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Notation
xb Background state vector, in RNx

Nx Size of the state vector
xa Analysis state vector or best linear unbiased estimator (BLUE)
xt True state vector
εb Background error: εb = xb − xt
B Background error variance, or background error covariance matrix

B = E
[
(εb − E(εb))(εb − E(εb))>

]
εa Analysis error: εa = xa − xt
A Analysis error variance

A = E
[
(εa − E(εa))(εa − E(εa))>

]
y Observation vector, in RNy

Ny Number of observations
H Observation operator maps the state space into observation space
εy Observational error: εy = y −H(xt)
R Observational error variance: R = E

[
(εy − E(εy))(εy − E(εy))>

]
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Best linear unbiased estimator (BLUE)

Assumptions
I Unbiased background: E(εb) = 0
I Unbiased observations: E(εy) = 0
I Uncorrelated errors: E(εbεy>) = 0

BLUE

xa = xb + K(y −Hxb) (1)

K = BH>(HBH> + R)−1 (2)

K = (B−1 + H>R−1H)−1H>R−1 (3)
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Optimal interpolation
BLUE is computed every time new observations are available, and the
time integration continues from this new state estimator.
Algorithm
1. At initial time step h = 0, the initial condition xf0 is given.
2. To forecast time step h+ 1,

2.1 if observations yh are available,
the analysis is computed as the BLUE

xa
h = xf

h + Kh(yh −Hhx
f
h) (4)

with
Kh = Pf

hH>h (HhPf
hH>h + Rh)−1 (5)

and the forecast is
xf

h+1 =Mh(xa
h) ; (6)

2.2 if there are no observations,
the forecast is

xf
h+1 =Mh(xf

h) . (7)
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Kalman filter: motivation
Optimal interpolation does not track error changes

I After the analysis step, optimal interpolation provides the analysis
state vector xah and its error variance

Pah = (I−KhHh)Pfh (8)
or

Pah = (I−KhHh)Pfh(I−KhHh)> + KhRhK>h (9)
I After the forecast step, optimal interpolation only provides the

forecast state vector xfh+1, and one needs to prescribe the error
variance Pfh+1 for later assimilation

In the linear case, Kalman filter tracks both the state and its error
variance

I Analysis stage returns (xah,Pah)
I Forecast stage returns (xfh+1,P

f
h+1)
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Kalman filter: tracking the errors

I The estimation error is decreased after the assimilation, which
translates into the analysis error variance

Pah = (I−KhHh)Pfh (10)
I The model modifies the errors from one time step to the other.

The imperfect model will increase the error, but it may also
decrease the error in certain directions.
We introduce the model error εmh , which is the missing part in the
forecast state, starting from perfect state:

xth+1 = Mhx
t
h + εmh (11)

I Had we a perfect model Mt
h, which satisfies xt

h+1 = Mt
hx

t
h, the

model error would be εm
h = Mt

hx
t
h −Mhx

t
h, which is the opposite

sign to the natural definition.
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Kalman filter: model error

Definition of model error:
xth+1 = Mhx

t
h + εmh

Assumptions
I The model error has zero mean

E(εmh ) = 0 (12)
I The model error variance is denoted

Qh = E(εmh εmh >) (13)
I We assume that the model error is uncorrelated with the analysis

error:
E(εmh εah>) = 0 (14)
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Kalman filter: propagation of errors

Error vector

εfh+1 = xfh+1 − xth+1 (15)

εfh+1 = Mhx
a
h −Mhx

t
h − εmh

εfh+1 = Mhε
a
h − εmh (16)

The mean forecast error is
E(εfh+1) = Mh E(εah)− E(εmh )

E(εfh+1) = 0 (17)
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Kalman: propagation of errors

Error variance

εfh+1 = Mhε
a
h − εmh

var(εfh+1) = E
(
εfh+1ε

f
h+1
>
)

var(εfh+1) = E(Mhε
a
hε
a
h
>M>

h ) + E(εmh εmh >)
− E(Mhε

a
hε
m
h
>)− E(εmh εah>Mh

>)

var(εfh+1) = Mh E(εahεah>)M>
h + E(εmh εmh >)

Pfh+1 = var(εfh+1) = MhPahM>
h + Qh (18)
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Kalman filter: algorithm
1. At initial time step h = 0, the initial condition xf0 and its error

variance Pf0 are given.
2. To forecast time step h+ 1,

2.1 if observations yh are available, the analysis and its error variance
are computed as

Kh = Pf
hH>h (HhPf

hH>h + Rh)−1

xa
h = xf

h + Kh(yh −Hhx
f
h)

Pa
h = (I−KhHh)Pf

h

(19)

And the forecast or prediction follows:

xf
h+1 = Mhx

a
h

Pf
h+1 = MhPa

hM>
h + Qh

(20)

2.2 if there are no observations, the forecast or prediction step is

xf
h+1 = Mhx

f
h

Pf
h+1 = MhPf

hM>
h + Qh

(21)



12/100

Ensemble Kalman filter: time sequence

Time sequence
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Kalman filter: a few notes

Link with Bayesian estimation
Under all previous assumptions on the errors, the filter computes the
state mean and its error variance. In case the “input” errors are
Gaussian, εf0 ∼ N (0,Pf0), εmh ∼ N (0,Qh), εyh ∼ N (0,Rh), the
forecast and analysis errors remain Gaussian and the Kalman filter
correctly computes their first two moments, εfh ∼ N (0,Pfh) and
εah ∼ N (0,Pah).

