A Gentle Introduction to Parallel
Programming using OpenMP
CEMRACS16 Summer School

Francois BROQUEDIS
July 20, 2016

CORSE INRIA team - Grenoble Institute of Technology

Acknowledgements

= Ruud Van der Pas (Oracle)

= Emmanuel Agullo (HIEPACS INRIA)

= Jean-Francois Méhaut (CORSE INRIA)
= Frédéric Desprez (CORSE INRIA)

= Laura Grigori (ALPINES INRIA)

Introduction to OpenMP: Basic Concepts and Syntax

Getting OpenMP Up to Speed
Part |: Benefit from Cache Memory
Part II: Control Thread and Data Placement
Part I1l: Parallelism Grain and Runtime-related Overheads

Introduction to OpenMP: Basic
Concepts and Syntax

OpenMP

A de-facto standard API to write shared memory parallel
applications in C, C++ and Fortran

= Consists of compiler directives, runtime routines and environment
variables

= Specification maintained by the OpenMP Architecture Review Board
(http://www.openmp.org)

= Current version of the specification : 4.5 (November 2015)

http://www.openmp.org

Advantages of OpenMP

= A mature standard

= Speeding-up your applications since 1998
= Portable

= Supported by many compilers, ported on many architectures

= Allows incremental parallelization

= Imposes low to no overhead on the sequential execution of the
program
= Just tell your compiler to ignore the OpenMP pragmas and you get
back to your sequential program

= Supported by a wide and active community
= The specifications have been moving fast since revision 3.0 (2008) to
support :
= new kinds of parallelism (tasking)
= new kinds of architectures (accelerators)

The OpenMP Execution Model

A fork-join execution

1 int main(void)
2 { model
3 some_statements () ; .
X = entering a parallel
5 #pragma omp parallel region will create
6 {
7 printf ("Hello, world!\n"); some threads
8 } (fork)
9
10 other_statements () ; = leaving a parallel
n . .
12 #pragma omp parallel region will
13 { terminate them
14 printf ("This is definitely the\n"); . .
15 printf ("worst motivating example\n"); (JOIn)
16 , printf("ever...\n"); = any statement
17
i, executed outside
19 . return EXIT_SUCCESS; para||e| regions are
20
executed
sequentially

The OpenMP Memory Model

= All the threads have access to
the same globally shared
memory

= Each thread has access to its
own private memory area that
can't be accessed by other
threads

= Data transfer is performed
through shared memory and is
100% transparent to the
application

= The application programmer is

responsible for providing the
Figure 1: The way OpenMP threads corresponding data-sharing
handle memory attributes

Data-sharing Attributes

Need to set the visibility of each variable that appears inside an OpenMP
parallel region using the following data-sharing attributes :

= shared: the data can be read = firstprivate: each thread is
and written by any thread of working on its own version of
the team. All changes are the variable. The data is
visible to all threads. initialized using the value it had
= private: each thread is working before entering the parallel
on its own version of the data region.
that cannot be accessed by = lastprivate: each thread is
other threads of the team. working on its own version of

the variable. The value of the
last thread leaving the region is
copied back to the variable.

to Work: the Worksharing Constructs

void simple_loop(int N,

float *a,
float *b)
{
int 1i;
// i, N, a and b are shared by default
#pragma omp parallel firstprivate(N)
{
// % is private by default
#pragma omp for
for (i = 1; i <= N; i++) {
b[il = (alil + ali-1]) / 2.0;
¥
}
}

omp for : distribute the
iterations of a loop over
the threads of the
parallel region.

Here, assigns N/P
iterations to each
thread, P being the
number of threads of
the parallel region.

omp for comes with an
implicit barrier
synchronization at the
end of the loop one can
remove with the nowait
keyword.

OpenMP Loop Schedulers: Definitions

The schedule clause of the for construct specifies the way loop iterations
are assigned to threads. The loop scheduler can be set to one of the
following :

= schedule(static, chunk_size): assign fixed chunks of iterations in
a round robin fashion.

= schedule(dynamic, chunk_size): fixed chunks of iterations are
dynamically assigned to threads at runtime, depending on the
threads availability.

