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CORSE : Compiler Optimizations and Runtime Systems

•  Static/Dynamic Compiler Analysis

– Hybrid and extensible byte-code

– Hybrid compilation, static/trace analysis

– Instruction scheduling, computing and IO complexities

•  Runtime Systems and Interface with Compilers

– Load balancing with compiler analysis information

– Memory management (thread/data affinity)

– Scheduling and load balancing directed by power management

•  Interactive debugging, properties monitoring

– Debugging with programming models (gdb, OpenMP, StarPU,…)

– Dynamic monitoring of program properties
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• Fabrice Rastello (DR Inria), CORSE leader

– Loop transformations for ILP, SSA, IR, Profiling/Feedback, DSL

• Florent Bouchez Tichadou (MCF UGA)

– Register allocation, backend compiler optimizations, IR

• François Broquedis (MCF Grenoble INP)

– Runtime Systems, OpenMP, Memory Management, FPGA

• Frédéric Desprez (DR Inria)

– Parallel Algorithmic, Scheduling, Data Management

• Ylies Falcone (MCF UGA)

– Runtime verification, enforcement, Monitoring

• Jean-François Méhaut (PR UGA)

– Runtime Systems, Low Power, Load Balancing, Debugging
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6 CORSE Members + 8 PhDs + 3 Post-Docs



Agenda
•  Introduction to parallel computing (Jean-François)

– Architecture Evolutions, Software Stack, Mont-Blanc EU  projects

•  Multicore Programmning (François)

– OpenMP, Loop Parallelism, Programming with Tasks

•  Heterogeneous (CPU, GPU) Programming (Frédéric)

– OpenCL, Computing Kernels
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General comments

•  Feel free to ask questions at any time

•  Feel free to provide feedback to improve lectures/slides

•  Enjoy !
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What is parallel computing ?
•  Parallel Computing : using multiple processors/cores in parallel to solve 

problems more quickly than with a single processor/core

•  Examples of parallel machines

– A Chip Multi-processor (CMP) contains multiple processors (called 

cores) on a single chip

– A Shared memory Multiprocessor (SMP) by connecting multiple 

processors to a single memory system

– A Cluster Computer that contains multiple Pcs combined together with 

a high speed network

– A Grid is a cluster of networked, loosely-coupled computers acting to 

perform very large tasks

• Concurrent execution come from desire for performance
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Parallel Computing
•  We want to run faster by using more processors/cores

•  Goal

– Write applications that can leverage the performance of multicore 

systems

– Write applications that run faster when vendors (Intel/IBM/AMD/ARM) 

comes out with a new chip that has more cores

● Application must be parallel

● Application must be able to use an arbitrary number of cores (within 

limits)

● Application should be able to leverage several various accelerators 

(SIMD extensions, GPUs,...)
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Key Challenges : The 3 P's
•  Performance challenge

– How to scale from 1 to 1000 cores – The number of cores is the new 

Megahertz

• Power efficiency

– Performance per watt is the new metric – systems are often 

constrained by power and cooling

• Programming challenges

– How to provide a converged solution in a standard programming 

environment for multi and many core processors
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Architecture



CMOS Evolution – Practice
•  Vendors have pushed thread performance faster than implied by scaling 

theory

– Extra transistors have been used to enhanced microarchitectures

● Deeper pipelines, branch prediction, Instruction Level Parallelism 

(ILP)…

● Larger caches

● Increased IPC (Instruction per Cycle)

– Voltage has scaled down more slowly

– Clock rate has scaled up faster

– Energy consumption has increased

– Leakage power has become significant
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Pipelining
• Overlapping execution of multiple instructions

– 1 instruction per cycle

• Sub-divide instruction into multiple stages ; Processor handles different 

stages of adjacent instruction simultaneously

• Suppose 4 stages in an instruction

– Instruction fetch and decode (IF)

– Read data (RD)

– Execution (EX)

– Write-back results (WB)
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Instruction Pipelining

• Depth of pipeline : number of stages in an instruction

• With pipeline, 7 instructions takes 10 cycles

• Without pipeline, 7 instructions takes 28 cycles
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Inhibitors of Pipelining

• Dependencies between instructions interrupts pipelining, degrading 

performance

– Control dependance

● Branching after a conditional branch loop, condition)

– Avoid excessive branching...

