB/s 200-400GB/s ~25x

System size (nodes) 40,960 O(100,000) or O(1M) ~6x - ~60x

Total concurrency 10.6 M O(billion) ~100x

MTTF Few / day Many / day O(?)

Exascale System Architecture
with a cap of $200M and 20MW 



Recent Developments
¨ US DOE planning to deploy O(100) Pflop/s systems 

for 2017-2018 - $525M hardware
Ø ORNL and LLNL to receive IBM and Nvidia based systems
Ø ANL to receive Intel based system
Ø After this Exaflops
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Exascale (1018 Flop/s) Systems: 
Two Possible Swim Lanes

• Light weight processors (eg ShenWei,  ARM, Phi)

§ ~1 GHz processor (109)
§ ~1 Kilo cores/socket (103)
§ ~1 Mega sockets/system (106)

• Hybrid system (think Acc based)
§ ~1 GHz processor (109)
§ ~10 Kilo FPUs/socket (104)   
§ ~100 Kilo sockets/system (105) 

Socket Level
Cores scale-out for planar geometry

Node Level
3D packaging



Software and Algorithm Must Keep Pace with 
the Changes in Hardware

7/15/16
110

• Classical analysis of algorithms is not valid, 
• # of floating point ops ≠ computation time.

• Algorithms and software must take advantage by 
reducing data movement.
• Need latency tolerance in our algorithms

• Communication and synchronization reducing 
algorithms and software are critical.
• As parallelism grows

• Hardware presents a dynamically changing 
environment
• Turbo Boost and OS jitter

• Many existing algorithms can’t fully exploit the  
features of modern architecture
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Major Changes to Software
• Must rethink the design of our 

software
§ Another disruptive technology

• Similar to what happened with cluster 
computing and message passing

§ Rethink and rewrite the applications, 
algorithms, and software



Critical Issues at Peta & Exascale for 
Algorithm and Software Design
• Synchronization-reducing algorithms

§ Break Fork-Join model

• Communication-reducing algorithms
§ Use methods which have lower bound on communication

• Mixed precision methods
§ 2x speed of ops and 2x speed for data movement

• Autotuning
§ Today’s machines are too complicated, build “smarts” into 

software to adapt to the hardware

• Fault resilient algorithms
§ Implement algorithms that can recover from failures

• Reproducibility of results
§ Today we can’t guarantee this. We understand the issues, 

but some of our “colleagues” have a hard time with this.



Exascale Computing
reported in 2008

• Exascale systems are likely feasible by 2017±2 
• 10-100 Million processing elements (cores or                            

mini-cores) with chips perhaps as dense as                           
1,000 cores per socket, clock rates will grow                       
more slowly

• 3D packaging likely
• Large-scale optics based interconnects
• 10-100 PB of aggregate memory
• Hardware and software based fault management

• Heterogeneous cores
• Performance per watt — stretch goal 100 GF/watt of 

sustained performance        >> 10 – 100 MW Exascale system 
• Power, area and capital costs will be significantly higher 

than for today’s fastest systems

113
Google: exascale computing study� 

⇒



Top 10 Challenges to Exascale
In a recent report U.S. Department 
of Energy identified ten research 
challenges (Google “Top 10 Challenges to Exascale”)

7/15/16
114



Top 10 Challenges to Exascale

• Energy efficiency: 
• Creating more energy efficient circuit, 

power, and cooling technologies.

• Interconnect technology: 
• Increasing the performance and energy 

efficiency of data movement.

• Memory Technology: 
• Integrating advanced memory 

technologies to improve both capacity 
and bandwidth.

• Scalable System 
Software: 

• Developing scalable system software 
that is power and resilience aware.

• Programming systems: 
• Inventing new programming 

environments that express massive 
parallelism, data locality, and resilience

• Data management: 
• Creating data management software that 

can handle the volume, velocity and 
diversity of data that is anticipated. 

• Scientific productivity: 
• Increasing the productivity of 

computational scientists with new software 
engineering tools and environments.

• Exascale Algorithms: 
• Reformulating science problems and 

refactoring their solution algorithms for 
exascale systems.

• Algorithms for discovery, 
design, and decision: 

• Facilitating mathematical optimization and 
uncertainty quantification for exascale
discovery, design, and decision making.

• Resilience and correctness: 
• Ensuring correct scientific computation in 

face of faults, reproducibility, and 
algorithm verification challenges.