= schedule(guided, chunk_size): like dynamic, but with a chunk
size that decreases over time.

= runtime: the loop scheduler is chosen at runtime thanks to the
OMP_SCHEDULE environment variable.

10

OpenMP Loop Schedulers: Chunks

The chunk_size attribute determines the granularity of iterations
chunks the loops schedulers are working with.

legend: thread0 threadl thread2 thread3
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 2: static scheduler, 16 iterations, 4 threads, default chunk_size

0 1 2 3 4.5 6 ¢ 8 9 10 11 312 13 14 15

Figure 3: static scheduler, 16 iterations, 4 threads, chunk_size=2

11

OpenMP Loop Schedulers: Example on 500 iterations, 4 threads

Thread ID

3 gynami M

) dynamic, 5

t [
static

O {1 ATTAIAIN:

0 50 100 150 200 250 300 350 400 450 500

Iteration Number

Figure 4: A parallel loop scheduled with different OpenMP schedulers

12

A First Example to lllustrate OpenMP Capabilities

for (i

0; i < N; i++)
z[i]

x[i] + y[il;

for (i = 0; i < M; i++)
a[i] = b[i] + c[i];
scale =

sum (a, 0, m) + sum (z, 0, n) + £f;

Figure 5: Our job for today: parallelize this using OpenMP

13

A First Example to lllustrate OpenMP Capabilities

#pragma omp parallel default (none) shared (z, x, y, a, b, ¢, n, m) é
private (f, i, scale)

{

f=1.0
c
Q2
for (i = 0; i < n; i++) (@]
z[i] = x[i] + y[i]; 2
. . .]
for (1 = 0; i < m; i++) _—
a[i] = b[i] + c[i]; E
®
o

scale = sum (a, 0, m) + sum (z, 0, n) + £f;

} /* End of OpenMP parallel region */ (

Figure 6: First create the parallel region and define the data-sharing attributes

14

A First Example to lllustrate OpenMP Capabilities

#pragma omp parallel default (none) shared (z, x, y, a, b, ¢, n, m) é
private (f, i, scale)
{

f=1.0 <

c

Q2

for (i = 0; i < n; i++) o
z[i] = x[i] + ylil; Statements o
executed by all —_

for (i = 0; i < m; i++) the threads of g
a[i] = b[i] + c[i]; < the pgral:el E
region ! &

o

scale = sum (a, O, m) + sum (2, O, n) + f; <G

} /* End of OpenMP parallel region */ (

Figure 7: At this point, all the threads execute the whole program (you won't
get any speed-up from this!)

15

A First Example to lllustrate OpenMP Capabilities

#pragma omp parallel default (none) shared (z, x, y, a, b, ¢, n, m) é
private (f, i, scale)
{

f=1.0 <

Statements executed
by all the threads of

the parallel region c

#pragma omp for .9

for (i = 0; i < n; i++) parallel loop o))

z[i] = x[i] + y[i]; (work is distributed) 2
—

#pragma omp for € E

for (i = 0; i < m; i++) parallel loop —

a[i] = b[i] + c[i]; (work is distributed) E
e

®

(o}

Statements executed
scale = sum (a, 0, m) + sum (z, 0, n) + f;(— by all the threads of
the parallel region

} /* End of OpenMP parallel region */ (

Figure 8: Now distribute the loop iterations over the threads using omp for.

16

Optimization #1: Remove Unnecessary Synchronizations

#pragma omp parallel default (none) shared (z, x, y, a, b, ¢, n, m) é
private (f, i, scale)
{

f=1.0

#pragma omp for n t
for (i = 0; i < n; i++)
z[i] = x[i] + y[i];

for (i = 0; i < m; i++)
a[i] = b[i] + c[il;

=3
2]
2
5
0
i
éh
t=]
:
£
parallel region

#pragma omp barrier
scale = sum (a, 0, m) + sum (z, 0, n) + £f;

} /* End of OpenMP parallel region */ (

Figure 9: There are no dependencies between the two parallel loops, we
remove the implicit barrier between the two.