Quick comparison with 4D-Var
Still in the linear case, at the end of the assimilation window, h = T ,
the 4D-Var and the Kalman analyses coincide. At other steps, h < T ,
the Kalman filter provides a state estimate given all observations until
h, while the 4D-Var computes the state estimate given all observations
in the assimilation window. The Kalman filter directly computes the
state error variance. The 4D-Var is well adapted to non-linear models.
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Extended Kalman filter

The Kalman filter is derived in the linear case. In practice, it is used for
non-linear models as well. The algorithm remains similar, but
optimality is lost. The probability density function of the state is
probably not Gaussian anymore, even if all “input” errors are.
Non-linear model
The analysis step does not change.
The forecast step makes use of the non-linear model:

xfh+1 =Mh(xah)
The main issue is the propagation of error variance, which depends on
the model non-linearities. The propagation relies on the linearization of
the model. It makes use of the Jacobian of the model, taken at xah:

Mh = dMh

dx

∣∣∣∣
xa

h

(22)

Then the propagation remains
Pfh+1 = MhPahM>

h + Qh
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Extended Kalman filter

Non-linear observation operator
The observation operator may also be non-linear. This changes the
analysis step. The non-linear operator is used in the analysis step:

xah = xfh + Kh(yh −Hh(xfh))
The linearized observation operator

Hh = dHh
dx

∣∣∣∣
xf

h

(23)

is used elsewhere:
Kh = PfhH>h (HhPfhH>h + Rh)−1

Pah = (I−KhHh)Pfh
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Extended Kalman filter: algorithm
1. At initial time step h = 0, the initial condition xf0 and its error

variance Pf0 are given.
2. To forecast time step h+ 1,

2.1 if observations yh are available, the analysis and its error variance
are computed as

Kh = Pf
hH>h (HhPf

hH>h + Rh)−1

xa
h = xf

h + Kh(yh −Hh(xf
h))

Pa
h = (I−KhHh)Pf

h

(24)

And the forecast or prediction follows:

xf
h+1 =Mh(xa

h)
Pf

h+1 = MhPa
hM>

h + Qh

(25)

2.2 if there are no observations, the forecast or prediction step is

xf
h+1 =Mh(xf

h)
Pf

h+1 = MhPf
hM>

h + Qh

(26)
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Parameter estimation or inverse modeling with the Kalman
filter
Inverse modeling consists in estimating input parameters u to the
model, in addition or instead of the state.
4D-Var is especially well adapted to inverse modeling. It is possible to
apply a Kalman filter too, using a so-called augmented state:

x̃fh =
[
xfh
u

]
(27)

The state equation reads[
xfh+1
u

]
=
[
Mh(xfh,u)

u

]
(28)

The error variances are augmented as well, e.g., if u is unbiased and
using εu = u− ut:

P̃fh =

 Pfh E
(
εfhε

u>
)

E
(
εuεfh

>
)

Puh

 (29)

and Q̃h =
[

Qh 0
0 0

]
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Kalman filter: computational costs

Kalman filter is too expensive
The Kalman filter is so computationally intensive that it cannot be
used for most high-dimensional systems. The showstopper is usually
the propagation of the error variance:

Pfh+1 = MhPahM>
h + Qh

Assume the state vector is in RNx and Nx = 106. There are 106 calls
to the linearized model Mh, which is usually intractable.

Many variants of the Kalman filter rely on a different error
variance propagation

I Dimension reduction in reduced-rank filters
I Deterministic sampling of the error
I Random sampling of the error
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Introduction to data assimilation: references

F. Bouttier and P. Courtier (1999). Data assimilation concepts and
methods. Meteorological training course lecture series. ECMWF

S. E. Cohn (1997). “An introduction to estimation theory”. In:
Journal of the Meteorological Society of Japan 75.1B, pp. 257–288

Lecture notes in French: “Introduction aux principes et méthodes
de l’assimilation de données en géophysique”, M. Bocquet — see
http://cerea.enpc.fr/HomePages/bocquet/teaching.html

http://cerea.enpc.fr/HomePages/bocquet/teaching.html
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Kalman filter
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Ensemble Kalman filter: principle

Approximate the error variance with state samples
I An ensemble of states is generated and is supposed to sample the

errors
I From the ensemble, an empirical error variance is computed
I The empirical error variance replaces the exact error variance Pfh

Tracking an ensemble of state trajectories
I Ensemble of forecast states at time step h: x(m)f

h , m = 1 . . .M
I Ensemble of analysis states at time step h: x(m)a

h , m = 1 . . .M
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Ensemble Kalman filter: principle

Forecast and analysis
I The filter forecast and the analysis are taken as the average of all

forecasts and analyses

xfh = 1
M

M∑
m=1

x
(m)f
h xah = 1

M

M∑
m=1

x
(m)a
h (30)

Empirical error variance

Pfh = 1
M − 1

M∑
m=1

(
x

(m)f
h − xfh

) (
x

(m)f
h − xfh

)>
(31)

Pah = 1
M − 1

M∑
m=1

(
x

(m)a
h − xah

) (
x

(m)a
h − xah

)>
(32)
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Ensemble Kalman filter: error variance
Classical formula:

Pfh = 1
M − 1

M∑
m=1

(
x

(m)f
h − xfh

) (
x

(m)f
h − xfh

)>
(33)

A formula in square-root form:
Pfh

1/2 = 1√
M − 1

[
x

(1)f
h − xfh · · · x(M)f

h − xfh
]
∈ RNx×M (34)

Pfh = Pfh
1/2

Pfh
>/2 ∈ RNx×Nx (35)

The linearized observation operator is not needed anymore, with the
following approximation:

PfhH>h = 1
M − 1

M∑
m=1

(
x

(m)f
h − xfh

)(
Hh(x(m)f

h )− 1
M

M∑
m′=1

Hh(x(m′)f
h )

)>
(36)

HhPfhH>h = 1
M − 1

M∑
m=1

(
Hh(x(m)f

h )− 1
M

M∑
m′=1

Hh(x(m′)f
h )

)
(
Hh(x(m)f

h )− 1
M

M∑
m′=1

Hh(x(m′)f
h )

)> (37)
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Ensemble Kalman filter: error variance
Classical formula:

Pfh = 1
M − 1

M∑
m=1

(
x

(m)f
h − xfh

) (
x

(m)f
h − xfh

)>
(33)

A formula in square-root form:
Pfh

1/2 = 1√
M − 1

[
x

(1)f
h − xfh · · · x(M)f

h − xfh
]
∈ RNx×M (34)

Pfh = Pfh
1/2

Pfh
>/2 ∈ RNx×Nx (35)

The linearized observation operator is not needed anymore, with the
following approximation:

PfhH>h = 1
M − 1

M∑
m=1

(
x

(m)f
h − xfh

)(
Hh(x(m)f

h )− 1
M

M∑
m′=1

Hh(x(m′)f
h )

)>
(36)