3 Hardware, 4 Software, 3 Algorithms/Math Related



Conclusions 
• For the last decade or more, the research 

investment strategy has been 
overwhelmingly biased in favor of hardware. 

• This strategy needs to be rebalanced -
barriers to progress are increasingly on the 
software side.  

• Moreover, the return on investment is more 
favorable to software.
§ Hardware has a half-life measured in years, while 

software has a half-life measured in decades.
• High Performance Ecosystem out of balance

§ Hardware, OS, Compilers, Software, Algorithms, Applications
• No Moore’s Law for software, algorithms and applications



By the way
Performance for your system

• If you are interested in running the Linpack
Benchmark on your system see:

https://software.intel.com/en-
us/node/157667?wapkw=mkl+linpack

• http://bit.ly/linpack-bm

./linpack_cd64 < lininput

• Also Intel has a power meter, see:
https://software.intel.com/en-us/articles/intel-power-
gadget-20

http://bit.ly/intel-power
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118Confessions of an 
Accidental Benchmarker

• Appendix B of the Linpack Users’ Guide
• Designed to help users extrapolate execution                                time for 

Linpack software package
• First benchmark report from 1977; 

• Cray 1 to DEC PDP-10                                 

http://bit.ly/hpcg-benchmark 



Started 37 Years Ago
Have seen a Factor of 109 - From 14 Mflop/s to 34 Pflop/s
• In the late 70’s the 

fastest computer ran 
LINPACK at 14 Mflop/s

• Today with HPL we are 
at 34 Pflop/s
• Nine orders of magnitude
• doubling every 14 months
• About 6 orders of 

magnitude increase in the 
number of processors

• Plus algorithmic 
improvements

Began in late 70’s 
time when floating point operations were expensive compared to 
other operations and data movement

http://bit.ly/hpcg-benchmark 119



http://tiny.cc/hpcg

TOP500
• In 1986 Hans Meuer started a list of 

supercomputer around the world, they were 
ranked by peak performance. 

• Hans approached me in 1992 to put together 
our lists into the “TOP500”.

• The first TOP500 list was in June 1993.

120



High Performance Linpack (HPL)
• Is a widely recognized and discussed metric for ranking 

high performance computing systems 
• When HPL gained prominence as a performance metric in 

the early 1990s there was a strong correlation between 
its predictions of system rankings and the ranking 
that full-scale applications would realize.

• Computer system vendors pursued designs that 
would increase their HPL performance, which would in 
turn improve overall application performance.

• Today HPL remains valuable as a measure of historical 
trends, and as a stress test, especially for leadership 
class systems that are pushing the boundaries of current 
technology. 

http://bit.ly/hpcg-benchmark 121



The Problem
• HPL performance of computer systems are no longer so 

strongly correlated to real application performance, 
especially for the broad set of HPC applications governed 
by partial differential equations.

• Designing a system for good HPL performance can 
actually lead to design choices that are wrong for the 
real application mix, or add unnecessary components or 
complexity to the system.

http://bit.ly/hpcg-benchmark 122



Concerns
• The gap between HPL predictions and real application 

performance will increase in the future. 
• A computer system with the potential to run HPL at 1 

Exaflops is a design that may be very unattractive for 
real applications. 

• Future architectures targeted toward good HPL 
performance will not be a good match for most 
applications.

• This leads us to a think about a different metric 

http://bit.ly/hpcg-benchmark 123



HPL - Good Things
• Easy to run
• Easy to understand
• Easy to check results
• Stresses certain parts of the system
• Historical database of performance information
• Good community outreach tool
• “Understandable” to the outside world

• If your computer doesn’t perform well on the LINPACK 
Benchmark, you will probably be disappointed with the 
performance of your application on the computer.

http://bit.ly/hpcg-benchmark 124



HPL - Bad Things 
• LINPACK Benchmark is 36 years old

• Top500 (HPL)  is 20.5 years old

• Floating point-intensive performs O(n3) floating point 
operations and moves O(n2) data.