17

Optimization #2: Don’t Go Parallel if the Workload is Small

#pragma omp parallel default (none) shared (z, x, y, a, b, ¢, n, m)
private (f, i, scale) if (n > some_threshold && m > some_threshold)

{

#pragma omp for ng
for (i = 0; i < n; i++)
z[i] = x[i] + y[i];

for (i = 0; i < m; it+)
a[i] = b[i] + c[il;

#pragma omp barrier
scale = sum (a, 0, m) + sum (z, 0, n) + £f;

} /* End of OpenMP parallel region */

Figure 10: We don't want to pay the price of thread management if the
workload is too small to be computed in parallel.

18

Extending the Scope of OpenMP with Task Parall

omp for has made OpenMP popular and remains for most users its
central feature. But what if my application was not written in a
loop-based fashion?

1 int fib(int n) {

2 int i, j;

3 if (n < 2) {

4 return n;

5 } else {

6 i = fib(n - 1);
7 j = fib(n - 2);
8 return i + j;

9 }

Figure 11: Call graph of fib(5)

19

Tasking in OpenMP: Basic Concept

Thread
/)
-5
Thread (72}
(1]
o)
Thread q . 3
Generate . =
L] (S}
tasks \ gg"
Thread b
Thread

Figure 12: The OpenMP tasking concept : tasks generated by one OpenMP
thread can be executed by any of the threads of the parallel region.

20

Tasking in OpenMP: Basic Concept (cont’d)

= The application programmer

1 int main(void) {
specify regions of code to be :
) . 3 #pragma omp parallel
executed in a task with the 4 {
#pragma omp task construct ° #pragma omp single
6 res = fib(50);
= All tasks can be executed 7 ¥
. 8
independently 5 1
10
= When any thread encounters a task |, . ..o i 0 ¢
construct, a task is generated 12 int i, j;
13 if (n < 2) {
= Tasks are executed 14 return n;
asynchronously by any thread of *° }oelse {
; 16 #pragma omp task
the parallel region 17 i = fib(n - 1);
. 18 #pragma omp task
= Completion of the tasks can be i j = fib(n - 2);
guaranteed using the taskwait 20 #pragma omp taskwait
; ; 21 return i + j;
synchronization construct - 3
23 }

21

Tasking in OpenMP: Execution Model

The Work-Stealing execution Idle cores
model steal
tasks

= Each thread has its own task

queue

= Entering an omp task

construct pushes a task to the @ @
thread'’s local queue @@

= When a thread’s local queue is @ @
empty, it steals tasks from
other queues

Workers
Tasks are well suited to applications generate
with irregular workload. tasks

22

Your Very First OpenMP Tasking Experience (1/5)

= We want to use OpenMP to make this

| int main(void) program print either A race car or A car
° race using tasks.

3 printf ()

4 printf () = Here is a battle plan :

5 printf () .

. 1. Create the threads that will execute the

7 printf () tasks

8 return O;

2. Create the tasks and make one of the
thread generate them

Program output:
$ OMP_NUM_THREADS=2 ./task-1
$ A race car

23

Your Very First OpenMP Tasking Experience (2/5)

= We want to use OpenMP to make this

| int main(void) program print either A race car or A
2 { car race using tasks.

3 #pragma omp parallel

4 { = Here is a battle plan :

5 printf ("A ") .

. printf ("race "); 1. Create the threads that will execute
7 printf('car "); the tasks

¢ ¥ 2. Create the tasks and make one of
9

i@ printf ("\n"); the thread generate them

11 return O;

12 }

Program output:
$ OMP_NUM_THREADS=2 ./task-2
$ A race A race car car

24

Your Very First OpenMP Tasking Experience (3/5)

= We want to use OpenMP to make this

1 int main(void) program print either A race car or A
2 { car race using tasks.

3 #pragma omp parallel

4 { = Here is a battle plan :

5 #pragma omp single .