HhPfhH>h = 1
M − 1

M∑
m=1

(
Hh(x(m)f

h )− 1
M

M∑
m′=1

Hh(x(m′)f
h )

)
(
Hh(x(m)f

h )− 1
M

M∑
m′=1

Hh(x(m′)f
h )

)> (37)



24/100

Ensemble Kalman filter: time sequence

Time sequence for a classical extended Kalman filter
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Ensemble Kalman filter: time sequence

Time sequence for the ensemble Kalman filter
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Ensemble Kalman filter: algorithm

1. At initial time step h = 0, an ensemble of initial conditions x(m)f
0

is given.
2. To forecast time step h+ 1,

2.1 if observations yh are available, the analysis step is

Kh = Pf
hH>h (HhPf

hH>h + Rh)−1

x
(m)a
h = x

(m)f
h + Kh(yh −Hh(x(m)f

h ))
(38)

where Kh is computed using (36) and (37).
The forecast or prediction step is:

x
(m)f
h+1 =Mh(x(m)a

h ) (39)

2.2 if there are no observations, the forecast or prediction step is

x
(m)f
h+1 =Mh(x(m)f

h ) (40)
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Ensemble Kalman filter: algorithm with perturbed
observations
1. At initial time step h = 0, an ensemble of initial conditions x(m)f

0
is given.

2. To forecast time step h+ 1,
2.1 if observations yh are available, the analysis step is

Kh = Pf
hH>h (HhPf

hH>h + Rh)−1

x
(m)a
h = x

(m)f
h + Kh(yh + δ(m)

h −Hh(x(m)f
h ))

(41)

where Kh is computed using (36) and (37), and δ(m)
h ∼ N (0,Rh).

The forecast or prediction step is:

x
(m)f
h+1 =Mh(x(m)a

h ) (42)

2.2 if there are no observations, the forecast or prediction step is

x
(m)f
h+1 =Mh(x(m)f

h ) (43)
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Ensemble Kalman filter with perturbed observations

Why perturbations on the observations?
Let us consider the linear case and check whether the ensemble of
analyses has the proper error variance, that is (9):

Pah = (I−KhHh)Pfh(I−KhHh)> + KhRhK>h

We have
x

(m)a
h = (I−KhHh)x(m)f

h + Kh(yh + δ(m)
h ) (44)

With δ(m)
h = 0, we obtain

Pah = (I−KhHh)Pfh(I−KhHh)> (45)
With δ(m)

h ∼ N (0,Rh) and discarding correlations between δ(m)
h and

x
(m)f
h − xfh, we indeed obtain (9):

Pah = (I−KhHh)Pfh(I−KhHh)> + KhRhK>h
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Ensemble Kalman filter: computational costs at forecast
step

The total computational costs of the forecast steps are M times the
cost of one simulation. In geosciences, the typical size of the ensemble
is M = 30–100.

Each forecast step from the ensemble can be carried out independently
of the others, which greatly eases the distribution of the computations.
Btu the available number of cores on a HPC architecture is likely to be
higher, in which case parallelization of the individual members of the
ensemble is also necessary.
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Ensemble Kalman filter: computational costs at analysis
step

The computational cost of the analysis step depends on
I The cost of the observation operator,
I The size M of the ensemble,
I The number of observations, because of (HhPfhH>h + Rh)−1.

The forecast and analysis error variances are never computed explicitly.
Their square root form is used in the computations.

The analysis step couples all ensemble members through Pfh and
therefore Kh.
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Ensemble Kalman filter: the generation of the ensembles

The ensemble should sample the errors. There are at least three error
sources:
1. The input data to the model, which can be a time-varying vector
uh of parameters;

2. The biological/chemical/physical model is imperfect, e.g., may rely
on empirical parameterizations related to unresolved phenomena;

3. The numerical solver introduces errors, which are unknown and
therefore contribute to the global uncertainty.
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Ensemble simulations of wind at Fukushima
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Ensemble simulations of wind at Fukushima
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Ensemble simulations of wind at Fukushima
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Ensemble simulations of wind at Fukushima
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Ensemble simulations of wind at Fukushima
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Maximum of gamma dose rate from the deposit, during
Fukushima disaster
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Ensemble Kalman filter: algorithm with perturbed
observations and imperfect model
1. At initial time step h = 0, an ensemble of initial conditions x(m)f

0
is given.

2. To forecast time step h+ 1,
2.1 if observations yh are available, the analysis step is

Kh = Pf
hH>h (HhPf

hH>h + Rh)−1

x
(m)a
h = x

(m)f
h + Kh(yh + δ(m)

h −Hh(x(m)f
h ))

(46)

where Kh is computed using (36) and (37), and δ(m)
h ∼ N (0,Rh).

The forecast or prediction step is:

x
(m)f
h+1 =M(m)

h (x(m)a
h ,u

(m)
h ) (47)

2.2 if there are no observations, the forecast or prediction step is

x
(m)f
h+1 =M(m)

h (x(m)f
h ,u

(m)
h ) (48)
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Ensemble Kalman filter: references

G. Evensen (1994). “Sequential data assimilation with a nonlinear
quasi-geostrophic model using Monte Carlo methods to forecast
error statistics”. In: Journal of Geophysical Research 99.C5,
pp. 10,143–10,162

G. Evensen (2003). “The Ensemble Kalman Filter: theoretical
formulation and practical implementation”. In: Ocean Dynamics
53, pp. 343–367. doi: 10.1007/s10236-003-0036-9

http://dx.doi.org/10.1007/s10236-003-0036-9
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Ensemble Kalman filter: example with a shallow water
model

Time evolution of the water height w(x) and the horizontal velocity
v(x): {

∂tw + ∂x(wv) = 0 ,
∂t(wv) + ∂x(wv2) + 1

2g∂xw
2 = 0 . (49)

Boundary conditions:
1. on the left, a constant inflow qb = wbvb;
2. on the right, a homogeneous Neumann condition for (w, v).

The simulation domain is made of 100 grid points. We show, observe
and assimilate only water height—not the velocity.

The true state starts from a step function.