• No longer so strongly correlated to real apps.
• Reports Peak Flops (although hybrid systems see only 1/2 to 2/3 of Peak)

• Encourages poor choices in architectural features 
• Overall usability of a system is not measured
• Used as a marketing tool
• Decisions on acquisition made on one number
• Benchmarking for days wastes a valuable resource

http://bit.ly/hpcg-benchmark 125



Running HPL
• In the beginning to run HPL on the number 1 system 

was under an hour.
• On Livermore’s Sequoia IBM BG/Q the HPL run took 

about a day to run.
• They ran a size of n=12.7 x 106 (1.28 PB)
• 16.3 PFlop/s requires about 23 hours to run!!

• 23 hours at 7.8 MW that the equivalent of 100 barrels of oil or about 
$8600 for that one run. 

• The longest run was 60.5 hours 
• JAXA machine 

• Fujitsu FX1, Quadcore SPARC64 VII  2.52 GHz
• A matrix of size n = 3.3 x 106

• .11 Pflop/s #160 today

http://bit.ly/hpcg-benchmark 126
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#1 System on the Top500 Over the Past 24 Years 
(18 machines in that club)
Top500  List Computer

r_max
(Tflop/s) n_max Hours MW

6/93 (1) TMC CM-5/1024 .060 52224 0.4
11/93 (1) Fujitsu Numerical Wind Tunnel .124 31920 0.1 1.
6/94 (1) Intel XP/S140 .143 55700 0.2

11/94 - 11/95 (3) Fujitsu Numerical Wind Tunnel .170 42000 0.1 1.
6/96 (1) Hitachi SR2201/1024 .220 138,240 2.2
11/96 (1) Hitachi CP-PACS/2048 .368 103,680 0.6

6/97 - 6/00 (7) Intel ASCI Red 2.38 362,880 3.7 .85
11/00 - 11/01 (3) IBM ASCI White, SP Power3 375 MHz 7.23 518,096 3.6
6/02 - 6/04 (5) NEC Earth-Simulator 35.9 1,000,000 5.2 6.4

11/04 - 11/07 (7) IBM BlueGene/L 478. 1,000,000 0.4 1.4
6/08 - 6/09 (3) IBM Roadrunner –PowerXCell 8i 3.2 Ghz 1,105. 2,329,599 2.1 2.3

11/09 - 6/10 (2) Cray Jaguar - XT5-HE 2.6 GHz 1,759. 5,474,272 17.3 6.9
11/10 (1) NUDT Tianhe-1A, X5670 2.93Ghz NVIDIA 2,566. 3,600,000 3.4 4.0

6/11 - 11/11 (2) Fujitsu K computer, SPARC64 VIIIfx 10,510. 11,870,208 29.5 9.9
6/12 (1) IBM Sequoia BlueGene/Q 16,324. 12,681,215 23.1 7.9
11/12 (1) Cray XK7 Titan AMD + NVIDIA Kepler 17,590. 4,423,680 0.9 8.2

6/13 – 11/15(6) NUDT Tianhe-2 Intel IvyBridge & Xeon Phi 33,862. 9,960,000 5.4 17.8
6/16 – Sunway TaihuLight System 93,014. 12,288,000 3.7 15.4

9 6 3
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Assumptions
§ Leadership	class	system:

§ Cost:		$200M
§ Lifetime:		4	years
§ Power	consumption:		10MW

129

§ Cost	of	one	MW-year	is	$1M
§ Linpackmeasurement	requires	system	for	a	week

§ To	achieve	a	high	fraction	of	peak	requires	a	large	
problem	size	so	a	typical	MP	Linpack run	takes	a	day
§ Multiple	 runs	are	made	as	initial	 tests	are	run	with	“small”	problems
§ Successive	 tests	use	 larger	and	larger	problem	sizes,	some	 of	these	
tests	will	“fail”	– requiring	re-runs

From: Jim Ang, SNL; What’s the True Cost of LINPACK, Salishan 2013
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Ugly Things about HPL
• Doesn’t probe the architecture; only one data point
• Constrains the technology and architecture options for 

HPC system designers.
• Skews system design.

