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Miranker Liniger 1967 Methods Part IV

Direct Time
Parallel Methods for the Numerical Integration of Parallel Methods
Ordinary Differential Equations. Math. Comp., Vol 21. a4 @ameter

“Let us consider how we might widen the computation front.”

o | o Miranker, Liniger
+ P =y P
/
/
/lf—\ /
o 1 o . N c
n-1 n | n+l n-2 nM n+l

For y’ = f(x, y), consider the predictor corrector formulas

h h
Y1 =Ya+5BF0a) = (Vi) yara=ya+5(F7sa)+F(va)-
This process is sequential. Consider the modified formulas

h

Yo = Ya1 T 2hF(R)s v = yaa + 5 (FR) + Fvaa)).
Those two can be evaluated in parallel.
Results: Methods for 2s processors with stability and
convergence analysis.



Time Parallel

Shampine and Watts 1969 Me[;hodsTPgrtlv
Block Implicit One-Step Methods. Math. of Comp, Vol Parallel Methods

23., No. 108.

“A class of one-step methods which obtain a block of r new values at

Martin J. Gander

each step are studied.”
Example (Clippinger and Dimsdale): for y' = f(x,y),

1 1 h h
yn+1_§yn+2 = Eyn + Zf(xmyn) - Zf(xn+27yn+2)a

Shampine, Watts

h 4h h
Yn+2 :yn+§f(xn7yn)'i_?f(xn-l—layn+1)+§f(xn+2ayn+2)

General formulation for r new steps, y = (Vn+1,- -+, Yntr)
Ay = ype + hf(xn, yn)d + hBF(y).
Solved by fixed point iteration
y“tt =y, A7e 4 hf (xpn, ya)A~Id + hATIBF (y5).

Doing just one or a few steps gives a parallel method but
reduces stability



Hairer, Ngrsett, Wanner 1992
Solving Ordinary Differential Equations I, Springer
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Hairer, Ngrsett, Wanner 1992

Solving Ordinary Differential Equations I, Springer
. it seems that explicit Runge-Kutta methods are not facilitated much
by parallelism at the method level (Iserles and Ngrsett 1990)
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Hairer, Ngrsett, Wanner 1992

Solving Ordinary Differential Equations I, Springer
. it seems that explicit Runge-Kutta methods are not facilitated much
by parallelism at the method level (Iserles and Ngrsett 1990)

“Paralysing ODEs” (K. Burrage talk in Helsinki 1990)
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Time Parallel

Hairer, N¢rsett, Wanner 1992 Methods Part IV
Direct Time
Solving Ordinary Differential Equations |, Springer Parallel Methods

. it seems that explicit Runge-Kutta methods are not facilitated much eridin ., Eemitar

by parallelism at the method level (Iserles and Ngrsett 1990)

“Paralysing ODEs” (K. Burrage talk in Helsinki 1990)
Parallel Runge-Kutta Methods:

Hairer, Ngrsett,
Wanner

0 -2\\* o

B 3
" |
Fig. 11.1. Parallel method Fig. 11.2. Production graph

Theorem (Jackson and Ngrsett 1986): For an explicit
RK method with o sequential stages, the order is at most o.
—> P-optimal methods.

Result (Hairer, Ngrsett and Wanner 1992): Parallel
Iterated RK and GBS Extrapolation methods are P-optimal.



Christlieb Macdonald Ong 2010 Methods Part IV

Direct Time

Parallel High-Order Integrators, SISC, Vol. 32, No. 2. Parallel Methods

" . . . Martin J. Gander
... we discuss a class of integral defect correction methods

which is easily adapted to create parallel time integrators for
multicore architectures”

Classical progression of integral deferred correction:

to t ta ts ta ts te tn—3 tNn—2 tn-1 tn
L] L] L] L] L] L] L] Gt L] L] L] L] iy
[too  ton  toz  togs] [tr—10 ts-11 ts-12 ty_13] Macdonald, Ong
Iy [t1,0 t1,1 t1,2 t1,3] Tii
I
Revisionist Integral Deferred Correction (RIDC):
correction (/ =3) ; ] O :
correction ([ =2) ° °® e 0/\—\0
I

. T T TN
correction (I =1) - s oo oo

prediction : ; ° ° - ® @]

tm—3 Im-2 Im-1 Lin b+l



Worley 1 99 1 Ml—ti?oedsP?;:yte:V

Parallelizing across time when solving time-dependent Parall Methods
partial differential equations, Proc. 5th SIAM Conf. on et . Germédar
Parallel Processing for Scientific Computing
“The waveform relaxation multigrid algorithm is normally
implemented in a fashion that is still intrinsically
sequential in the time direction.”
a1 X1 f Worley
a1 axm xx | | f
asy as3 xs | | f
a3 as X4 fa