41/100

Ensemble Kalman filter: example with a shallow water
model
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Meta-modeling with reduction and emulation
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Local ensemble transform Kalman filter (LETKF)

First idea: rewrite the analysis in the space spanned by the
ensemble
Consider the analysis in the ensemble Kalman filter:

x
(m)a
h = x

(m)f
h + Kh(yh −Hh(x(m)f

h ))
Kh = PfhH>h (HhPfhH>h + Rh)−1

and
Pfh

1/2 = 1√
M − 1

[
x

(1)f
h − xfh · · · x(M)f

h − xfh
]
∈ RNx×M

Notice that the correction on the forecast (x(m)a
h − x(m)f

h ) is in the
space spanned by the perturbations x(m)f

h − xfh. LETKF makes use of
this property to reformulate the analysis expression.
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Local ensemble transform Kalman filter (LETKF)

First idea: rewrite the analysis in the space spanned by the
ensemble
Departures (in columns) from the mean:

Xf
h =

(
x

(1)f
h − xfh · · · x

(M)f
h − xfh

)
(50)

Xa
h =

(
x

(1)a
h − xah · · · x(M)a

h − xah
)

(51)

Similarly, at observed locations:
Yf
h =

(
Hh(x(1)f

h )− yfh · · · Hh(x(M)f
h )− yfh

)
(52)

where

yfh = 1
M

M∑
m=1
Hh(x(m)f

h ) (53)
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Local ensemble transform Kalman filter (LETKF)

First idea: rewrite the analysis in the space spanned by the
ensemble
Intermediate matrix:

Nh =
(

(M − 1)I + Yf
h

>
R−1
h Yf

h

)−1
(54)

Weight vector:
wa
h = NhYf

h

>
R−1
h (yh − yfh) (55)

Analysis (mean) and its perturbations:
xah = xfh + Xf

hw
a
h (56)

Xa
h =
√
M − 1Xf

hN
1
2
h (57)
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Local ensemble transform Kalman filter (LETKF)

Second idea:
compute the
analysis for one
state component at
a time

I Include all
observations
that can have a
significant
influence on the
analysis,
because of
significant
forecast error
covariance.

Analysis

Region
of influence

Observations
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Local ensemble transform Kalman filter (LETKF):
reference

B. R. Hunt, E. J. Kostelich, and I. Szunyogh (2007). “Efficient
data assimilation for spatiotemporal chaos: A local ensemble
transform Kalman filter”. In: Physica D: Nonlinear Phenomena
230, pp. 112–126
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Kalman filter
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Advanced methods with ensembles
Bayesian approach
Meta-modeling with reduction and emulation
Ensemble forecast with sequential aggregation
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Unscented Kalman filter: deterministic filter
Deterministic filter

I The error variance is approximated with an “ensemble” of states
that are deterministically chosen.

I The “ensemble” members are chosen so that they catch the
transformation of the error variance due to non-linearity of the
model.

I The mean xf and the error variance Pf are replaced by empirical
mean and empirical variance derived from these so-called 2Nx + 1
sigma vectors:

x(0)f = xf

x(m)f = xf +
√

(Nx + λ)Pf
∣∣∣∣
m

m = 1, . . . , Nx

x(m)f = xf −
√

(Nx − λ)Pf
∣∣∣∣
m−Nx

m = Nx + 1, . . . , 2Nx

(58)
where λ = α2(Nx + κ) +Nx, and ·|m refers to the mth column.
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Unscented Kalman filter: use of sigma vectors

I The empirical mean is computed with the weights wm0 = λ
Nx+λ

and wmm = 1
2(λ+Nx) for m ≤ 1.

I We can verify that

xf =
2Nx∑
m=0

wm
mx

(m)f

I The empirical error variance is computed with the weights
wP0 = λ

Nx+λ + 1− α2 + β and wmm = 1
2(λ+Nx) for m ≤ 1.

I We can verify that

Pf =
2Nx∑
m=0

wP
m

(
x(m)f − xf

)(
x(m)f − xf

)>
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Unscented Kalman filter: why using the sigma vectors?

Better approximations of mean and error variance in non-linear
case

I The introduction of the sigma vectors (or sigma points) is called
the unscented transform.

I The model is applied on these sigma vectors, and the empirical
mean and error variance of the resulting “ensemble” of vectors are
better approximations of the actual mean and error variance than
those of the extended Kalman filter.

I Extended Kalman filter uses a first-order approximation at
propagation stage, while the unscented Kalman filter enjoys a
second-order approximation.
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Unscented Kalman filter: algorithm (1/2)
1. At initial time step h = 0, 2Nx + 1 sigma vectors x(m)f

0 are
derived from the initial condition xf0 and its error variance Pf0 (see
the forecast step below).

2. The analysis step at h reads

yfh =
2Nx∑
m=0

wmmHh(x(m)f
h ) (59)

The gain is given by

Pxyh =
2Nx∑
m=0

wPm

(
x

(m)f
h − xfh

) (
Hh(x(m)f

h )− yfh
)>

Pyyh =
2Nx∑
m=0

wPm

(
Hh(x(m)f

h )− yfh
) (
Hh(x(m)f

h )− yfh
)>

Kh = Pxyh Pyyh
−1

(60)

The analysis and its error variance are
xah = xfh + Kh(yh − yfh) (61)

Pah = Pfh −KhPyyh K>h (62)
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Unscented Kalman filter: algorithm (2/2)
1. To forecast time step h+ 1,

1.1 2Nx + 1 sigma vectors x(m)a
h are defined as

x
(0)a
h = xa

h

x
(m)a
h = xa

h +
√

(Nx + λ)Pa
h m = 1, . . . , Nx

x
(m)a
h = xa

h −
√

(Nx − λ)Pa
h m = Nx + 1, . . . , 2Nx

(63)

where λ = α2(Nx + κ) +Nx.
1.2 The propagation is carried out for all sigma vectors:

x
(m)f
h+1 =Mh(x(m)a

h ) (64)

1.3 The forecast mean and its error variance are taken as

xf
h+1 =

2Nx∑
m=0

wm
mx

(m)f
h+1

Pf
h+1 =

2Nx∑
m=0

wP
m

(
x

(m)f
h+1 − x

f
h+1

)(
x

(m)f
h+1 − x

f
h+1

)>
+ Qh

(65)
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Unscented Kalman filter: references

S. J. Julier and J. K. Uhlmann (1997). “A new extension of the
Kalman filter to nonlinear systems”. In: Proceedings of AeroSense:
The 11th International Symposium on Aerospace/Defense
Sensing, Simulation and Controls

P. Moireau and D. Chapelle (2010). “Reduced-order unscented
Kalman filtering with application to parameter identification in
large-dimensional systems”. In: ESAIM: Control, Optimisation and
Calculus of Variations. doi: 10.1051/cocv/2010006

http://dx.doi.org/10.1051/cocv/2010006
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Reduced-rank square-root Kalman filter
Reduced Kalman filters

I The dimension reduction is applied to the error
variance—reduced-rank Kalman filters.

