
François Broquedis1

Frédéric Desprez2

Jean-François Méhaut3

1Grenoble INP
2INRIA Grenoble Rhône-Alpes

3Université Grenoble Alpes

Laboratoire d'Informatique de Grenoble
CORSE Inria Project-team

https://team.inria.fr/corse/

Overview of Architectures
and Programming Languages

for Parallel Computing

CORSE : Compiler Optimizations and Runtime Systems

• Static/Dynamic Compiler Analysis

– Hybrid and extensible byte-code

– Hybrid compilation, static/trace analysis

– Instruction scheduling, computing and IO complexities

• Runtime Systems and Interface with Compilers

– Load balancing with compiler analysis information

– Memory management (thread/data affinity)

– Scheduling and load balancing directed by power management

• Interactive debugging, properties monitoring

– Debugging with programming models (gdb, OpenMP, StarPU,…)

– Dynamic monitoring of program properties

20/07/2016 - 2

• Fabrice Rastello (DR Inria), CORSE leader

– Loop transformations for ILP, SSA, IR, Profiling/Feedback, DSL

• Florent Bouchez Tichadou (MCF UGA)

– Register allocation, backend compiler optimizations, IR

• François Broquedis (MCF Grenoble INP)

– Runtime Systems, OpenMP, Memory Management, FPGA

• Frédéric Desprez (DR Inria)

– Parallel Algorithmic, Scheduling, Data Management

• Ylies Falcone (MCF UGA)

– Runtime verification, enforcement, Monitoring

• Jean-François Méhaut (PR UGA)

– Runtime Systems, Low Power, Load Balancing, Debugging

20/07/2016 - 3

6 CORSE Members + 8 PhDs + 3 Post-Docs

Agenda
• Introduction to parallel computing (Jean-François)

– Architecture Evolutions, Software Stack, Mont-Blanc EU projects

• Multicore Programmning (François)

– OpenMP, Loop Parallelism, Programming with Tasks

• Heterogeneous (CPU, GPU) Programming (Frédéric)

– OpenCL, Computing Kernels

20/07/2016 - 4

General comments

• Feel free to ask questions at any time

• Feel free to provide feedback to improve lectures/slides

• Enjoy !

20/07/2016 - 5

Acknowledgements

• Arnaud Legrand (CNRS Grenoble)

• Henri Casanova (Univ. Hawaii)

• Filipo Mantovani, Nikola Rajovic, Alex Ramirez (Barcelona SC)

• Intel, ARM

• CERMACS'2016 (L. Grigori, C. Japhet, P. Moireau, P. Parnaudeau)

What is parallel computing ?
• Parallel Computing : using multiple processors/cores in parallel to solve

problems more quickly than with a single processor/core

• Examples of parallel machines

– A Chip Multi-processor (CMP) contains multiple processors (called

cores) on a single chip

– A Shared memory Multiprocessor (SMP) by connecting multiple

processors to a single memory system

– A Cluster Computer that contains multiple Pcs combined together with

a high speed network

– A Grid is a cluster of networked, loosely-coupled computers acting to

perform very large tasks

• Concurrent execution come from desire for performance

20/07/2016 - 6

Parallel Computing
• We want to run faster by using more processors/cores

• Goal

– Write applications that can leverage the performance of multicore

systems

– Write applications that run faster when vendors (Intel/IBM/AMD/ARM)

comes out with a new chip that has more cores

● Application must be parallel

● Application must be able to use an arbitrary number of cores (within

limits)

● Application should be able to leverage several various accelerators

(SIMD extensions, GPUs,...)

20/07/2016 - 7

Key Challenges : The 3 P's
• Performance challenge

– How to scale from 1 to 1000 cores – The number of cores is the new

Megahertz

• Power efficiency

– Performance per watt is the new metric – systems are often

constrained by power and cooling

• Programming challenges

– How to provide a converged solution in a standard programming

environment for multi and many core processors

20/07/2016 - 8

Architecture

CMOS Evolution – Practice
• Vendors have pushed thread performance faster than implied by scaling

theory

– Extra transistors have been used to enhanced microarchitectures

● Deeper pipelines, branch prediction, Instruction Level Parallelism

(ILP)…

● Larger caches

● Increased IPC (Instruction per Cycle)

– Voltage has scaled down more slowly

– Clock rate has scaled up faster

– Energy consumption has increased

– Leakage power has become significant

20/07/2016 - 10

Pipelining
• Overlapping execution of multiple instructions

– 1 instruction per cycle

• Sub-divide instruction into multiple stages ; Processor handles different

stages of adjacent instruction simultaneously

• Suppose 4 stages in an instruction

– Instruction fetch and decode (IF)