• Floating point benchmarks are not quite as valuable to 
some as data-intensive system measurements

http://bit.ly/hpcg-benchmark 130



Many Other Benchmarks
• Top 500
• Green 500
• Graph 500 174
• Sustained Petascale
Performance 

• HPC Challenge
• Perfect
• ParkBench
• SPEC-hpc

• Livermore Loops
• EuroBen
• NAS Parallel Benchmarks
• Genesis
• RAPS
• SHOC
• LAMMPS
• Dhrystone 
• Whetstone

http://bit.ly/hpcg-benchmark 131



Goals for New Benchmark
• Augment the TOP500 listing with a benchmark that correlates with important 

scientific and technical apps not well represented by HPL

• Encourage vendors to focus on architecture features needed for high 
performance on those important scientific and technical apps.
• Stress a balance of floating point and communication bandwidth and latency
• Reward investment in high performance collective ops
• Reward investment in high performance point-to-point messages of various sizes
• Reward investment in local memory system performance
• Reward investment in parallel runtimes that facilitate intra-node parallelism

• Provide an outreach/communication tool
• Easy to understand
• Easy to optimize
• Easy to implement, run, and check results

• Provide a historical database of performance information
• The new benchmark should have longevity

http://tiny.cc/hpcg 132



Proposal: HPCG
• High Performance Conjugate Gradient (HPCG).
• Solves Ax=b, A large, sparse, b known, x computed.
• An optimized implementation of PCG contains essential 

computational and communication patterns that are 
prevalent in a variety of methods for discretization and 
numerical solution of PDEs 

• Patterns:
• Dense and sparse computations.
• Dense and sparse collective.
• Multi-scale execution of kernels via MG (truncated) V cycle.
• Data-driven parallelism (unstructured sparse triangular solves).

• Strong verification and validation properties (via spectral 
properties of PCG).

http://tiny.cc/hpcg 133



Model Problem Description
• Synthetic discretized 3D PDE (FEM, FVM, FDM).
• Single DOF heat diffusion model.
• Zero Dirichlet BCs, Synthetic RHS s.t. solution = 1.
• Local domain:
• Process layout:
• Global domain:
• Sparse matrix: 

• 27 nonzeros/row interior. 
• 8 – 18 on boundary.
• Symmetric positive definite.

(nx × ny × nz )

(npx × npy × npz )

(nx *npx )× (ny *npy )× (nz *npz )

http://tiny.cc/hpcg



PCG ALGORITHM
up0 := x0, r0 := b-Ap0
uLoop i = 1, 2, …

o zi := M-1ri-1
o if i = 1

§ pi := zi
§ αi := dot_product(ri-1, z)

o else
§ αi := dot_product(ri-1, z)
§ βi := αi/αi-1
§ pi := βi*pi-1+zi

o end if
o αi := dot_product(ri-1, zi) /dot_product(pi, A*pi)
o xi+1 := xi + αi*pi
o ri := ri-1 – αi*A*pi
o if ||ri||2 < tolerance then Stop

uend Loop

http://tiny.cc/hpcg 135



Preconditioner
• Hybrid geometric/algebraic multigrid:

• Grid operators generated synthetically:
• Coarsen by 2 in each x, y, z dimension (total of 8 

reduction each level).
• Use same GenerateProblem() function for all levels.

• Grid transfer operators:
• Simple injection.  Crude but…
• Requires no new functions, no repeat use of other 

functions.
• Cheap.

• Smoother:
• Symmetric Gauss-Seidel [ComputeSymGS()].
• Except, perform halo exchange prior to sweeps.
• Number of pre/post sweeps is tuning parameter.

• Bottom solve:
• Right now just a single call to ComputeSymGS().
• If no coarse grids, has identical behavior as HPCG 1.X.

136
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• Symmetric Gauss-Seidel preconditioner 
• In Matlab that might look like:

LA = tril(A); UA = triu(A); DA = diag(diag(A));

x = LA\y;
x1 = y - LA*x + DA*x; % Subtract off extra 

diagonal contribution
x = UA\x1;



HPCG and HPL
• We are NOT proposing to eliminate HPL as a metric.

• The historical importance and community outreach value 
is too important to abandon.

• HPCG will serve as an alternate ranking of the Top500.
• Or maybe top 50 (have 15 systems at the moment).

137
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HPL vs. HPCG: Bookends
• Some see HPL and HPCG as “bookends” of a spectrum.

• Applications teams know where their codes lie on the spectrum.
• Can gauge performance on a system using both HPL and HPCG 

numbers.