I Dimension reduction directly on the state might be a way, but one
needs to be carefully with respect to stability, at least.

Variance reduction and propagation
I The main idea is to write the error variance in reduced form, e.g.,

in square-root form with low-rank square-root
Pah ' SahSah> (66)

where Pah ∈ RNx×Nx and Sah ∈ RNx×r with r � Nx.
I Then the problematic variance propagation becomes tractable,

e.g., without model error:
Pfh+1 'MhSahSah>M>

h (67)
or

Sfh+1 = MhSah (68)
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Reduced-rank square-root Kalman filter: one algorithm
1. At initial time step h = 0, the state estimator xf0 is given with the

(reduced) square root Sf0 of its error variance.
2. The analysis step at h reads

Kh = SfhSfh
>

H>h (HhSfhSfh
>

H>h + Rh)−1

xah = xfh + Kh(yh −Hh(xfh))
(69)

The square root of the analysis error variance is
S̃ah =

[
(I−KhHh)Sfh

∣∣∣KhR
1
2
h

]
(70)

but is truncated by some operator Π to keep a constant (or low
enough) reduced dimension r:

Sah = ΠrS̃ah ∈ RNx×r (71)
3. The forecast step at h reads

xfh+1 =Mh(xfh) (72)
The square root of the forecast error variance is truncated too
because of the additional model error:

Sfh+1 = Πr

[
MhSah

∣∣∣Q 1
2
h

]
(73)
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Reduced-rank square-root Kalman filter: reference

S. E. Cohn and R. Todling (1996). “Approximate data assimilation
schemes for stable and unstable dynamics”. In: Journal of the
Meteorological Society of Japan 74.1, pp. 63–75

M. Verlaan and A. W. Heemink (1995). “Reduced rank square
root filters for large scale data assimilation problems”. In: Second
International Symposium on Assimilation of Observations in
Meteorology and Oceanography. Japan, pp. 247–252

A. W. Heemink, M. Verlaan, and A. J. Segers (2001). “Variance
reduced ensemble Kalman filtering”. In: Monthly Weather Review
129, pp. 1,718–1,728
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Other methods
1. Ensemble transform Kalman filter (ETKF)

C. Bishop, B. Etherton, and S. Majumdar (2001). “Adaptive
sampling with the ensemble transform Kalman filter, part I: the
theoretical aspects”. In: Monthly Weather Review 129, pp. 420–436

2. Reduced filters SEEK and SEIK
D. T. Pham, J. Verron, and M. C. Roubaud (1996). “A singular
evolutive extended Kalman filter for data assimilation in
oceanography”. In: Journal of Marine Systems 16, pp. 323–340
D. T. Pham (2001). “Stochastic methods for sequential data
assimilation in strongly nonlinear systems”. In: Monthly Weather
Review 129, pp. 1,194–1,207

3. Hybrid ensemble Kalman filter and 4D-Var
4. Minimax filtering
5. Back and forth nudging
6. Particle filtering
7. And so on and so forth
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Generation of ensembles

Perturbation of input data
I Monte Carlo method
I Random perturbations, with time and space correlations for fields

I E.g., G. Evensen (2003). “The Ensemble Kalman Filter:
theoretical formulation and practical implementation”. In: Ocean
Dynamics 53, pp. 343–367. doi: 10.1007/s10236-003-0036-9

I Can be really difficult, in particular to preserve given properties in
the perturbed fields

u
(m)
h = uh + ζmh

x
(m)f
h+1 =Mh(x(m)f

h ,u
(m)
h )

http://dx.doi.org/10.1007/s10236-003-0036-9
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Generation of ensembles: sensitivity analysis

Screening

Variance decomposition
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B. Iooss (2011). “Revue sur l’analyse de sensibilité globale de
modèles numériques”. In: Journal de la Société Française de Statistique
152.1, pp. 3–25 — Figure regenerated by Sylvain Girard
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Generation of ensembles: multimodel ensemble
Model formulation can be changed

I In a model, there are configuration options
I It is possible to replace one parameterization or one submodel

with an alternative
I It is therefore possible to build modelsM(m)

h relying on different
assumptions, physical/chemical/biological formulations and
parameterizations, possibly less detailed or “accurate”

I The selection may be carried out randomly, providing some
consistency is maintained

Numerical formulation can also be changed
I Same ideas, possibly using less accurate numerical schemes

x
(m)f
h+1 =M(m)

h (x(m)f
h ,u

(m)
h )
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Example of options in ensemble simulations for air quality
# Parameterization Reference Alternative(s)

Physical parameterizations
1. Chemistry RACM RADM 2
2. Vertical diffusion Troen & Mahrt Louis

Louis in stable condition
3. Deposition velocities Zhang Wesely
4. Surface flux Heat flux Momentum flux
5. Cloud attenuation RADM method Esquif
6. Critical relative humidity Depends on σ Two layers

Input data
7. Emissions vertical distribution All in the first layer All in the two first layers
8. Land use coverage (dep.) USGS GLCF
9. Land use coverage (bio.) USGS GLCF
10. Exponent p in Troen & Mahrt 2 3
11. Photolysis rates JPROC Depends on zenith angle

Numerical issues
12. Time step 600 s 100 s

1800 s
13. Splitting method First order Strang splitting
14. Horizontal resolution 0.5◦ 0.1◦

1.0◦
15. Vertical resolution 5 layers 9 layers
16. First layer height 50 m 40 m

Note: already over 2 × 105 simulations possible.
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On the benefit of multi-models
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Ozone concentration maps in µgm−3. Same date, but different models.
Large ensembles can bring a lot

I Currently, we explore low-dimensional error spaces
I Adequate methods can extract the best for