. { 1. Create the threads that will execute
7 printf("A "); the tasks

¢ #Pfagma omp task 2. Create the tasks and make one of

9 printf("race ");

" #pragna omp task the thread generate them

11 printf ("car ");

12 } Program output:

. ’ $ OMP_NUM_THREADS=2 ./task-3

15 printf ("\n"); $ A race car

6 0;

. $ OMP_NUM_THREADS=2 ./task-3

$ A car race

25

Your Very First OpenMP Tasking Experience (4/5)

1

2
3
4
b}
6
7
8
9

10

int main(void)

{

#pragma omp parallel
{
#pragma omp single
{
printf ("A ");
#pragma omp task
printf ("race ");
#pragma omp task
printf ("car ");

printf("is fun ");
printf("to watch ");

}

printf ("\n");
return O;

= Now that everything is working as
intended, we would like to print is
fun to watch at the end of the
output string.

= This example illustrates the
asynchronous execution of tasks.

Program output:

$ OMP_NUM_THREADS=2 ./task-4
$ A is fun to watch race car
$ OMP_NUM_THREADS=2 ./task-4
$ A is fun to watch car race

26

Your Very First OpenMP Tasking Experience (

il
2
3
4
8
6
7
8

int main(void)

{
#pragma omp parallel
{
#pragma omp single
{
printf ("A ");
#pragma omp task
printf ("race ");
#pragma omp task
printf ("car ");
#pragma omp taskwait
printf("is fun ");
printf("to watch ");
}
}
printf ("\n");
return 0;
}

Now that everything is working as
intended, we would like to print is
fun to watch at the end of the
output string.

This example illustrates the
asynchronous execution of tasks.

To fix this, you need to explicitly
wait for the completion of the tasks
with taskwait before printing "is
fun to watch”

Program output:
$ OMP_NUM_THREADS=2 ./task-5
$ A race car is fun to watch
$ OMP_NUM_THREADS=2 ./task-5
$ A car race is fun to watch
27

= Here, task A is writing some

data that will be processed
by task C. The same goes
for task B and task D.

= The taskwait construct
here makes sure task C
won't execute before task A
and task D before task B.

= As a side effect, task C
won't execute until the
execution of task B is over,
creating some kind of fake
dependency between task B
and C.

10
11
12
13

15

18

19
20

void data_flow_example (void)

{

type x, y;

#pragma omp parallel

#pragma omp single

{

#pragma omp task
write_data(&x); // Task A
#pragma omp task
write_data(&y); // Task B

#pragma omp taskwait
#pragma omp task
print_results(x); // Task C

#pragma omp task
print_results(y); // Task D

28

OpenMP Tasks Dependencies : Rationale

The depend clause allows you to provide information on the way a task
will access data. The depend clause is followed by an access mode that
can be in, out or inout. Here are some examples of use for the depend

clause:

= depend(in: x, y, z): the task will read variables x, y and z

= depend(out: res): the task will write variable res, any previous
value of res will be ignored and overwritten

= depend(inout: k, buffer[0:n]): the task will both read and write
variable k and the content of n elements of buffer starting from
index 0

The OpenMP runtime system dynamically decides whether a task is
ready for execution or not considering its dependencies (there is no need

for further user intervention here).

29

OpenMP Tasks Dependencies : Some Trivial Example

1
2
3
4
5

v
{

oid data_flow_example (void)

type x, ¥;

#pragma omp parallel

#pragma omp single

{

#pragma omp task depend(out: x)
write_data(&x); // Task 4
#pragma omp task depend(out: y)
write_data(&y); // Task B

#pragma omp task depend(in: x)
print_results(x); // Task C
#pragma omp task depend(in: y)
print_results(y); // Task D

Here is the previous
example program written
with tasks dependencies.

The taskwait construct is
gone : the runtime system
will rely on data
dependencies to choose a
ready task to execute.

In this version, task C could
be executed before task B,

as long as the execution of
task A is over.

Expressing dependencies sometimes helps unlocking more parallelism.

30

Getting OpenMP Up to Speed

31

Preambule: A Closer Look at Your Favorite Platform

Improving the execution of a parallel application requires a good
understanding of the target platform architecture. In particular,
knowing about the following items is always useful:

= The multicore processor: how many cores are available? Which of
them are physical/logical cores (HyperThreading and friends)?

= The memory hierarchy: what kind of memory is available? How is it
organized?

= The architecture topology: how (multicore) processors are connected
together and how do they access memory?

32

Preambule: Getting to Know Your Platform with hwloc

The hwloc library gathers valuable information about your platform and
synthesize it into a generic representation.

