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Hackbusch 1984

Parabolic multigrid methods. Computing Methods in
Applied Sciences and Engineering, VI, R. Glowinski and J.-L.
Lions, Eds. North-Holland, 1984.

Parabolic PDE ut + Lhu = f discretized by Backward Euler:

1

∆t
(u(t)− u(t −∆t)) + Lhu(t) = f (t) (∗)

“The conventional approach is to solve (*) time
step by time step; u(t) is computed from
u(t −∆t), then u(t +∆t) from u(t) etc. The
following process will be different. Assume that
u(t) is already computed or given as an initial
state. Simultaneously, we shall solve for u(t +∆t),
u(t + 2∆t), . . . , u(t + k∆t) in one step of the
algorithm.”
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Method of Hackbusch

From the problem at each time step

Au(t) = −
1

∆t
u(t −∆t) + f (t), A :=

1

∆t
I + Lh

take a Gauss-Seidel smoother S , i.e. A = L+ D + U

un+1 = S(t, un, u(t −∆t), f (t))

:= (L+ D)−1(−Uun −
1

∆t
u(t −∆t) + f (t)).

The parabolic multigrid method is a multigrid method in
space time with the following smoothing procedure:

for τ = t : ∆t : t + k∆t
for j = 1 : ν

u(τ) = S(τ, u(τ), u(τ −∆t), f (τ));
end;

end
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Results of Hackbusch

◮ If one does only coarsen in space, then standard
multigrid performance is achieved.

◮ If one also coarsens in time, one does not obtain
standard multigrid performance, and the method can
even diverge.

◮ This is traced back to errors which are smooth in space,
but non smooth in time.

Numerical experiments for buoyancy-driven flow with finite
difference discretization
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Lubich and Ostermann 1987
Multigrid Dynamic Iteration for Parabolic Problems.
BIT 27, 1987.

“We study the method which is obtained when a
multi-grid method (in space) is first applied directly
to a parabolic initial-boundary value problem, and
discretization in time is done only afterward.”

Laplace transform:

ut + Lhu = f =⇒ A(s)û := sû + Lhû = f̂

Multigrid for A(s)û = f̂ : Let A(s) = L+D + sI + U,

Initial guess û00(s). For n = 0, 1, 2, . . .
for j = 1 : ν

ûjn(s) := (L+ D + sI )−1(−Uûj−1
n (s) + f̂ (s))

end;
û0n+1(s) := ûνn (s) + EA−1

c R(f̂ (s)− Aûνn(s))
smooth again
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Algorithm in the Time Domain

The smoothing step

(sI + L+ D)ûjn(s) = −Uûj−1
n (s) + f̂ (s)

becomes in the time domain

∂tu
j
n + (L+ D)ujn + Uuj−1

n = f

which is a Gauss Seidel Waveform Relaxation iteration!

The coarse correction

û0n+1(s) := ûνn (s) + EA−1
c R(f̂ − Aûνn(s))

becomes

solve vt + LHv = R(f − ∂tu
ν

n − Lhu
ν

n )
u0n+1 = uνn + Ev

time continuous parabolic problem on coarse spatial mesh
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Results of Lubich and Ostermann
For the heat equation and finite difference discretization:

◮ Red-black Gauss Seidel smoothing is not as good as for
the stationary problem, but still sufficient to give typical
multi-grid convergence.

◮ Damped Jacobi smoothing is as good as for stationary
problem.

◮ Time discretization leads to similar results if no time
coarsening is performed.

Numerical experiments
with locally adapted
time steps for

ut = uxx + e−(x−t)2

x ∈ (0, 10), t ∈ (0, 12),
u(x , 0) = 0.
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Horton and Vandewalle 1995
A Space-Time Multigrid Method for Parabolic Partial
Differential Equations. SIAM J. Sci. Comput, Vol. 16, No.
4

“In standard time-stepping techniques multigrid
can be used as an iterative solver for the elliptic
equations arising at each discrete time step. By
contrast, the method presented in this paper treats
the whole of the space-time problem
simultaneously.”

2D heat equation discretized by centered finite differences in
space and backward Euler in time:
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Problem of Standard Multigrid in Space-Time
For V-cycle with one Gauss-Seidel red/black pre and post
smoothing step, standard coarsening with factor 2 in space
and time and full weighting and bilinear prolongation.