– Read data (RD)

– Execution (EX)

– Write-back results (WB)

20/07/2016 - 11

Instruction Pipelining

• Depth of pipeline : number of stages in an instruction

• With pipeline, 7 instructions takes 10 cycles

• Without pipeline, 7 instructions takes 28 cycles

20/07/2016 - 12

IF EXRD WB
IF EXRD WB

IF EXRD WB
IF EXRD WB

IF EXRD WB
IF EXRD WB

IF EXRD WB

1 2 3 4 5 6 7 8 9 10cycle

1

2
3
4
5
6
7

instruction

Inhibitors of Pipelining

• Dependencies between instructions interrupts pipelining, degrading

performance

– Control dependance

● Branching after a conditional branch loop, condition)

– Avoid excessive branching...

– Data dependance

● When an instruction depends on data from previous instruction

•

20/07/2016 - 13

x = 3*j;
y = x+5.0; // depends on previous instruction

Single Thread Performance Wall
• Cannot increase clock rate

– Would increase power dissipation

• Cannot increase IPC

– Cache misses have become relatively more expansive

• Need more parallelism in executing code

– SIMD Single instruction, Multiple Data – e.g vector operations

– MIMD Multiple Instruction, Multiple Data – e.g. multithreading

• Cannot extract parallelism without user support

• Increased transistors count is and will be used to be parallel systems

on a chip that will run explicitely parallel code

20/07/2016 - 14

Parallel Hardware
• Multicore

– Multiple inedependent processors per chip, shared memory

– Shared memory is possible bottleneck

• Simultaneous Multi-Threading (SMT), Hyper-Threading

– multiple instruction streams executing on one core (multipe register files

sharing same instruction units)

– better use of core resources

– slower execution, per stream

• Vector instructions

– e.g. Intel SSE (processing 128 bits in one instruction)

• Accelerators

– e.g. GPUs

20/07/2016 - 15

20/07/2016 - 16

Why multi-core ?

1.00x

Performance

Power

Max Frequency

20/07/2016 - 17

1.00x

Performance

Power

Max Frequency

Over-clocking

1.73x

1.13x

Over-clocked
20 %

20/07/2016 - 18

1.00x

Performance

Power

Max Frequency

Under-clocking

1.73x

1.13x

Over-clocked
+20 %

0.87x

0.51x

Under-clocked
-20 %

20/07/2016 - 19

1.00x

Performance

Power

Max Frequency

Multi-core : Energy-Efficient Performance

1.73x

1.13x

Over-clocked
+20 %

1,73x

1.02x

Under-clocked
-20 %

Dual-core

20/07/2016 - 20

Inside an Intel Nehalem Hex-Core

20/07/2016 - 21

Inside an Intel Nehalem Hex-Core

20/07/2016 - 22

Kalray/MPPA-256 architecture

● 256 cores (PEs) @ 400 MHz : 16 clusters, 16 PEs per cluster

● PEs share 2MB of memory

● Absence of cache coherence protocol inside the cluster

● Network-on-Chip (NoC) : communication between clusters

● 4 I/O subsystems : 2 connected to external memory

20/07/2016 - 23

Overview of Parallel Execution of Seismic Application

● Two-level tiling scheme to exploit
 the memory hierarchy of MPPA-256

● Absence of cache coherency inside a cluster
● Application programming is difficult !

20/07/2016 - 24

Memory Hierarchy

20/07/2016 - 25

Registers

Level-1 cache

Level-2 cache

Main memory

Secondary memory
(hard disk)

Network storage

… …

Increasing speed
Increasing cost
Decreasing size

Decreasing speed
Decreasing cost
Increasing size

• Performance of different levels can be very different

– e.g. access time L1 cache can be 5 cycle, L2 can be 12 cycles while

main memory can be 170 cycles and secondary memory can be

orders of magnitude slower

Cache : a piece of fast memory
Expensive (transistors, $)

How Memory Hierarchy Works ?
• (RISC processor) CPU works only data in registers

– If data is not in register, request data from memory and to register

• Data in register come only from and go only to L1 cache

– When CPU requests data from memory, L1 cache takes over ;

– If data is in L1 cache (cache hit), return data to CPU immediately ; end

memory access

– If data is not in L1 cache, cache miss

20/07/2016 - 26

How Memory Hierarchy Works ?
• If data is not in L1 cache, L1 cache forwards memory request down to L2

cache.

