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Simpler: 9 = f(u), u(ty) = uo, discretized by Forward Euler

Unt1 = Up + Atf(up).
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Heat equation % = % + g—y'é + f, u(x,y, to) = uo(x,y)

Martin J. Gander

Overview
space
time
to t1 t2 t3 ts
. . du _ _ . .
Simpler: S = f(u), u(to) = uo, discretized by Forward Euler

Unt1 = Up + Atf(up).

Triangular solve in the linear case v’ = au + f(t):

1 u1 Atf(to) + (1 + aAt)uo
—1—aAt 1 U Atf(t1)
—1—-aAt 1 u3 =

Atf(t2)
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Jorg Nievergelt 1964

Parallel Methods for Integrating Ordinary Differential
Equations. Comm. of the ACM, Vol 7(12), 1964.

“For the last 20 years, one has tried to speed up
numerical computation mainly by providing ever
faster computers. Today, as it appears that one
is getting closer to the maximal speed of
electronic components, emphasis is put on
allowing operations to be performed in parallel. In
the near future, much of numerical analysis will
have to be recast in a more 'parallel’ form."”
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Jorg Nievergelt 1964 Methods Pare |

Shooting Methods

Martin J. Gander

Parallel Methods for Integrating Ordinary Differential
EquatiOﬂS Comm Of the ACM, VOI 7(12), 1964 Nievergelt

Model problem treated:

y'=1(y), y(x)=y

"As an example, a method is proposed for
‘parallelizing’ the numerical integration of an
ordinary differential equation, which process, by all
standard methods, is entirely serial”



Nievergelt's Method from 1964

The idea is to divide the integration interval [a, b] into
N equal subintervals [z, 2], @ =a, av=0b, 7= 1,
2, -+, N, to make a rough prediction y;’ of the solution
y(x:), to seleet a certain number M, of values y;;, 7 =1,
2, .-+, M, in the vicinity of 4, 7 =1,2,---, N, and
then to integrate simultaneously with an accurate integra-
tion method 9 all the initial value problems

Yau 0
yﬂl
1
y Ity I~
" 2
yi )"
Y20 N-1
Yie Ya
¢
Yy In-1g P~
a=x, X, Xy Xyt b=x"

. The connec-
tion between the branches is now brought about by inter-
polating the end value of the unique branch in [z, 2]
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Alfredo Bellen and Marino Zennaro 1989

Parallel algorithms for initial-value problems for
difference and differential equations. J. Comp. and Appl.
Math. Vol 25, 1989.

“In addition to the two types of parallelism
mentioned above, we wish to isolate a third which
is analogous to what Gear has more recently called
parallelism across the time. Here it is more
appropriately called parallelism across the steps. In
fact, the algorithm we propose is a realization of
this kind of parallelism. Without discussing it in
detail here, we want to point out that the idea is
indeed that of multiple shooting and parallelism
is introduced at the cost of redundancy of
computation.”
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Bellen and Zennaro's Method from 1989 S

Shooting Methods

Martin J. Gander
Consider the difference equation

Yn+1 = Foy1(¥n),  yo known.

Bellen Zennaro

With y := (Yo, ¥1,-- -, ¥n, - -.) this represents a fixed point
problem of the form

y = ®(y),
where ®(y) = (yo, F1(y0), F2()1)s - - - s Fa(¥n-1),--.).

Steffensen’s method applied to the fixed point problem gives
Yy = oy ) + Ad(y )y —y")

where A® is an approximation to the differential D®, and
Bellen and Zennaro chose y? = yj.



Time Parallel

Properties of the Algorithm Methods Part |

Shooting Methods

Martin J. Gander

Steffensen’s method for f(x) = 0:

Xer1 = xe— &0xk) M (xx)
iy f ) )

Bellen and Zennaro's Results:
1. each iteration gives one more exact value, so
convergence is guaranteed
2. convergence is locally quadratic
3. corrections can be computed in parallel

4. numerically estimated speedups of 29-53 with for 400
steps



Philippe Chartier and Bernard Philippe 1993 S:ATQEZ%’JE'L
A Parallel Shooting Technique for Solving Dissipative :
ODE’s. Computing, Vol 51, 1993.

Martin J. Gander

“In this paper, we study different modifications of
a class of parallel algorithms, initially designed by
A. bellen and M. Zennaro for difference equations
and called ‘across the steps’ methods by their
authors, for the purpose of solving initial value
problems in ordinary differential equations (ODE’s)
on a massively parallel computer.”