• Problem of HPL execution time still an issue:
• Need a lower cost option.  End-to-end HPL runs are too expensive.
• Work in progress.

http://tiny.cc/hpcg 138
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Bookends: Peak, HPL, and HPCG
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Rank 
(HPL) Site Computer Cores Rmax HPCG HPCG/HPL % of Peak

1 (2)  NSCC / Guangzhou

Tianhe-2 NUDT, Xeon 12C 
2.2GHz + Intel Xeon Phi 57C 
+ Custom 3,120,000 33.863 0.5800 1.7% 1.1%

2 (5)
RIKEN Advanced Institute for 
Computational Science

K computer, SPARC64 VIIIfx
2.0GHz, Tofu interconnect 705,024 10.510 0.5544 5.3% 4.9%

3 (1)
National Supercomputing Center in 
Wuxi

Sunway TaihuLight --
SW26010, Sunway 10,649,600 93.015 0.3712 0.4% 0.3%

4 (4) DOE/NNSA/LLNL Sequoia - IBM BlueGene/Q 1,572,864 17.173 0.3304 1.9% 1.6%

5 (3) DOE/SC/Oak Ridge Nat Lab

Titan - Cray XK7 , Opteron 
6274 16C 2.200GHz, Cray 
Gemini interconnect, NVIDIA 
K20x 560,640 17.590 0.3223 1.8% 1.2%

6 (7) DOE/NNSA/LANL/SNL
Trinity - Cray XC40, Intel E5-
2698v3, Aries custom 301,056 8.101 0.1826 2.3% 1.6%

7 (6) DOE/SC/Argonne National Laboratory
Mira - BlueGene/Q, Power 
BQC 16C 1.60GHz, Custom 786,432 8.587 0.1670 1.9% 1.7%

8 (11) TOTAL
Pangea -- Intel Xeon E5-
2670, Infiniband FDR 218592 5.283 0.1627 3.1% 2.4%

9 (15) NASA / Mountain View

Pleiades - SGI ICE X, Intel 
E5-2680, E5-2680V2, E5-
2680V3, Infiniband FDR 185,344 4.089 0.1555 3.8% 3.1%

10 (9) HLRS/University of Stuttgart
Hazel Hen - Cray XC40, Intel 
E5-2680v3, Cray Aries 185,088 5.640 0.1380 2.4% 1.9%

1-10



Rank Site Computer Cores Rmax HPCG HPCG/HPL % of Peak

11
Swiss National Supercomputing Centre 
(CSCS)

Piz Daint - Cray XC30, Xeon 
E5-2670 8C 2.600GHz, Aries 
interconnect , NVIDIA K20x 115,984 6.271 0.1246 2.0% 1.6%

12KAUST / Jeddah

Shaheen II - Cray XC40, Intel 
Haswell 2.3 GHz 16C, Cray 
Aries 196,608 5.537 0.1139 2.1% 1.6%

13Japan Aerospace eXploration Agency SORA-MA -- SPARC64 XIfx 103,680 3.157 0.1102 3.5% 3.2%

14
Texas Advanced Computing Center/Univ. of 
Texas

Stampede - PowerEdge 
C8220, Xeon E5-2680 8C 
2.700GHz, Infiniband FDR, 
Intel Xeon Phi SE10P 522,080 5.168 0.0968 1.9% 1.0%

15Forschungszentrum Jülich JUQUEEN - BlueGene/Q 458,752 5.009 0.0955 1.9% 1.6%

16
Information Technology Center, Nagoya 
University

ITC, Nagoya - Fujitsu 
PRIMEHPC FX100, SPARC64 
Xifx, Tofu interconnect 2 92,160 2.910 0.0865 3.0% 2.7%

17Leibniz Rechenzentrum

SuperMUC - iDataPlex 
DX360M4, Xeon E5-2680 8C 
2.70GHz, Infiniband FDR 147,456 2.897 0.0833 2.9% 2.6%

18DOE/NNSA/LLNL Vulcan - IBM BlueGene/Q 393,216 4.293 0.0809 1.9% 1.6%

19EPSRC/University of Edinburgh

ARCHER - Cray XC30, Intel 
Xeon E5 v2 12C 2.700GHz, 
Aries interconnect 118,080 1.643 0.0808 4.9% 3.2%

20DOE/SC/LBNL/NERSC

Edison - Cray XC30, Intel Xeon 
E5-2695v2 12C 2.4GHz, Aries 
interconnect 133,824 1.655 0.0786 4.8% 3.1%