– If L2 cache has the data (cache hit), it returns the data to L1 cache, which in

returns data to CPU, end memory access

– If L2 cache does not have the data (cache miss)

• If data is not in L2 cache, L2 cache forwards memory request down to

memory

– If data is in memory, main memory passes data to L2 cache, which then passes

data to L1 cache, which then passes data to CPU.

– If data is not in memory,…

• Then request is passed to OS to read data from the secondary storage

(disk), which then is passed to memory, L2 cache, L1 cache, register...

– If data is not in register, request data from memory and to register

20/07/2016 - 27

20/07/2016 - 28

Cache Effect on Performance
• Cache miss degrading performance

– When there is a cache miss, CPU is idle waiting for another cache line to be

brought from lower level of memory hierarchy

• Increasing cache hit rate higher performance

– Efficiency directly related to reuse of data in cache

• To increase cache hit rate, access memory sequentially ; avoid strides,

random access and indirect addressing in programming

for(i=0;i<100;i++)
 y[i] = 2*x[index[i]];

for(i=0;i<100;i++)
 y[i] = 2*x[i];

for(i=0;i<100;i=i+4)
 y[i] = 2*x[i];

sequential
access

strides Indirect addressing

Private vs shared caches
• Advantage of private :

– They are closer to core, so faster access

– Reduces contention

– slower execution, per stream

• Advantages of shared :

– Threads on different core can share the same cache date

– More cache space data if a single (or a few) high performance thread

run on the system

20/07/2016 - 29

The cache coherence problem
• Since we have private cache :

– How to keep the data consisten across the caches ?

• Each core should perceive the memory as a monolithic array,

shared by all the cores

20/07/2016 - 30

The cache coherence problem
• Suppose variable x initially contained 15213

20/07/2016 - 31

Core 1 Core 2 Core 3 Core 4

One or more
levels of

cache

One or more
levels of

cache

One or more
levels of

cache

One or more
levels of

cache

Main memory
x=15213

multi-core chip

The cache coherence problem
• Core 1 reads x

20/07/2016 - 32

Core 1 Core 2 Core 3 Core 4

One or more
levels of

cache
x=15213

One or more
levels of

cache

One or more
levels of

cache

One or more
levels of

cache

Main memory
x=15213

multi-core chip

The cache coherence problem
• Core 2 reads x

20/07/2016 - 33

Core 1 Core 2 Core 3 Core 4

One or more
levels of

cache
x=15213

One or more
levels of

cache
x=15213

One or more
levels of

cache

One or more
levels of

cache

Main memory
x=15213

multi-core chip

The cache coherence problem
• Core 1 writes to x, setting it to 21660

20/07/2016 - 34

Core 1 Core 2 Core 3 Core 4

One or more
levels of

cache
x=21660

One or more
levels of

cache
x=15213

One or more
levels of

cache

One or more
levels of

cache

Main memory
x=21660

multi-core chip

assuming
write-through
caches

The cache coherence problem
• Core 2 attempts to read x, … get a stale copy

20/07/2016 - 35

Core 1 Core 2 Core 3 Core 4

One or more
levels of

cache
x=21660

One or more
levels of

cache
x=15213

One or more
levels of

cache

One or more
levels of

cache

Main memory
x=21660

multi-core chip

assuming
write-through
caches

Solutions for cache coherence

• This a general problem with multiprocessors, not limited just to multi-core

• There exist many solution algorithms, coherence protocols, etc.

• A simple solution :