I Uncertainty quantification
I Improved forecasts

I Hence, an interesting strategy may be to generate very large
ensembles (1000 members or more) as rich as possible (“shake”
everything), and to process from that
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Data assimilation and ensembles

Where are ensembles used?
I In the ensemble Kalman filter
I For uncertainty quantification, which is always needed in data

assimilation
I For aggregation in order to improve forecasts
I To construct a metamodel which can be useful for uncertainty

quantification and for Bayesian inference
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How ensembles are evaluated?
Need to test the ensemble against observations

I Classical, deterministic evaluation compares model outputs and
observations, which are almost directly comparable

I Comparing every individual forecast with the observations makes
no sense in terms of uncertainty evaluation

I Yet we need to make use of observations, which is the only
additional information we have for evaluation

Notation
I Ensemble of values x(m), where m ∈ {1, . . . ,M}
I The truth is unknown and therefore represented as a random

variable Y
I Observation y which is a realization of Y
I Same, with time (or space) dependence: x(m)

h , Yh, yh
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What makes an ensemble adequate?

A key concept is “consistency”
I Hopefully, x(m) are independent and identically sampled from the

same distribution Y
I y is drawn from Y as well
I Consequently the realizations y should not be distinguishable from

the samples x(m)

I This is the “consistency” property
J. L. Anderson (1997). “The impact of dynamical constraints on
the selection of initial conditions for ensemble predictions: low-order
perfect model results”. In: Monthly Weather Review 125,
pp. 2,969–2,983. doi:
10.1175/1520-0493(1997)125<2969:TIODCO>2.0.CO;2

http://dx.doi.org/10.1175/1520-0493(1997)125<2969:TIODCO>2.0.CO;2
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What makes an ensemble adequate?

The key value is the “rank”
I y is of rank m if x(m) ≤ y < x(m+1), with x(m) sorted

I It is 0 if y < x(1)

I It is M if x(M) ≤ y
I I.e., y is of rank m if m members simulated a lower value
I The rank is in {0, . . . ,M}
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Rank histogram or “Talagrand diagram”
Rank histogram

I Number of observations of a given rank
I Ideal histogram: flat histogram
I References:

J. L. Anderson (1996). “A Method for Producing and Evaluating
Probabilistic Forecasts from Ensemble Model Integrations”. In:
Journal of Climate 9.7, pp. 1518–1530
T. M. Hamill and S. J. Colucci (1997). “Verification of Eta/RSM
Short-Range Ensemble Forecasts”. In: Monthly Weather Review
125, pp. 1312–1327
O. Talagrand, R. Vautard, and B. Strauss (1999). Evaluation of
Probabilistic Prediction System. Proceedings of the ECMWF
Workshop on Predictability. Reading, United Kingdom

Multidimensional extension
I E.g., the minimum spanning trees
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Calibration of an ensemble for air quality using the rank
histogram
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Standard deviation of the ensemble

Complete ensemble Selected sub-ensemble
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What are the desirable properties for a good ensemble?

Reliability
I Accuracy of prediction, i.e., agreement between the probabilistic

forecast and the observed frequency
I Sometimes called “calibration”

Sharpness
I Variability of the forecasts
I It can be seen as the amount of information available in the system

Resolution
I Ability of the ensemble to make distinct predictions for different

subsets of events
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Brier score

Definition
I Let ph the probability that an event occurs at time/location h

according to the ensemble (e.g., number of members that forecast
the event, divided by M), and oh = 1 if the event indeed occurs,
or oh = 0 if the event did not occur.

I

BS = 1
T

T∑
h=1

(ph − oh)2 (74)

G. W. Brier (1950). “Verification of Forecasts Expressed in Terms
of Probability”. In: Monthly Weather Review 78.1, pp. 1–3. doi:
10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2

http://dx.doi.org/10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2
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Discrete ranked probability score

I The ranked probability score generalizes the Brier score for a set of
events Y ≥ thresholdk, k ∈ {1,K}

I For every threshold k and date t, there is an observed
“probability” o|kh ∈ {0, 1} and a simulated probability p|kh

I The discrete ranked probability score reads

DRPS = 1
TK

T∑
h=1

K∑
k=1

(p|kh − o
|k
h )2

I It actually evaluates the full distribution
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Continuous ranked probability score

I We consider cumulative distribution functions
I Derived from the ensemble, hence simulated:
Fp(z) = 1

M |{m/x(m) ≤ z}|, where | · | stands for the cardinal
I “Observed” and assumed to be a step function:
Fo(z) = 1[y,+∞[(z), where 1A(z) = 1 if z ∈ A, and 1A(z) = 0
otherwise

I The continuous ranked probability score reads

CRPS = 1
T

T∑
h=1

∫
R

(Fp − Fo)2
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A few useful references

D. S. Wilks (2005). Statistical Methods in the Atmospheric
Sciences. Second. International Geophysics Series. Academic Press

http://www.cawcr.gov.au/projects/verification/

I. T. Jolliffe and D. B. Stephenson, eds. (2003). Forecast
verification: A practitioner’s guide in atmospheric science. Wiley

http://www.cawcr.gov.au/projects/verification/
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Fully Bayesian approach
Bayes’ theorem

p(x|y) = p(y|x)p(x)
p(y)

BLUE is the maximum a posteriori (MAP) in Gaussian case
I Assume xt ∼ N (xf ,Pf ) and y|xt ∼ N (Hxt,R).
I We are looking for xa that maximizes p(xt|y), hence
p(y|xt)p(xt) because p(y) does not depend on xt.

p(xt) = (2π)−
Nx

2 (det Pf )−
1
2 exp

(
−1

2(xt − xf )>Pf−1(xt − xf )
)

p(y|xt) = (2π)−
Ny
2 (det R)−

1
2 exp

(
−1

2(y −Hxt)>R−1(y −Hxt)
)

−2 log p(xt|y) = (xt−xf )>Pf−1(xt−xf )+(y−Hxt)>R−1(y−Hxt)+C

The minimum is attained at BLUE.
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Bayesian inference

With parameters to estimate

xt =M1→T (u)

p(u|y) = p(y|u)p(u)
p(y)

I We may still assume, e.g., y|u ∼ N (HM1→T (u),R).
I We need a prior distribution on the parameters; e.g.,
u ∼ U([umin

1 , umax
1 ]× . . .× [umin

K , umax
K ]).