– Data dependance

● When an instruction depends on data from previous instruction

•
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x = 3*j;
y = x+5.0; // depends on previous instruction



Single Thread Performance Wall
•  Cannot increase clock rate

– Would increase power dissipation

•  Cannot increase IPC

– Cache misses have become relatively more expansive

• Need more parallelism in executing code

– SIMD Single instruction, Multiple Data – e.g vector operations

– MIMD Multiple Instruction, Multiple Data – e.g. multithreading

• Cannot extract parallelism without user support

• Increased transistors count is and will be used to be parallel systems 

on a chip that will run explicitely parallel code
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Parallel Hardware
•  Multicore

– Multiple inedependent processors per chip, shared memory

– Shared memory is possible bottleneck

• Simultaneous Multi-Threading (SMT), Hyper-Threading

– multiple instruction streams executing on one core (multipe register files 

sharing same instruction units)

– better use of core resources

– slower execution, per stream

•  Vector instructions

– e.g. Intel SSE (processing 128 bits in one instruction)

• Accelerators

– e.g. GPUs
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Why multi-core ?

1.00x

Performance

Power

Max Frequency



20/07/2016 - 17

1.00x

Performance

Power

Max Frequency

Over-clocking 

1.73x

1.13x

Over-clocked
20 %



20/07/2016 - 18

1.00x

Performance

Power

Max Frequency

Under-clocking 

1.73x

1.13x

Over-clocked
+20 %

0.87x

0.51x

Under-clocked
-20 %



20/07/2016 - 19

1.00x

Performance

Power

Max Frequency

Multi-core : Energy-Efficient Performance 

1.73x

1.13x

Over-clocked
+20 %

1,73x

1.02x

Under-clocked
-20 %

Dual-core
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Inside an Intel Nehalem Hex-Core 
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Inside an Intel Nehalem Hex-Core 
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Kalray/MPPA-256  architecture

● 256 cores (PEs) @ 400 MHz : 16 clusters, 16 PEs per cluster

● PEs share 2MB of memory

● Absence of cache coherence protocol inside the cluster

● Network-on-Chip (NoC) : communication between clusters

● 4 I/O subsystems : 2 connected to external memory
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Overview of Parallel Execution of Seismic Application

● Two-level tiling scheme to exploit  
   the memory hierarchy of MPPA-256

● Absence of cache coherency inside a cluster
● Application programming is difficult !
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Memory Hierarchy
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Registers

Level-1 cache

Level-2 cache

Main memory

Secondary memory 
(hard disk)

Network storage

… …

Increasing speed
Increasing cost
Decreasing size

Decreasing speed
Decreasing cost
Increasing size

•  Performance of different levels can be very different 

– e.g. access time L1 cache can be 5 cycle, L2 can be 12 cycles while

main memory can be 170 cycles and secondary memory can be 

orders of magnitude slower

 

Cache : a piece of fast memory
Expensive (transistors, $)



How Memory Hierarchy Works ?
• (RISC processor) CPU works only data in registers

– If data is not in register, request data from memory and to register

• Data in register come only from and go only to L1 cache

– When CPU requests data from memory, L1 cache takes over ;

– If data is in L1 cache (cache hit), return data to CPU immediately ; end 

memory access

– If data is not in L1 cache, cache miss
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How Memory Hierarchy Works ?
• If data is not in L1 cache, L1 cache forwards memory request down to L2 

cache.

– If L2 cache has the data (cache hit), it returns the data to L1 cache, which in 

returns data to CPU, end memory access

– If L2 cache does not have the data (cache miss)

• If data is not in L2 cache, L2 cache forwards memory request down to 

memory

– If data is in memory, main memory passes data to L2 cache, which then passes 

data to L1 cache, which then passes data to CPU.

– If data is not in memory,…

• Then request is passed to OS to read data from the secondary storage 

(disk), which then is passed to memory, L2 cache, L1 cache, register...