– Invalidation-based protocol with snooping

20/07/2016 - 36

Inter-core bus

20/07/2016 - 37

Core 1 Core 2 Core 3 Core 4

One or more
levels of

cache

One or more
levels of

cache

One or more
levels of

cache

One or more
levels of

cache

Main memory

multi-core chip

inter-core
bus

Invalidation protocol with snooping
• Invalidation

– If a core write to a data item, all other copies of this data item

in other caches are invalidated

• Snooping

– All cores continuously « snoop » (monitor) the bus

connecting the cores

20/07/2016 - 38

The cache coherence problem
• Revisited : Cores 1 and 2 have both read x

20/07/2016 - 39

Core 1 Core 2 Core 3 Core 4

One or more
levels of

cache
x=15213

One or more
levels of

cache
x=15213

One or more
levels of

cache

One or more
levels of

cache

Main memory
x=15213

multi-core chip

The cache coherence problem
• Core 1 writes to x, setting it to 21660

20/07/2016 - 40

Core 1 Core 2 Core 3 Core 4

One or more
levels of

cache
x=21660

One or more
levels of

cache
x=15213

One or more
levels of

cache

One or more
levels of

cache

Main memory
x=21660

multi-core chip

assuming
write-through
caches

INVALIDATEDsends
invalidation
request

inter-core
bus

The cache coherence problem
• Core 1 writes to x, setting it to 21660

20/07/2016 - 41

Core 1 Core 2 Core 3 Core 4

One or more
levels of

cache
x=21660

One or more
levels of

cache
x=15213

One or more
levels of

cache

One or more
levels of

cache

Main memory
x=21660

multi-core chip

assuming
write-through
caches

INVALIDATEDsends
invalidation
request

inter-core
bus

The cache coherence problem
• After invalidation :

20/07/2016 - 42

Core 1 Core 2 Core 3 Core 4

One or more
levels of

cache
x=21660

One or more
levels of

cache

One or more
levels of

cache

One or more
levels of

cache

Main memory
x=21660

multi-core chip

The cache coherence problem
• Core 2 reads x. Cache misses and load the new copy :

20/07/2016 - 43

Core 1 Core 2 Core 3 Core 4

One or more
levels of

cache
x=21660

One or more
levels of

cache
x=21660

One or more
levels of

cache

One or more
levels of

cache

Main memory
x=21660

multi-core chip

Alternative to invalidate protocol : update protocol
• Core 1 writes x = 21660 :

20/07/2016 - 44

Core 1 Core 2 Core 3 Core 4

One or more
levels of

cache
x=21660

One or more
levels of

cache
x=21660

One or more
levels of

cache

One or more
levels of

cache

Main memory
x=21660

multi-core chip

assuming
write-through
caches

UPDATED

broadcasts
updated
value inter-core

bus

Invalidation vs update

• Multiple writes to the same location

– Invalidation : only the first time

– Update : must broadcast each write (which includes new variable value

• Invalidation generally performs better :

it generates less bus traffic

20/07/2016 - 45

Invalidation protocols

• This was just the basic invalidation protocol

• More sophisticated protocols use extra cache state bits

• MSI, MESI

(Modified, Exclusive, Shared, Invalid)

20/07/2016 - 46

4 C's : Sources of Cache Misses

• Compulsory misses (aka cold start misses)

– First access to a block

• Capacity misses

– Due to finite cache size

– A replaced blocked is later accessed again

• Conflict misses (aka collision misses)

– In a non-fully associative cache

– Due to competition for entries in a set

– Would not occur in a fully associative cache

• Coherence Misses

20/07/2016 - 47

Hardware Performance Bottlenecks
• Cores

– Do we suffer from cache misses ?

• Multicores

– Do we keep all core busy ?

• Vector units

– Is the code vectorized ?

• SMT, Hyperthreading

– More threads, with lesser performance

– Contention issues to computing units

• Memory

– Do core interfere with each other in shared memory accesses ?

20/07/2016 - 48

It's the Memory !
• Most performance bottlenecks have to do with data movement

– Most optimizations have to do with locality

● Temporal Locality

– Re-use of data recently used

● Spatial locality

– Using data nearby that recently used

● Processor locality

– Resource sharing between the cores

– Including avoidance of false sharing

20/07/2016 - 49

Future Evolution
• Number of cores per chips double every 18-24 months

– Up to 256 cores in 2016

• Cores may be heterogeneous

– Fat an thin cores

– GPU-like streaming accelerators

• Non Uniform Cache Architectures (NUCA)

– Faster (smaller) caches shared by fewer cores

– Possibly non coherent caches (coherence whithin smaller subdomains)

• Varying performance in time and space

– Power management

– Error recovery and fault masking

20/07/2016 - 50

Software Stack

Programming for multi-core

• Programmer must use processes, threads or tasks.

– Processes are the OS abstractions (Unix, Linux,…)

– Kernel threads (Posix API) are parallel activities in processes

– Tasks come with OpenMP, StarPU, QUARK

• Spread the workload across multiple cores/processors

• Write parallel algorithms

• OS will map processes/threads to processors/cores

20/07/2016 - 52

Resource Allocation (1)
• Process

– Address space, virtual memory, file descriptors, queues, pipes, etc.