Chartier Philippe

“It is indeed generally admitted that the integration
of a system of ordinary differential equations in a
step-by-step process is inherently sequential.”

“In diesem Artikel studieren wir verschieden Versionen einer Klasse
paralleler Algorithmen, die urspriinglich von A. Bellen und M. Zennaro
fiir Differenzengleichungen konzipiert und von ihnen 'across the steps’

Methode genannt worden ist.”



Time Parallel

Multiple Shooting for Initial Value Problems Methods Part |

e Shooting Methods
To solve the initial value problem .
Martin J. Gander

v =f(u), u(0)=1° x €10,1]

by multiple shooting, one splits the time interval into
subintervals [0, 3], [3, 2], [3,1], and then solves on each

Chartier Philippe

subinterval
uy = f(uo), i = ), v = flu),
up(0) = U, Ul(g) = U, U2(§) = U,

together with the matching conditions

Uo = UO, U1 = UO( Uo) U2 = u1( Ul)

3’
Uo—u

— FU)=|[ U —uw W) | =0, U= Uy U, U)T".
U2—U]_(3,U1)



USing Newton's Method Time Parallel

Methods Part |
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UO - UO Martin J. Gander
F(U) = U1 - Uo( Uo) =0
U — U]_(3, Ul)
-1
Ué(+1 Ug Hu 1 UO _U Chartier Philippe
e I 07 W T SR B (VY ER T
uit) \uk —on 3,06 1| \UE (3 Ul
Multiplying through by the matrix, we find the recurrence
U(’)‘H = uo,
U = (3, UF) + S5, US(UgT = U§),
Ut = w3, U6) + 5 G UR)(UT - Uf).

General case with N intervals:

Oup

k+1 k
Unj-_l - n(tn-i-la Un) ou,

—(tar1, U (U = UR).



Example: first iteration

Ur
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Example: second iteration Methods Part |
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Ur




Example: third iteration

Ur

U>

2/3
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Results of Chartier and Philippe

» The algorithm converges locally quadratically
» Global convergence is proved for dissipative systems

Non-dissipative example y’

cosxsiny?, y(0) =1

Speedup for a dissipative scalar ODE and a system of 3

Spebp

s 10

Example 5
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!
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s
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Prasenjit Saha, Joachim Stadel, Scott Tremaine

A parallel integration method for solar system
dynamics. The Astronomical Journal, Vol 114(1), 1997.

“We describe how long-term solar system orbit
integration could be implemented on a parallel
computer. The interesting feature of our algorithm
is that each processor is assigned not to a planet or
a pair of planets, but to a time-interval. Thus, the
Ist week, 2nd week, ..., 1000th week of an orbit
are computed concurrently. The problem of
matching the input to the (n+ 1)-st processor with
the output of the n-th processor can be solved
efficiently by an iterative procedure. Our work is
related to the so-called waveform relaxation
methods. .. ".
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The Idea of Saha, Stadel and Tremaine

Consider the system of ordinary differential equations

y="1f(y), y(0)=yo,
or equivalently the set of quadratures
t
76 =y + [ Fly(s)eas

Approximating the quadrature by sums gives

n—1

1
yn=yothY fGm+ym1)), n=1...

m=0

This is again a fixed point equation of the form

y = F(y),

which can be solved by an iterative process.

N
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Algorithm of Saha, Stadel and Tremaine Methods Part |
Shooting Methods
Algorithm for a Hamiltonian problem with a small T

perturbation
p=—Hqg, §=Hy,, H(p.q.t)=H’p)+eH" (p,q.1).
Denoting y := (p, q), f(y) := (—Hq(y), Hp(y)), they derive  sahs suacet

Newton's method for the associated fixed point problem (as
Chartier Philippe)

¢ dy;,
Yo = yi(tngn, Vi) + ay" (tar1, YO YEL = vE
n

but now propose to approximate the derivative by a cheap
difference for the unperturbed Hamiltonian

Yrﬁ(—l——i_ll = yri(tn—i-l» Yr:() + yr?(tn-l-lv Ynk+1) - yr?(tn—i-b Yri()

They argue that each iteration now improves the error by a
factor ¢, instead of quadratically.



Results for our solar system Mathote Pare
Shooting Methods

Using for H° Kepler's law, and eH" planetary perturbations Martin 3. Gonder

T T T T T T Ty T T T

L Mercury -

0.01

Lol

T

Saha, Stadel,
Tremaine
0.001

Venus

Neptune
Earth

T

Mars

ol

0.0001

Saturn

Maximum error in M
T TT H“I

ol

Jupiter
Uranus

T /AT T h’:l,:l“m.