One step of cyclic reduction:

a
( - ><X2>_<f2_aﬂfl>
_an = _ an ’
a2 A X4 fa — S2f3

Serial complexity: forward substitution 3n, cyclic reduction 7n
Parallel complexity of cyclic reduction is a logarithm in n



Cyclic Reduction in Waveform Relaxation
For a system of ODEs
u; = Au, u(0) = ug,
Jacobi waveform relaxation is (A= L+ D + U)
uf = Du* 4 (L4 U)u*t,  uk(0) =

Solving each scalar ODE in this iteration using cyclic
reduction, in the context of multigrid waveform relaxation,
Worley reached optimal parallel complexity:

Result (Worley 1991): Parallel complexity is

©(log? Ny log” Ny) , v = %[Ievels] (Multigrid for Laplace has
O(log? N).

See also Horton, Vandewalle and Worley (SISC 1995) and
Simoens and Vandewalle (SISC 2000)
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Sheen, Sloan and Thomée 1999

A parallel method for time-discretization of parabolic
problems based on contour integral representation and
quadrature, Math. of Comp., Vol. 69, No. 1.

“These problems are completely independent, and can
therefore be computed on separate processors.”

u: +Au=0, u(0)= up,
Laplace transform with parameter s
si+Ai=uy = = (s/+A) tuo.

Inverse Laplace transform

u(t) = i/re“ﬁ(s)ds.

27

Approximating the integral with a quadrature formula with
nodes s;, one only needs to compute {i(s) at s = s;.
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Maday and Rgnquist 2008 Methods Part IV

Direct Time

Parallelization in time through tensor-product Pyl Wiidhods

space-time solvers, CRAS, Vol. 346, No. 1.
“Pour briser la nature intrinséquement séquentielle de cette

résolution, on utilise I'algorithme de produit tensoriel
rapide.”

Martin J. Gander

Suppose we discretize uy = Lu using Backward Euler:

S L
ag L . uy fl"v‘A—nUO
1
~a; a5 L u2 f
Bu:= ] ) .= =f
1 1
Aty A_tN_L un fn

Maday, Rgnquist

If B is diagonalizable, B = SDS™!, we can solve in 3 steps:

1
Sg =", (E —Dw, =g, Slu=w.

Problem: B is not diagonalizable if all time steps are equal.
How should one choose At; 7



Truncation Error Estimates T

Direct Time

Study the model problem Parallel Methods
Martin J. Gander

@
dt
Theorem (G, Halpern, Ryan, Tran 2014)

For a Backward Euler discretization, the error is minimized if
all time steps are equal.

+au=0, te(0,T), u(0)=up

To be able to diagonalize, we introduce a geometric mesh
At, = (1+¢€)"1At;, n=2,..., N and associated
numerical approximation up(e).

Theorem (G, Halpern, Ryan, Tran 2014) Balancing Eror

The difference between the geometric mesh and fixed step
mesh approximations satisfies for ¢ small

un(e) — un(0) = a(aT, N)uge? + o(£?), with
N(N? — 1) ( x/N

2



Roundoff Error Estimates

For a given ¢, the time parallel algorithm needs to solve
Bu = f by solving Sg = f, (ﬁ +a)w, =gp STlu=w.
Theorem (G, Halpern, Ryan, Tran 2014)

Let u be the exact solution of Bu = f, and (i be the
computed solution by diagonalization. Then

[Ju — dfl

N2(2N + 1)(N + aT) ~(N-1)
[Jullo ’

¢(N)

< macheps

with
S(N) = (S —1)1 if N is even,
a (%!)2 if N is odd.

The error of the direct time parallel solver at time T can be
estimated by
|e—aT

uo—an| _ e ug—un(0)| n |un(0) —up(e)| n lun(€)— |

|uol B |uo |uol | o]
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Balancing Roundoff and Truncation Error

Theorem (Optimized geometric time mesh)

Roundoff and Truncation Errors are balanced if

e(aT,N) = <macheps

N2(2N + 1)(N + aT)> w1 |

P(N)a(aT, N)
30, I
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Potential for Parallelization

Using the optimized ¢, solving
du

dt

with Backward Euler in parallel using N processors will

increase the error by the factor:

+au=0, te(0,7),

A
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ODE Numerical Experiment

—%-discretization error
K=o+ ?
——+-parallelization error
—t—error bound A
-©-cond(S)*eps
—&—condest(S)*eps
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Diagonalization for PDEs by Tensorisation Methods Part IV
Direct Time
For example for the discretized heat equation Parallel Methods
Martin J. Gander
1 n n—1
u” —u") — Apu” =f".
A ) - A

Setting u := (u',...,uM), f:= (F + Aitluo,fz, ..., f¥Y and
using the Kronecker symbol

1
At

s S 0

(B®Ix_lt®Ah)u = f7 B = 81'2 Aty
11
Aty Aty

Tensorisation

If B is diagonalizable, B = SDS™!, one can solve in 3 steps:
(a) (S®lk)g = f,
(b) (A%“,,_Ah)wn = g" 1<n<N,
(c) (S71® l)u

wW.