11-20



Rank Site Computer Cores Rmax HPCG HPCG/HPL % of Peak

21National Institute for Fusion Science

Plasma Simulator - Fujitsu 
PRIMEHPC FX100, SPARC64 
Xifx, Tofu Interconnect 2 82,944 2.376 0.0732 3.1% 2.8%

22GSIC Center, Tokyo Institute of Technology

TSUBAME 2.5 - Cluster Platform SL390s 
G7, Xeon X5670 6C 2.93GHz, Infiniband
QDR, NVIDIA K20x 76,032 2.785 0.0725 2.6% 1.3%

23Forschungszentrum Jülich

JURECA - T-Platform V-Class 
Cluster, Xeon E5-2680v3 12C 
2.5GHz, Infiniband EDR, 
NVIDIA Tesla K80/K40 49,476 1.425 0.0683 4.8% 3.8%

24HLRS/Universitaet Stuttgart
Hornet - Cray XC40, Xeon E5-
2680 v3 2.5 GHz, Cray Aries 94,656 2.763 0.0661 2.4% 1.7%

25Max-Planck-Gesellschaft MPI/IPP

iDataPlex DX360M4, Intel Xeon 
E5-2680v2 10C 2.800GHz, 
Infiniband FDR 65,320 1.283 0.0615 4.8% 4.2%

26CEIST / JAMSTEC Earth Simulator - NEC SX-ACE 8,192 0.487 0.0578 11.9% 11.0%

27
Information Technology Center, The 
University of Tokyo Oakleaf-FX -- SPARC64 Ixfx 76,800 1.043 0.0565 5.4% 5.0%

28CEIST / JAMSTEC
Earth Simulator -- NEC SX-
ACE 8,192 0.487 0.0547 11.2% 10.4%

29CEA/TGCC-GENCI

Curie thin nodes - Bullx B510, 
Xeon E5-2680 8C 2.700GHz, 
Infiniband QDR 77,184 1.359 0.0510 3.8% 3.1%

30Exploration & Production - Eni S.p.A.

HPC2 - iDataPlex DX360M4, Intel 
Xeon E5-2680v2 10C 2.8GHz, 
Infiniband FDR, NVIDIA K20x 62,640 3.003 0.0489 1.6% 1.2%

21-30



Rank Site Computer Cores Rmax HPCG HPCG/HPL % of Peak

31

Grand Equipement National de Calcul
Intensif - Centre Informatique National de 
l'Enseignement Superieur (GENCI-CINES)

Occigen Bullx B720, Xeon E5-
2690v3 12C 2.600GHz, 
InfiniBand FDR 50,544 1.629 0.0455 2.8% 2.2%

32

International Fusion Energy Research Centre 
(IFERC), EU(F4E) - Japan Broader Approach 
collaboration

Helios Bullx B510, Xeon E5-
2680 8C 2.700GHz, Infiniband 
QDR 70,560 1.237 0.0426 3.4% 2.8%

33 Cyfronet
Prometheus - HP ProLiant Intel 
E5-2680v3, Infiniband FDR 55,728 1.670 0.0399 2.4% 1.7%

34
Lvliang/National University of Defense 
Technology

Tianhe-2 Lvliang - Intel Xeon 
E5-2692v2 12C, TH Express-2, 
Intel Xeon Phi 31S1P 174,720 2.071 0.0376 1.8% 1.2%

35
Moscow State University / Research 
Computing Center

Lomonosov 2 - Intel Xeon E5-
2680V2, Infiniband FDR, 
NVIDIA K40 37,120 1.849 0.0315 1.7% 1.2%

36 DKRZ - Deutsches Klimarechenzentrum
Mistral -- Intel Xeon E5-2695v4, 
Infiniband FDR 19,200 1.371 0.0283 2.1% 1.7%

37 Cyberscience Center, Tohoku University
Cyberscience Center, Tohoku 
University -- NEC SX-ACE 4,096 0.246 0.0279 11.3% 10.7%

38 Stanford University / Palo Alto

Xstream - Dual Intel E5-
2680V2, 8-way NVIDIA K80, 
Infiniband FDR 237,120 0.781 0.0230 2.9% 2.3%

39 CINECA Fermi - IBM BlueGene/Q 163,840 1.789 0.0216 1.2% 1.0%

40 SURFsara, Amsterdam
Cartesius2 bullx B720, dual socket Intel 
Xeon E5-2690 v3, Infiniband FDR 25,920 0.848 0.0195 2.3% 1.8%
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Rank Site Computer Cores Rmax HPCG HPCG/HPL % of Peak