I We may not be able to compute the full distribution analytically.
As a consequence, we sample it.
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Bayesian inference
With parameters to estimate

xt =M1→T (u)

p(u|y) = p(y|u)p(u)
p(y)

I Once we are given p(u) and p(y|u), we have access to p(u|y) up
to a multiplicative constant, p(y).

I Markov chain Monte Carlo (MCMC) methods are often used.
I A well known method is Metropolis-Hastings algorithm which can

sample a distribution using a function proportional to the target
probability density.

I It generates a sequence u(MH)
i , which samples u|y when i is large

enough.
I It requires a large number of calls to the model:
x

(MH)
i =M1→T (u(MH)

i ), to evaluate p(y|u(MH)
i ).
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Meta-modeling with reduction and emulation

Two-step approach
I Dimension reduction: projection of inputs (u) and outputs (x)

onto reduced subspaces.
I Emulation: replacing the relation between reduced inputs and

reduced outputs with a fast function.
I Regression and/or interpolation between training points.
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Dimension reduction

x =M1→T (u)

I Reduced basis: (Ψj)j=1,...,q
I May be derived from principal component analysis (PCA) on some

sequence xi

I x ' x̄+
∑n

j=1 αjΨj , where αj = (x− x̄)>Ψj

I Reduced model
x ' x̄+ ΨΨ>(M1→T (u)− x̄)

where Ψ is the matrix whose jth column is Ψj .
I Note: if the dimension of the parameters is high, one can project u

onto the subspace spanned by the columns of Φ:
x ' x̄+ ΨΨ>(M1→T (ΦΦ>u)− x̄)

I The reduced model includes Ψ>M1→T (u) which is function of u
with few outputs.
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Emulation (response surface methods)

I We consider f(u) = Ψ>M1→T (u) and emulate independently
every component fj(u) with the fast and approximate function
f̂j(u).

I We use a training set Ψ>M1→T (u(i)), i = {1, L}

f̂j(u) =
K∑
k=1

βj,kpk︸ ︷︷ ︸
Regression

+
L∑
i=1

wj,i(u,u(1), . . . ,u(L))
(
fj(u(i))−

K∑
k=1

βj,kp
(i)
k

)
︸ ︷︷ ︸

Interpolation of the residuals

.

I See radial basis functions (RBF), Kriging, random forests, LARS,
. . .

I Finally,
x = x̄+ Ψ(f̂(u)−Ψ>x̄)
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Emulation (response surface methods): a few references
Managing Uncertainty in Complex Models (MUCM):
http://mucm.aston.ac.uk/MUCM/MUCMToolkit/

DiceKriging: http://cran.r-project.org/web/packages/
DiceKriging/index.html

COBRA: Nonlinear Aggregation of Predictors; http:
//cran.r-project.org/web/packages/COBRA/index.html

J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn (1989).
“Design and analysis of computer experiments”. In: Statistical
Science 4.4, pp. 409–423
C. E. Rasmussen and C. K. I. Williams (2006). Gaussian Processes
for Machine Learning. MIT Press
V. R. Joseph and L. Kang (2011). “Regression-based inverse
distance weighting with applications to computer experiments”.
In: Technometrics 53.3, pp. 254–265. doi:
10.1198/TECH.2011.09154

http://mucm.aston.ac.uk/MUCM/MUCMToolkit/
http://cran.r-project.org/web/packages/DiceKriging/index.html
http://cran.r-project.org/web/packages/DiceKriging/index.html
http://cran.r-project.org/web/packages/COBRA/index.html
http://cran.r-project.org/web/packages/COBRA/index.html
http://dx.doi.org/10.1198/TECH.2011.09154
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Ensemble forecast: online ensemble learning

Principle: to create a linear combination xf of the members with best
performance than any individual member.

xfh =
M∑
m=1

u
(m)
h × x(m)f

h .

x
(m)f
h : value of m-th member.
u

(m)
h : weight of m-th member.
yh : observation or analysis to be forecasted.

The method is applied independently to each component of the state
vector.
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Ensemble forecast: online ensemble learning

xfh =
M∑
m=1

u
(m)
h × x(m)f

h .

x
(m)f
h : value of m-th member.
u

(m)
h : weight of m-th member.
yh : observation (or verification) to be forecasted.

h− 2 h− 1 h h+ 1
x

(m)f
h−2 x

(m)f
h−1 x

(m)f
h x

(m)f
h+1

u
(m)
h−2 u

(m)
h−1 u

(m)
h u

(m)
h+1

xfh−2 xfh−1 xfh xfh+1
yh−2 yh−1 yh yh+1
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Ensemble forecast: online ensemble learning
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Ensemble forecast: weights computation
Approach: online regularized regression.

Loss function: `h(u) = (∑M
m=1 u

(m)x
(m)f
h − yh)2.

Regularization term: r(u) = λ‖u‖2.

The weight vector uh = [u(1)
h , u

(2)
h , ..., u

(M)
h ]> is chosen as:

uh = argmin
w∈RM

[
r(w) +

h−1∑
h′=1

`h′(w)
]
.

The weight vector uh = [u(1)
h , u

(2)
h , ..., u

(M)
h ]> is chosen as:

uh = argmin
w∈RM

[
r(w) +

h−1∑
h′=1

βh,h′ `h′(w)
]
.

Focus on recent data with discount factors: βh,h′ = γ
(h−h′)2

In practice: low sensitivity around optimal parameters λ, γ.
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Ensemble forecast: theoretical guarantee of robustness

Case of online ridge regression
Under essentially no assumptions:

I Tends to zero with increasing T .
I Cumulated loss of our forecasts.

1
T

( ∑T
h=1 `h(uh) − minw∈RM

∑T
h=1 `h(w)

)
≤ O

(
lnT
T

)
I Cumulated loss of the best combination with constant weights.