Here ρ̃ is the 2-norm contraction factor, and λ6 := ∆t/∆x2

on the finest level 6, 65× 65 points.
◮ Method only works when λ6 = ∆t/∆x2 is close to 1
◮ Even then contraction is worse than for spatial multigrid



Time Parallel
Methods Part III

Space-Time
Multigrid

Martin J. Gander

Multigrid

Hackbusch

Lubich, Ostermann

Horton, Vandewalle

Minion

Emmett, Minion

Gander, Neumüller

Conclusions

Key New Ideas of Horton and Vandewalle

1. Adaptive semi-coarsening in space or time to keep λ in
a good range for the contraction factor.

2. Prolongation operators only forward in time.

3. Restriction operators only backward in time.

Two-grid contraction factor with 2 pre- and postsmoothing
steps for λh = ∆t/∆x2.
Standard coarsening (dotted line), space coarsening (solid
line), time coarsening (dashed line)
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Results of Horten and Vandewalle

V-cycle and F-cycle contraction factors with 3 smoothing
steps. Space time grids of 256× 256 (solid), 128× 128 (long
dashed), 64× 64 (short dashed), 32× 32 (dotted).

◮ Analysis based on local Fourier modes

◮ Good contraction rates for V-cycles, but not quite mesh
independent

◮ Mesh independent convergence rates for F-cycles

Numerical results for 1d, 2d, and 3d heat equations
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Minion 2010
A Hybrid Parareal Spectral Deferred Corrections
Method, Comm. App. Math. and Comp Sci. Vol. 5, No. 2

“This paper investigates a variant of the parareal algorithm
first outlined by Minion and Williams in 2008 that utilizes a
deferred correction strategy within the parareal iterations.”

Review of deferred (difference or defect) correction:

u′ = f (u), u(0) = u0

Let ũm be an order one approximation (e.g. FE). If ũ(t) is
its interpolant, the error e(t) := u(t)− ũ(t) satisfies

e′(t) = u′(t)− ũ′(t) = f (u)− ũ′(t) = f (e + ũ)− ũ′(t)

an ODE for e(t) with e(0) = 0! Solving with FE gives em.
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Minion 2010
A Hybrid Parareal Spectral Deferred Corrections
Method, Comm. App. Math. and Comp Sci. Vol. 5, No. 2

“This paper investigates a variant of the parareal algorithm
first outlined by Minion and Williams in 2008 that utilizes a
deferred correction strategy within the parareal iterations.”

Review of deferred (difference or defect) correction:

u′ = f (u), u(0) = u0

Let ũm be an order one approximation (e.g. FE). If ũ(t) is
its interpolant, the error e(t) := u(t)− ũ(t) satisfies

e′(t) = u′(t)− ũ′(t) = f (u)− ũ′(t) = f (e + ũ)− ũ′(t)

an ODE for e(t) with e(0) = 0! Solving with FE gives em.

Theorem (Skeel 1976, see also Fox 1947, Pereyra 1967,
Frank and Ueberhuber 1977): The new approximation
ũm + em is of order two. =⇒ iterated defect correction
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Minion 2010
A Hybrid Parareal Spectral Deferred Corrections
Method, Comm. App. Math. and Comp Sci. Vol. 5, No. 2

“This paper investigates a variant of the parareal algorithm
first outlined by Minion and Williams in 2008 that utilizes a
deferred correction strategy within the parareal iterations.”

Review of deferred (difference or defect) correction:

u′ = f (u), u(0) = u0

Let ũm be an order one approximation (e.g. FE). If ũ(t) is
its interpolant, the error e(t) := u(t)− ũ(t) satisfies

e′(t) = u′(t)− ũ′(t) = f (u)− ũ′(t) = f (e + ũ)− ũ′(t)

an ODE for e(t) with e(0) = 0! Solving with FE gives em.

Theorem (Skeel 1976, see also Fox 1947, Pereyra 1967,
Frank and Ueberhuber 1977): The new approximation
ũm + em is of order two. =⇒ iterated defect correction
Problems: numerical interpolation and differentiation
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Dutt, Greengard, Rokhlin 2000
Spectral integral deferred correction:

u′ = f (u), u(0) = u0 =⇒ u(t) = u(0)+

∫ t

0
f (u(τ))dτ.

Let ũ(t) be an approximation with residual

r(t) := ũ(0) +

∫ t

0
f (ũ(τ))dτ − ũ(t),

The error e(t) := u(t)− ũ(t) satisfies (with u(0) = ũ(0))

ũ(t) + e(t) = ũ(0) +

∫ t

0
f (ũ(τ) + e(τ))dτ.

=⇒ e(t) = ũ(0) +

∫ t

0
f (ũ(τ) + e(τ))dτ − ũ(t)

= r(t) +

∫ t

0
f (ũ(τ) + e(τ))− f (ũ(τ))dτ
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Using differentiation, we obtain from

e(t) = r(t) +

∫ t

0
f (ũ(τ) + e(τ)) − f (ũ(τ))dτ,

the differential equation for the error

e′(t) = r ′(t) + f (ũ(t) + e(t))− f (ũ(t)).