Machine (16GB total) Provides information about:

| NUMANode P¥0 (16GB) | = the processing units

| (logical /physical cores)

| L3 P#0 (6144KB)

| L2 P#0 (256KB) | | L2P#1 (256KB) | | L2 P42 (256KB) | | L2P#3(256KB)| = the cache hierarchy

| L1d P#0 (32KB) | | L1d P#1 (32KB) | | L1d P#2 (32KB) | | L1dP#S(32KB)| . the memory hlerarChy
(NUMA nodes)
| L1i P#0 (32KB) | | L1i P#1(32KB) | | L1|F#2(32KB)| | L1i P#3 (32KB) |
However, hwloc does not
Core P£0 Core P#1 Core P#2 Core P#3 .)
provide the entire
PU P#0 PU P#2 PU P#4 PUP#6
architecture topology (the
PUP#1 PU P#3 PU P#5 PUP#7

way processors are connected

together).
https://www.open-mpi.org/projects/hwloc/

38]

https://www.open-mpi.org/projects/hwloc/

Preambule: Understanding the Architecture Topology

The operating system knows about the way processors are connected
together to some extent. It can provide a distance table that roughly
represent how many crossbars you need to cross to access a specific
NUMA node (see the hwloc-distances program).

No | Ny | Mo | N
No | 0 [10] 10 20
N, | 10 0 [20] 10
N, | 10[20] 0] 10
N; |20 10 10] 0

13 shared cache E Figure 13: A 4-nodes NUMA machine
LI LI LI LI with the corresponding NUMA distance

Core | Core | Core | Core table.
#0 #l #2 #3 :

34

Our Target Platform for Today : the Intel192 Machine

The Intel192 machine:
= 12 pairs of NUMA nodes made of a two 8-core Xeon processors each

and 32GB of RAM

= a two-level NUMA topology (pairs can be up to two hops away from
each other)

Table 1: NUMA distances from node 0 advertised by the hwloc library on
Intel192.

NUMA nodes location local peer one hop away two hops away

hwloc distances 1.0 5.0 6.5 7.9

35

Part |I: Benefit from Cache
Memory

36

Cache Memory: Basic Concept

A cache can be seen as a table of cache lines holding a predefined
amount of memory (64B on most processors).

Accessing a variable results in a cache hit if the corresponding cache line
has already been cached (fast memory access).

It can also result in a cache miss if the corresponding cache line is not
cached yet. The hardware has to load the cache line to the cache before
the processor can access it (longer memory access).

Page

(L
e | | LIXL] L [X]

Load the|cache line
holding x

CPU Cache RAM

37

Case Study #1: a Naive Square Matrix Multiplication Algo-

rithm

We consider a simple matrix multiplication algorithm involving square
matrices of double precision floats.

G G G G Ay A1 Ay Az By By B, Bs
G G G G - Ay As As As » By, Bs Bs By
G G Co Cin Ag Ay A An Bs By Big Bi:

Co Gz Gy Gis A A1z A Ass Bis Biz Bis Bis

where Co = AoBo + AlB4 + A2Bs + A3Bl2
Let's implement this using what we've learned about OpenMP!

38

g-Up OpenMP: Benefit from Cache Me

1 void gemm_omp(double *A, double *B, double *C, int n) {
2 #pragma omp parallel

3 {

4 int i, j, k;

5 #pragma omp for

6 for (i=0; i<n; i++) {

7 for (j=0; j<n; j++) {

8 for (k=0; k<n; k++) {

9 Cli*n+j] += A[i*n+k]*B[k*n+j];
10 }

11 }

12 }

13 }

Let’s run this on the Intel192 machine!
$ OMP_PLACES=cores ./mxm-v1 1536

39

Speeding-Up OpenMP: Benefit from Cache Memory (2)

void gemm_omp (double *A, double *B, double *C, int n) {

1
2 #pragma omp parallel
3 {
4 int i, j, k;
5 #pragma omp for
6 for (i=0; i<n; i++) {
for (j=0; j<n; j++) {

8 for (k=0; k<n; k++) {
9 Cli*n+j] += A[i*n+k]*B[k*n+j];
10 }
11 }
12 }
13 }
14 ¥

Let’s run this on the Intel192 machine! Serial time : 40.3018250s

$ OMP_PLACES=cores ./mxm-vl 1536 Parallel time : 0.270773s
Achieved speed-up : 148

40

We Can Do Better : It’s All About Being (Cache) Friendly

Assuming we work with 32 bytes-long cache lines and each element of
the matrix is 8 bytes long, how many cache lines do | need to compute

one element of C?