Heat Equation Numerical Experiment
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Gander and Guttel 2013

For linear problems u’(t) = Au(t) + g(t), u(0) =ug
ParaExp: use overlapping decomposition
T S T o ,//":::
I’b j—'l 1'—'2 I’E; TZL

Solve first non-overlapping inhomogeneous problems
vi(t) = Avj(t) + g(t), vi(Tj-1) =0, te[Tj—1, Tjl,
and then overlapping homogeneous problems
wj(t) = Aw;(t), w;(Tj—1) = vj-1(Tj-1),
The solution is then obtained by summation:
k

te [Tj—17 T]

u(t) = vi(t)+ Y wj(t) with k such that t € [Ty_y, T

Jj=1
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Wave Equation Experiment

Oreu(t,x) = a?du(t, x) + hat(x) sin(2r ft) x,t € (0,1)
u(t,0)=u(t,1) = u(0,x) = u'(0,x) =0
serial parallel effi-

a?|f max(71) | max(72) ciency
0.1{1||2.54e—01|3.64e—04(4.04e—02|1.48e—02 58 %
0.1/ 5|1.20e+-00|1.31e—04{1.99e—01|1.39e—02 71%
0.1]25||6.03e+-00|4.70e—05(9.83e—01|1.38e—02 76 %

1]117.30e—01|1.56e—04(1.19e—01|2.70e—02 63 %

1|5|1.21e+00|4.09e—04(1.97e—01|2.70e—02 68 %

1 125||6.08e+-00|1.76e—04(9.85e—01|2.68e—02 75%
10]1|2.34e+-00(6.12e—05(3.75e—01|6.31e—02 67 %
10]5(2.31e+-00(4.27e—04(3.73e—01|6.29e—02 66 %
10125|/6.09e+-00{4.98e—04(9.82e—01|6.22e—02 73%
Ax = Aty = min{5-107%/a,1.5-1073/f}, RK45 and

Chebyshev exponential integrator, 8 processors
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Heat Equation Experiment

Oru(t, x) = adxxu(t, x) + hat(x) sin(27ft)
u(t,0)=u(t,1)=0
u(0,x) =4x(1 —x)

x,t € (0,

1)

f

serial

parallel

70

error

max(71)

max(72)

error

effi-
ciency

0.01
0.01
0.01
0.1
0.1
0.1
1
1
1

1
10
100
1
10
100
1
10
100

4.97e—02|3.01e—04
2.43e—01|4.14e—04
2.43e+00(1.73e—04
4.85e—01|2.24e—05
4.86e—01/1.03e—04
2.42e+00(1.29e—04
4.86e+00|7.65e—08
4.85e+00/8.15e—06
4.85e+00(3.26e—05

1.58e—02
7.27e—02
7.19e—01
1.45e—01
1.45e—01
7.21e—01
1.45e+4-00
1.45e+00
1.44e+00

0.30e—03
9.28e—03
9.26e—03
9.31e—03
0.32e—03
9.24e—03
0.34e—03
9.33e—03
0.34e—03

2.17e—04
1.94e—04
5.68e—05
5.34e—06
9.68e—05
7.66e—05
1.78e—08
5.40e—07
2.02e—05

50 %
74%
83 %
79 %
79 %
83 %
83 %
83 %
84 %

Ax =

L
101"

Aty = min{5-107*/a,1.5-1073/f}, RK45 and
Chebyshev exponential integrator, 4 processors
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Advection-Diffusion Popular Benchmark Problem

Ty

AN

1
Martin J. Gander
1.5
11
0.5
Ol 0 1 0

Iy 0 [out 1-
equispaced time | with load balancing
To 24.1s (23.7 +7)s

serial error 1.2e—03 8.3e—04

min(7y) 2.6s 2.6s

max(71) 7.7s 49s
mean(7) 0.3s 0.3s
parallel err. 4.7e—04 3.1e—04
efficiency 36.9% 58.3%

8 processors, odelbs, restricted-denominator Arnoldi

method (+7 for optimized time grid)
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Conclusions Part 1V: Direct Time Parallel Methods = wehes part v

Direct Time
Parallel Methods

Martin J. Gander

» Small scale methods: Predictor Corrector, Block
Methods, Parallel RK and RIDC.

» Cyclic reduction, also together with Waveform
Relaxation.

» Laplace transform methods.
» Methods based on diagonalization and tensorization.
» ParaExp based on rational Krylov propagation.

Preprints are available at www.unige.ch/~gander

Conclusions
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