Starting with an order one method, e.g. FE

ũm+1 = ũm +∆tf (ũm), for m = 0, 1, . . . ,M − 1.

one evaluates with high order quadrature the residual

r(t) = ũ(0) +

∫ t

0
f (ũ(τ))dτ − ũ(t),

and then computes the approximate error with FE

em+1 = em + rm+1 − rm +∆t(f (ũm + em)− f (ũm)).

Theorem (Böhmer and Stetter 1984) The new
approximation ũm + em is of order two.
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Spectral Integral Deferred Correction Integrator
Let u0 := (ũ0, ũ1, . . . , ũM)T be the initial approximation
from forward Euler. Then integral deferred correction is a
fixed point iteration

uk = F (uk−1, u0) (∗)

Classical approach: partition [0,T ] into [Tj−1,Tj ],
j = 1, 2, . . . , J, and then perform (∗) sequentially on each
interval:

uK0,M = u0;
for j = 1 : J

compute u0j as Euler approximation on [Tj−1,Tj ];
for k = 1 : K

ukj = F (uk−1
j , uKj−1,M);

end;
end;
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Spectral Integral Deferred Correction Integrator
Let u0 := (ũ0, ũ1, . . . , ũM)T be the initial approximation
from forward Euler. Then integral deferred correction is a
fixed point iteration

uk = F (uk−1, u0) (∗)

Classical approach: partition [0,T ] into [Tj−1,Tj ],
j = 1, 2, . . . , J, and then perform (∗) sequentially on each
interval:

uK0,M = u0;
for j = 1 : J

compute u0j as Euler approximation on [Tj−1,Tj ];
for k = 1 : K

ukj = F (uk−1
j , ukj−1,M);

end;
end;

Idea of Minion (2010): replace K by k (see also Womble
later), and use this as fine propagator in parareal.
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Emmett and Minion 2012

Toward an efficient parallel in time method for partial
differential equations, Comm. App. Math. and Comp Sci.
Vol. 7.

“A new method for the parallelization of numerical methods
for partial differential equations (PDEs) in the temporal
direction is presented. The method is iterative with each
iteration consisting of deferred correction sweeps performed
alternately on fine and coarse space-time discretizations.
The coarse grid problems are formulated using a space-time
analog of the full approximation scheme popular in multigrid
methods for nonlinear equations.”

This now called PFASST algorithm uses the parallel spectral
deferred correction iteration of Minion (2010) as a smoother
in a multigrid full approximation scheme in space-time for
non-linear problems.
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Gander and Neumüller 2014
Use block Jacobi smoother for a multi-grid method applied
to the entire space-time system
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Theorem (G, Neumüller (2014))

For the heat equation, and block Jacobi smoother, we have:

◮ the optimal relaxation parameter is ω = 1
2

◮ always good smoothing in time (semi-coarsening is
always possible)

◮ for ∆t
∆h2

≥ C also good smoothing in space

◮ one V-cycle in space suffices to invert An
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3D Heat Equation Parallelization Results

Scaling results on the Vienna Scientific Cluster VSC-2

Weak Scaling Strong Scaling

cores 1
∆T

dof iter time 1
∆T

dof iter time

1 4 59768 9 6.8 4096 61202432 9 6960.7
2 8 119536 9 8.1 4096 61202432 9 3964.8
4 16 239072 9 9.2 4096 61202432 9 2106.2
8 32 478144 9 9.2 4096 61202432 9 1056.0

16 64 956288 9 9.2 4096 61202432 9 530.4
32 128 1912576 9 9.3 4096 61202432 9 269.5
64 256 3825152 9 9.4 4096 61202432 9 135.2
128 512 7650304 9 9.4 4096 61202432 9 68.2
256 1024 15300608 9 9.4 4096 61202432 9 34.7
512 2048 30601216 9 9.4 4096 61202432 9 17.9

1024 4096 61202432 9 9.4 4096 61202432 9 9.4
2048 8192 122404864 9 9.5 4096 61202432 9 5.4

(all simulations performed by M. Neumüller)
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Conclusions Part III: Space-Time Multigrid

◮ Hackbusch was the first in 1984 to try multigrid for
parabolic problems.

◮ Lubich and Ostermann invented multigrid waveform
relaxation in 1989.

◮ First fully functioning space-time multigrid method by
Horton and Vandewalle in 1995.

◮ PFASST by Emmett and Minion in 2012 from a
combination of integral spectral deferred correction and
parareal.

◮ Fully scalable space-time multigrid method by Gander
and Neumüller in 2014

Preprints are available at www.unige.ch/∼gander
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