Other algorithms
I Some algorithms carry out sparse aggregation, e.g., LASSO, which

can be well adapted in a context with very large ensembles
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Ensemble forecast: example results (ozone maps, µgm−3)
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Ensemble forecast: example results (weights against time)
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Ensemble forecast: example results (ozone, µgm−3)
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Ensemble forecast: example results (ozone, µgm−3)
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Ensemble forecast: references

V. Mallet, G. Stoltz, and B. Mauricette (2009). “Ozone ensemble
forecast with machine learning algorithms”. In: Journal of
Geophysical Research 114.D05307. doi: 10.1029/2008JD009978

V. Mallet (2010). “Ensemble forecast of analyses: Coupling data
assimilation and sequential aggregation”. In: Journal of
Geophysical Research 115.D24303. doi: 10.1029/2010JD014259

V. Mallet, A. Nakonechny, and S. Zhuk (2013). “Minimax filtering
for sequential aggregation: Application to ensemble forecast of
ozone analyses”. In: Journal of Geophysical Research 118.11,
pp. 11,294–11,303. doi: 10.1002/jgrd.50751

http://dx.doi.org/10.1029/2008JD009978
http://dx.doi.org/10.1029/2010JD014259
http://dx.doi.org/10.1002/jgrd.50751
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Data assimilation library Verdandi
Software

I Open source library (LGPL)
I Generic C++ library and Python interface
I Available at http://gforge.inria.fr/verdandi/

Using of the library
I Relies a clear interface to the model and the observation operator:

GetState, GetParameter, GetParameterVariance
I Parallelization in the assimilation method and support for

parallelized models as well
I Applied to real applications (see next slides)

D. Chapelle, M. Fragu, V. Mallet, and P. Moireau (2013).
“Fundamental principles of data assimilation underlying the
Verdandi library: applications to biophysical model personalization
within euHeart”. In: Medical & Biological Engineering &
Computing 51.11, pp. 1,221–1,233

http://gforge.inria.fr/verdandi/
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Applications of data assimilation

Classical applications
I Meteorology
I Geosciences

New range of applications
I Biology, medicine (see M3DISIM Inria team, D. Chapelle, P.

Moireau)
I Urban pollutions (air quality, noise pollution, . . . )
I New sensors, mobile measurements, big data
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New applications of data assimilation

Noise measurements
by the application

Example of the mobile application
SoundCity

I Press conference with Paris City:
http://tiny.cc/soundcity-press

I Freely available on Google Play and
App Store

I Measures noise levels with the
smartphone

I Soon will include air quality, and be
renamed Ambiciti

http://tiny.cc/soundcity-press
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New applications of data assimilation

Air quality map
on the mobile application

Collected noise observations
during one hour in Paris
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New applications of data assimilation

Air quality map
on the mobile application

Collected noise observations
during eight hours in Paris
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Appendix
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Morris screening method

I Elementary effects are computed by perturbing each input variable
in turn, one at a time

I Elementary effect:
dj = M(u+ ζij)−M(u)

ζ
where ij contains 1 at index j and 0
otherwise

u1 u2

M(u)

I Starting points are randomized in order to sample the distribution
of elementary effects

I The moments of this distribution are used as sensitivity measures
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Example of results obtained with Morris method
For the atmospheric dispersion of radionuclides after Fukushima disaster

−4 −2 0 2
0

1

2

3

4

Mean of elementary effects

Standard deviation
of elementary effects

Vertical diffusion

Source altitude

Iodine

Noble gas

Sensitivity of the spatio-temporal average of atmospheric dose rate
Figure generated by Sylvain Girard (IRSN)
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Example of results obtained with Morris method
For the atmospheric dispersion of radionuclides after Fukushima disaster

Iodine Caesium
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Sensitivity of the spatial average of deposit dose rate
Figure generated by Sylvain Girard (IRSN)
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How to determine the variance Pf?

Using a priori uncertainty quantification
I E.g., construct a matrix Pf independent of time

The covariance is often parameterized, independently of time
I Take the covariance between two components i and j in the state,

which represent the same variable at two points in space.
I Assume the distance between the two points is dij .

Exponential: P fij = b exp(−dij

L )
Second-order autoregressive function (SOAR):
P fij = b

(
1 + dij

L

)
exp

(
−dij

L

)
G. Gaspari and S. E. Cohn (1999). “Construction of correlation

functions in two and three dimensions”. In: Quarterly Journal of the
Royal Meteorological Society 125, pp. 723–757
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How to determine the variance Pf?

Closer look at the innovation
I Let us consider the innovation

y −Hxf = y −Hxt + H(xt − xf )
I Because the observational error and the background error are

uncorrelated, the variance of the innovation is R + HPfH>.
I R is often assumed diagonal (no correlation between the errors of

two observations): R = rI
I The innovation covariance between i and j: rIij + HiPfH>j where

Hi is the i-th row of H.
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How to determine the variance Pf?
Example with H = I and parameterized with SOAR

I Between i and j at distance dij , the covariance is
covar(dij) = rIij + b

(
1 + dij

L

)
exp

(
−dij
L

)
where Iij = 1 when dij = 0, and Iij = 0 otherwise.

b
(
1 + d

L

)
exp

(
− d
L

)

r

d

covar(d)

A. Hollingsworth and P. Lönnberg (1986). “The statistical structure
of short-range forecast errors as determined from radiosonde data. Part
I: the wind field”. In: Tellus 38A, pp. 111–136
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How to determine the variance Pf in practice?
I Computing the covariances between the innovations (time series)

I Fitting the parameters (with SOAR, b and L)

Example: H. J. Thiébaux, H. L. Mitchell, and D. W. Shantz (1986).
“Horizontal Structure of Hemispheric Forecast Error Correlations for
Geopotential and Temperature”. In: Monthly Weather Review 114,
pp. 1,048–1,066
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Checking with the χ2 diagnosis

Consistency between the innovations and their error statistics
I The variance of innovations is R + HPfH>.
I One checks that

χ2 = E (y −Hxf )>(R + HPfH>)−1(y −Hxf ) = Ny

where Ny is the number of observations (i.e., the dimension of y).
I Note that if the innovations are normally distributed, then χ2

follows a chi-squared distribution with Ny degrees of freedom.
I Among other references, see

R. Ménard, S. E. Cohn, L.-P. Chang, and P. M. Lyster (2000).
“Assimilation of stratospheric chemical tracer observations using a
Kalman filter. Part I: Formulation”. In: Monthly Weather Review
128, pp. 2,654–2,671
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