– If data is not in register, request data from memory and to register
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Cache Effect on Performance
• Cache miss  degrading performance

– When there is a cache miss, CPU is idle waiting for another cache line to be 

brought from lower level of memory hierarchy

• Increasing cache hit rate  higher performance

– Efficiency directly related to reuse of data in cache

• To increase cache hit rate, access memory sequentially ; avoid strides, 

random access and indirect addressing in programming

for(i=0;i<100;i++)
  y[i] = 2*x[index[i]];

for(i=0;i<100;i++)
  y[i] = 2*x[i];

for(i=0;i<100;i=i+4)
  y[i] = 2*x[i];

sequential 
access

strides Indirect addressing



Private vs shared caches
•  Advantage of private :

– They are closer to core, so faster access

– Reduces contention

– slower execution, per stream

•  Advantages of shared :

– Threads on different core can share the same cache date

– More cache space data if a single (or a few) high performance thread 

run on the system 
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The cache coherence problem
•  Since we have private cache :

– How to keep the data consisten across the caches ?

•  Each core should perceive the memory as a monolithic array,

shared by all the cores
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The cache coherence problem
•  Suppose variable x initially contained 15213
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multi-core chip



The cache coherence problem
•  Core 1 reads x
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The cache coherence problem
•  Core 2 reads x
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The cache coherence problem
•  Core  1 writes to x, setting it to 21660
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The cache coherence problem
•  Core 2 attempts to read x, … get a stale copy
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Solutions for cache coherence

• This a general problem with multiprocessors, not limited just to multi-core

• There exist many solution algorithms, coherence protocols, etc.

•  A simple solution :

– Invalidation-based protocol with snooping
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Inter-core bus
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Invalidation protocol with snooping
• Invalidation

– If a core write to a data item, all other copies of this data item 

in other caches are invalidated

• Snooping

– All cores continuously « snoop » (monitor) the bus 

connecting the cores
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The cache coherence problem
•  Revisited : Cores 1 and 2 have both read x
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The cache coherence problem
•  Core 1 writes to x, setting it to 21660
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The cache coherence problem
•  Core 1 writes to x, setting it to 21660
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The cache coherence problem
•  After invalidation :
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The cache coherence problem
•  Core 2 reads x. Cache misses and load the new copy :
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Alternative to invalidate protocol : update protocol
•  Core 1 writes x = 21660 :
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Invalidation vs update

• Multiple writes to the same location

– Invalidation : only the first time

– Update : must broadcast each write (which includes new variable value

• Invalidation generally performs better :

it generates less bus traffic
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Invalidation protocols

• This was just the basic invalidation protocol

• More sophisticated protocols use extra cache state bits

• MSI, MESI

(Modified, Exclusive, Shared, Invalid)
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4 C's : Sources of Cache Misses

• Compulsory misses (aka cold start misses)

– First access to a block

• Capacity misses

– Due to finite cache size

– A replaced blocked is later accessed again

• Conflict misses (aka collision misses)

– In a non-fully associative cache

– Due to competition for entries in a set

– Would not occur in a fully associative cache

• Coherence Misses
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Hardware Performance Bottlenecks
• Cores 

– Do we suffer from cache misses ?

• Multicores

– Do we keep all core busy ?

• Vector units

– Is the code vectorized ?

• SMT, Hyperthreading

– More threads, with lesser performance

– Contention issues to computing units 

• Memory

– Do core interfere with each other in shared memory accesses ?
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It's the Memory !
• Most performance bottlenecks have to do with data movement

– Most optimizations have to do with locality

● Temporal Locality

– Re-use of data recently used

● Spatial locality

– Using data nearby that recently used

● Processor locality

– Resource sharing between the cores 

– Including avoidance of false sharing
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Future Evolution
• Number of cores per chips double every 18-24 months

– Up to 256 cores in 2016

• Cores may be heterogeneous

– Fat an thin cores

– GPU-like streaming accelerators

• Non Uniform Cache Architectures (NUCA)

– Faster (smaller) caches shared by fewer cores

– Possibly non coherent caches (coherence whithin smaller subdomains)

• Varying performance in time and space

– Power management

– Error recovery and fault masking
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Software Stack



Programming for multi-core

• Programmer must use processes, threads or tasks.