41Cyberscience Center / Tohoku University NEC SX-ACE 4C+IXS 2,048 0.123 0.0150 12.2% 11.4%

42Cybermedia Center, Osaka University Osaka U ACE -- NEC SX-ACE 2,048 0.123 0.0142 11.5% 10.8%

43SGI
SGI ICE X -- Intel Xeon E5-
2690v4, Infiniband EDR 16,128 0.602 0.0122 2.0% 1.8%

44LNCC
Santos Dumont, Bullx Intel E5-
2695v2, Infiniband FDR 17,616 0.321 0.0121 3.8% 3.5%

45Intel

Endeavor - Intel Cluster, Dual 
Intel Xeon E5-2697v3 14C 
2.700GHz, Infiniband FDR, 
Intel Xeon Phi 7120P 51,392 0.759 0.0112 1.5% 1.2%

46Meteo France

Beaufix - Bullx DLC B710 
Blades, Intel Xeon E5-2697v2 
12C 2.7GHz, Infiniband FDR 24,192 0.469 0.0110 2.3% 2.1%

47Saint Petersburg Polytechnic University
Polytechnic - RSC Tornado 
Intel E52697v3, Infiniband FDR 17,444 0.658 0.0108 1.6% 1.3%

48Meteo France

Prolix - Bullx DLC B710 Blades, 
Intel Xeon E5-2697v2 12C 
2.7GHz, Infiniband FDR 23,760 0.465 0.0100 2.1% 1.9%

49Bull Angers
Manny Bullx B720, Xeon E5-2690v3 
12C 2.600GHz, InfiniBand FDR 12,960 0.430 0.0097 2.3% 1.8%

50
University Heidelberg and University 
Mannheim

bwForCluster - Intel E5-2630v3, 
Infiniband QDR 7,552 0.241 0.0093 3.9% 3.2%
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Rank Site Computer Cores Rmax HPCG HPCG/HPL % of Peak

51 Michigan State University
Laconia -- Intel Xeon E5-2680v4, 
Infiniband EDR FDR 1,008,760 0.536 0.0091 1.7% 1.2%

52 University of Duisburg-Essen
magnitUDE -- Intel Xeon E5-2650v4, 
Intel OmniPath 12 0.437 0.0090 2.1% 1.9%

53 CALMIP / University of Toulouse

EOS - Bullx DLC B710 Blades, Intel 
Xeon E5-2680v2 10C 2.8GHz, 
Infiniband FDR 12,240 0.255 0.0073 2.8% 2.6%

54 Christian-Albrechts-Universitaet zu Kiel NEC SX-ACE -- NEC SX-ACE 1,024 0.062 0.0068 11.1% 10.5%

55 GSIC Center, Tokyo Institute of Technology
TSUBAME-KFC/DL -- Intel Xeon E5-
2620-V2, Infiniband FDR 2,720 0.273 0.0068 2.5% 1.6%

56 University of Tuebingen
BinAC -- Intel Xeon E5-2680v4, 
Infiniband FDR 4,800 0.209 0.0063 3.0% 2.2%

57
The Institute of Atmospheric Physics, 
Chinese Academy of Sciences

Earth System Numerical Simulator-1 
- Intel E5-2680-V3, Infiniband FDR 24,912 0.738 0.0063 0.8% 0.6%

58 Joint Supercomputer Center RAS
MVS-10P - Intel E5-2690, Infiniband
FDR, Xeon Phi SE10X 2,992 0.376 0.0049 1.3% 0.9%

59 University of Rijeka
Bura - Bullx Intel E5-2690v3, 
Infiniband FDR 5,952 0.234 0.0047 2.0% 1.6%

60 CINECA

Galileo - Dual Intel E5-2630 v3 2.4 
GHz, Infiniband QDR, Dual NVIDIA 
K80 2,720 0.0046 1.9%
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Rank Site Computer Cores Rmax HPCG HPCG/HPL % of Peak

61 NSC / Linkoping
Bifrost - ASUS, Intel Xeon E5-2640v3 8C 
2.6GHz, Intel TruescaleInfiniband QDR 10,256 0.326 0.0045 1.4% 0.8%