1000 10* 10° 10°

10°°

T

E il

Time in yr

Maximum error in mean anomaly M versus time, h = 73—12
days, compared to results from the literature



Possible Speedup Mothods Pare |

Shooting Methods

Iterations needed to converge to relative error 1e — 15 Marti
artin J. Gander

W T T T T T T T T T g
E =
8 | =
8 — = Saha, Stadel,
4 il = Tremaine
= —
& o b v v e e e e
= o 1000 2000 3000 4000
5
SR A e e e v L =
8 | -
6 —
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2 —
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Processors

Top linear scaling, and bottom logarithmic scaling



Lions, Maday, Turinici 2001

Résolution d’EDP par un schéma en temps “pararéel”.

C. R. Acad. Sci. Paris.

“Elle a pour principale motivation les problémes en temps
réel, d’oli la terminologie proposée de pararéel.”

y=-ay, onl0,T], y(0)=
First use Backward Euler on grid T, with step AT

Y= Yr+aATYy =0, Yy =y.

Then compute on each interval [T,, T,11] exactly

Vo =—ayy, ya(Ta) =Y.

Iteration for k =1,2,...:
1. Compute jumps Sk := yk (T,)— Yk
2. Propagate jumps 6K ; — 5k +aATék =Sk &
3. Set Ykl .= yk (T,)+ (5,5 and solve in parallel
k1 _ k+1

=0

yn _ayn Y on [Tfh Tn+1]7 .yrl7<+1(Tn) = Ylf-'_l'
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“C'est alors un exercice que de montrer la:" Time Parallel
.. . . Methods Part |
Proposition: The parareal scheme is order k, i.e. there Shooting Methods

exists Ck s.t. Martin J. Gander

Ve = y(To)l+ _ma ]|yn(t) y(t) < ATk

[ n, n+1

Parareal Algorithm in Modern Notation for v = f(u)

Lions, Maday, Turinici

1. G(tp, t1,u1) is a rough approximation to u(tp) with
initial condition u(t1) = vy,
2. F(t,t1,u1) is a more accurate approximation of the
solution u(tp) with initial condition u(t;) = u.
Starting with a coarse approximation U9 at the time points

t1, to,..., ty, parareal performs for k =0,1,... the
correction iteration

UKt = Flta1: tn, US4 G (tns1, tn, URTH) = G(tng, ta, U).

G, Vandevalle 2007: Parareal is multiple shooting with the
Jacobian approximated by differences on a coarser grid



Precise Convergence Estimate for Parareal Metheds Part |

Shooting Methods

Martin J. Gander
Theorem (G, Hairer 2007)

Let F(tni1,tn, UX) denote the exact solution at t,,1 and
G(tni1, tn, UX) be a one step method with local truncation
error bounded by C,ATPTL. If

IG(t+ AT, t,x) = G(t+ AT, t,y)| < (1+ GQAT)|x —y|, 5™

then
k
k GAT Y N—1—k . o
(T2 () = Url < == — @ GATY TV -), max Ju(en) - U]
=
k
< (GT) eC(T—(kF)AT) A ok o u(ta) — U]
-kl 1<n<N n nl

G and Hairer: Nonlinear Convergence Analysis for the Parareal
Algorithm, Domain Decomposition Methods in Science and
Engineering XVII, Springer-Verlag, 2007.
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Suggested by Jean-Pierre Eckmann (2004)

= —ox-+oy

—XZ+rx—y

Lions, Maday, Turinici

z = xy—bz

Parameters: 0 =10, r =28 and b= % = chaotic regime.
Initial conditions: (x,y,z)(0) = (20,5, —5)
Simulation time: t € [0, T = 10]

Discretization: Fourth order Runge Kutta, AT = T

; 180"
At = 1555-
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Numerical experiment: Arenstorf orbit

1.5

0.5

-15
-1.5

Lets try the parareal algorithm with 250 processors
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1.5 T T T T T T T
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Conclusions Part I: Shooting Type Method

» The idea of parallelizing the solution of ODEs in the
time direction goes back to Nievergelt (1964)

» Multiple shooting methods for initial value problems
were investigated by Bellen and Zennaro (discrete case,
1989) and Chartier and Phillipe (continuous case, 1993)

» Approximating the Jacobian by a simpler model in
multiple shooting for initial value problems was
proposed by Saha, Stadel and Tremaine (1997)

» The parareal algorithm by Lions, Maday and Turinici
(2001) uses an approximation of the Jacobian on a
coarse grid

Preprints are available at www.unige.ch/~gander
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