– Binary code

– One or more kernel threads

20/07/2016 - 53

Cores

Processes

Kernel threads

Tasks, fibers,
objects

Resource Allocation (2)
• Task :

– Stack pointer, registers – no system state

– Scheduled by user library (runtime) onto pool of kernels threads

– Nonpremptible – has to complete or yield

– Blocking system blocks executing kernel threads

20/07/2016 - 54

Cores

Processes

Kernel threads

Tasks, fibers,
objects

Task vs Kernel Thread
• Overhead for task creation and scheduling much lower

– Lighter object

– Collaboration objects (yield, not interrupt)

• Scheduling polycy can be application/programming model dependent

• Blocking system calls block all tasks scheduled on HW thread

• Hard to schedule on resources that come and go

• When tasks are used

– Avoid, as much as possible, blocking system calls

– Make sure that kernel threads run continously in one place
● One kernel thread per core

● Affinity scheduling

● High priority

● Left over resources for background activities

20/07/2016 - 55

Scheduling Policies for Tasks (1)
• Central Queue

– A thread appends a newly created task to the queue

– An idle thread picks a task from the queue

– Possible optimizations : chunk small taks ; use LIFO queue

20/07/2016 - 56

Scheduling Policies for Tasks (2)

• Work Stealing

– a thread appends a newly created task to local queue

– an idle thread picks a task from its local queue

– If local queue is empty, it steals a task from another queue

20/07/2016 - 57

• Less communication/synchronization

with central queue

• Better locality

Assigning Kernel Threads to the cores

• Each Process/Kernel thread has an affinity mask

• Affinity mask specifies what cores the kernel thread is allowed to run on

• Differen threads can have different masks

• Affinities are inherited across fork ()

20/07/2016 - 58

Affinity masks are bit vectors

• Example : a 4-way multicore, without hyperthreading

• Process/Kernel Thread is allowed to run on cores 0, 2, 3,

but not on core 1

20/07/2016 - 59

1011

core 3 core 2 core 1 core 0

Default Affinities

• Default affinity mask is all 1s :

All kernel threads can run on all cores

• Then, the OS scheduler decides what treads run on what core

• Os scheduler skewed workloads, migrating kernel threads to

less busy cores

20/07/2016 - 60

Process/Kernel Thread migration is costly

• Need to restart the execution pipeline

• Cached data is invalidated

• Os scheduler tries to avoid migration as much as possible :

It tends to keep a thread on a same core

• This is called soft affinity

20/07/2016 - 61

When to set your own affinitues

• Two (or more) kernel threads share data structures in memory

– Map to the cores of same processor,

so that can share cache (L3)

• Kernel scheduler API

#include <sched.h>

int sched_setaffinity(pid_t pid,

unsigned int len, unsigned long * mask);

• Set the affinity mask of process/thread (pid) to *mask

20/07/2016 - 62

Mont-Blanc Projects
2011-20xx

MB Projects Goals

• To develop an European Exascale Approach

• Based on embedded power-efficient technology

– ARM : Energy Efficient Processors

20/07/2016 - 64

20/07/2016 - 65

20/07/2016 - 66

EU Mont-Blanc projects

• Objectives

– To deploy a prototype HPC system based on currently available

energy-efficient, embedded technology

● Deploy a full HPC system software stack

– To design a next-generation HPC system and new embedded

technologies targeting HPC systems that would overcome most of the

limitations of the prototype

– To port and optimize a small number of representative Exascale

applications capable of exploiting this new generation of HPC systems

● Up to 11 full-scale applications

20/07/2016 - 67

20/07/2016 - 68

20/07/2016 - 69

20/07/2016 - 70

Mont-Blanc System Software Stack

20/07/2016 - 71

Scientific Libraries

Runtime libraries

NANOS++ MPICH2

ATLASFFTW HDF5

GNU compilers

gcc gfortran

OmpSs compiler

Mercurium

Cluster Management

slurm Torque

Performance analysis

Paraver Scalasca

● Open source system software

stack

– Ubuntu Linux OS

– GNU compiler
● gcc 4.4.5

● gfortran

– Scientific libraries
● ATLAS, FFTW, HDF5,...

– Cluster management

● Runtime libraries

– MPICH2, OpenMPI

– OmpSs toolchain

● Performance analysis tools

– Paraver, Scalasca

● Allinea DDT 3.1 debugger

– Ported to ARM

	Diapo 1
	Agenda
	Diapo 3
	Diapo 4
	Diapo 5
	OpenCL
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67
	Diapo 68
	Diapo 69
	Diapo 70
	Diapo 71
	Diapo 72