62 Shanghai Supercomputer Center Magic Cube II - Intel E5-2680-V3, Infiniband EDR 9,960 0.296 0.0044 1.5% 1.1%

63 Max-Planck-Institut für Mikrostrukturphysik
Cruncher - Intel E5-2680-V3, Intel Truescale
Infiniband QDR 12 0.112 0.0040 3.6% 2.8%

64 Cambridge University
Wilkes - Dell T620 Cluster, Intel Xeon E5-2630v2 
6C 2.600GHz, InfinibandFDR, NVIDIA K20 5,120 0.240 0.0039 1.6% 1.0%

65 Chelyabinsk
RSC Tornado SUSU, Intel X5680, Infiniband
QDR, Xeon Phi SE10X 4,032 0.288 0.0036 1.2% 0.8%

66 CINECA
Galileo - Dual Intel E5-2630 v3 2.4 GHz, 
Infiniband QDR, Dual Intel Xeon Phi 7120P 13,600 0.0034 1.5%

67 Atos Angers Sid - Bullx Intel E5-2680v3, InfiniBand FDR 4,224 0.129 0.0032 2.5% 2.0%

68 St. Petersburg Polytechnic University
Polytechnic RSC PetaStream - Intel E5-2650 v2, 
Infiniband FDR, Xeon Phi 5120D 232 0.170 0.0031 1.8% 1.2%

69
Supercomputing Center of Chinese Academy 
of Sciences

Era-2 - Intel E5-2680-V3, Infiniband FDR, Xeon 
Phi + NVIDIA K20 13560 0.407 0.0030 0.7% 0.6%

70 SURFsara

Cartesius - Bullx B515 cluster, Intel Xeon E5-
2450v2 8C 2.5GHz, InfiniBand 4x FDR, Nvidia
K40m 3,036 0.154 0.0025 1.7% 1.2%
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Rank Site Computer Cores Rmax HPCG HPCG/HPL % of Peak

71 CINECA
Galileo - Dual Intel E5-2630 v3 2.4 
GHz, Infiniband QDR 6,400 0.0020 1.6%

72
Moscow State University / Research 
Computing Center

Lomonosov - Intel Xeon 
X5570/X5670/E5630 2.93/2.53 GHz, 
PowerXCell 8i Infiniband QDR, Dual 
NVIDIA Fermi 2070 78,660 0.617 0.0017 0.3% 0.2%

73 IT Services Provider
Aquarius - Intel Xeon E5-2640-V3, 
Infiniband QDR 8 0.034 0.0014 4.0% 3.2%

74 Joint Supercomputer Center RAS

RSC PetaStream - Intel E5-2667 v2, 
Infiniband FDR, Intel Xeon Phi 
7120D 3,904 0.054 0.0012 2.2% 1.5%

75 Yaqingjie Street 30
hbemc_2016A -- Intel E5-2680v3, 
Infiniband FDR 2,304 0.0009

76 Hefei City,Anhui Province
YUJING -- Intel Xeon E5-2680v3, 
custom 1,440 0.001 0.0008

77
No.180 Wusidong Road. Baoding City, Hebei 
Province,P.R.C

KunYu -- Intel Xeon E5-2680v3, 
Infiniband FDR 960 0.001 0.0006

78

hongguancun Software Park II, No. 10 West 
Dongbeiwang Road, Haidian District, Beijing 
100193, China

CSRC -- Intel Xeon E5-2680v3, 
Infiniband FDR 528 0.000 0.0004

79
18, Xueyuan Road, Haidian District, 
Beijing,China

geo -- Intel Xeon E5-2680v3, 
Infiniband FDR 12 0.000 0.0003

80 CINECA
Pico - Dual Intel Xeon E5-2670v2 2.5 
GHz, Gigabit Ethernet 1,200 0.0003 1.1%
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Optimized Versions of HPCG
• Intel

• MKL has packaged CPU version of HPCG
• See: http://bit.ly/hpcg-intel

• In the process of packaging Xeon Phi version 
to be released soon.

• Nvidia
• Massimiliano Fatica and Evertt Phillips
• Binary available

• Contact Massimiliano mfatica@nvidia.com

• Bull
• Developed by CEA requesting the release
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HPCG Tech Reports
Toward a New Metric for Ranking 
High Performance Computing Systems

• Jack Dongarra and Michael Heroux

HPCG Technical Specification
• Jack Dongarra, Michael Heroux, 

Piotr Luszczek
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