– Processes are the OS abstractions (Unix, Linux,…)

– Kernel threads (Posix API) are parallel activities in processes

– Tasks come with OpenMP, StarPU, QUARK

• Spread the workload across multiple cores/processors

• Write parallel algorithms

• OS will map processes/threads to processors/cores
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Resource Allocation (1)
•  Process

– Address space, virtual memory, file descriptors, queues, pipes, etc.

– Binary code

– One or more kernel threads
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Resource Allocation (2)
•  Task :

– Stack pointer, registers – no system state

– Scheduled by user library (runtime) onto pool of kernels threads

– Nonpremptible – has to complete or yield

– Blocking system blocks executing kernel threads
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Task vs Kernel Thread
•  Overhead for task creation and scheduling much lower

– Lighter object

– Collaboration objects (yield, not interrupt)

•  Scheduling polycy can be application/programming model dependent

• Blocking system calls block all tasks scheduled on HW thread

• Hard to schedule on resources that come and go

•  When tasks are used

– Avoid, as much as possible, blocking system calls

– Make sure that kernel threads run continously in one place
● One kernel thread per core

● Affinity scheduling

● High priority

● Left over resources for background activities
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Scheduling Policies for Tasks (1)
•  Central Queue

– A thread appends a newly created task to the queue

– An idle thread picks a task from the queue

– Possible optimizations : chunk small taks ; use LIFO queue
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Scheduling Policies for Tasks (2)

•  Work Stealing

– a thread appends a newly created task to local queue

– an idle thread picks a task from its local queue

– If local queue is empty, it steals a task from another queue
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• Less communication/synchronization 

with central queue

• Better locality



Assigning Kernel Threads to the cores

• Each Process/Kernel thread has an affinity mask

• Affinity mask specifies what cores the kernel thread is allowed to run on

• Differen threads can have different masks

• Affinities are inherited across fork ()
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Affinity masks are bit vectors

• Example : a 4-way multicore, without hyperthreading

• Process/Kernel Thread is allowed to run on cores 0, 2, 3,

but not on core 1
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core 3 core 2 core 1 core 0



Default Affinities

• Default affinity mask is all 1s :

All kernel threads can run on all cores

• Then, the OS scheduler decides what treads run on what core

• Os scheduler skewed workloads, migrating kernel threads to 

less busy cores
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Process/Kernel Thread migration is costly

• Need to restart the execution pipeline

• Cached data is invalidated

• Os scheduler tries to avoid migration as much as possible :

It tends to keep a thread on a same core

• This is called soft affinity
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When to set your own affinitues

• Two (or more) kernel threads share data structures in memory

– Map to the cores of same processor, 

so that can share cache (L3)

• Kernel scheduler API

#include <sched.h>

int sched_setaffinity(pid_t pid,  

unsigned int len, unsigned long * mask);

• Set the affinity mask of process/thread (pid) to *mask
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Mont-Blanc Projects
2011-20xx



MB Projects Goals

• To develop an European Exascale Approach

• Based on embedded power-efficient technology

– ARM : Energy Efficient Processors
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EU Mont-Blanc projects 

• Objectives

– To deploy a prototype HPC system based on currently available 

energy-efficient, embedded technology

● Deploy a full HPC system software stack

– To design a next-generation HPC system and new embedded 

technologies targeting HPC systems that would overcome most of the 

limitations of the prototype

– To port and optimize a small number of representative Exascale 

applications capable of exploiting this new generation of HPC systems

● Up to 11 full-scale applications

20/07/2016 - 67



20/07/2016 - 68



20/07/2016 - 69



20/07/2016 - 70



Mont-Blanc System Software Stack 
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Scientific Libraries

Runtime libraries

NANOS++ MPICH2

ATLASFFTW HDF5

GNU compilers

gcc gfortran

OmpSs compiler

Mercurium

Cluster Management

slurm Torque

Performance analysis

Paraver Scalasca

● Open source system software 

stack

– Ubuntu Linux OS

– GNU compiler
● gcc 4.4.5

● gfortran

– Scientific libraries
● ATLAS, FFTW, HDF5,...

– Cluster management

● Runtime libraries

– MPICH2, OpenMPI

– OmpSs toolchain

● Performance analysis tools

– Paraver, Scalasca

● Allinea DDT 3.1 debugger

– Ported to ARM
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