G G G G Ay AL Ay As B, B, B, Bs
G G G G| |A A As A y By, Bs Bs By
G G Cio Gii| |As Ay Ao A Bs Bg Bio B
Cl2 Cl3 Cl4 Cl5 A12 A13 Al4 Al5 812 Bl3 Bl4 BIS

Co = AoBo

+ A1B4

+ ABg

+ A3B12

41

We Can Do Better : It’s All About Being (Cache) Friendly

Assuming we work with 32 bytes-long cache lines and each element of
the matrix is 8 bytes long, how many cache lines do | need to compute

one element of C?

G G G G A At Ay Az Bo Bi By Bs
G G G G| _|A As A Ar| | B Bs Bs B
G G Go Gin Ag Ay A An Bs By Big Bi1

G2 Gz Gy Gis A A1z A Ass Bi> Biz Bia Bis

[t
N

42

We Can Do Better : It’s All About Being (Cache) Friendly

Assuming we work with 32 bytes-long cache lines and each element of
the matrix is 8 bytes long, how many cache lines do | need to compute

one element of C?

G G G G Ay A1 Ay Az By Bi By Bs
G G G G| _|A As A Ar| | Bi Bs Bs B
G G G Cin Ag Ay A Anr Bg By Bio B
Cio Ci3 Cip G Az A1z Au Ars Bi> B3z Bis Bis
Co = AoBo
+ A1B4

43

We Can Do Better : It’s All About Being (Cache) Friendly

Assuming we work with 32 bytes-long cache lines and each element of
the matrix is 8 bytes long, how many cache lines do | need to compute

one element of C?

G G G G Ay A1 Ay Az By Bi By Bs
G G G G| _|A As A Ar| | Bi Bs Bs B
G G G Cin Ag Ay A Anr Bg By Bio B
Cio Ci3 Cip G Az A1z Au Ars Bi> B3z Bis Bis
Co = AoBo
+ A1B4

+ AyBg

a4

We Can Do Better : It’s All About Being (Cache) Friendly

Assuming we work with 32 bytes-long cache lines and each element of
the matrix is 8 bytes long, how many cache lines do | need to compute
one element of C?

G G G G Ay A1 A Az By By By Bs

G G G G B Ay As As A7 y By, Bs Bs By

CG G G G Ag Ag A A Bs By Bio B

G Gz Cu Gs A Az A Ass Bi> Bz Bis Bis
Co = AgBog Conclusion:
+ A1B, = Every access to A; use the same
+ A2Bg cache line => cache friendly
+ A3Bpo

= Every access to B; use a
different cache line => poor
cache utilization

45

Deal with the B; Situation

To improve cache utilization, we can transpose matrix B to make sure
By, B4, Bg and By are stored on the same cache line

G G G G Ay A1 Ay As By By Bg Bi»
G G G G _ A A As A y By Bs By Bis
C G Go Ci Ag Ay Ao Al B> Bs Big Bia

C12 C13 C14 C15 A12 A13 A14 A15 B3 B? Bll 815

Co = ApBo Performance evaluation on Intel192:

+ A1B4 Serial time: 5.188652s (prev: 40.3018250s)
+ ABs Parallel time: 0.067657s (prev: 0.270773s)

+ A3B1» Achieved speed-up : 77 (rel to prev: 595(!))

46

Part Il: Control Data Placement
on NUMA Systems

47

Non-Uniform Memory Accesses

Software support to
deal with data locality
= The First-Touch
allocation policy
(default behavior
of most memory

allocators)
Access Local Neighbor Opposite
to... node node node = Some external
Read 83ns 98 ns (x1.18) 117 ns (x1.41) libraries like
Write 142ns 177 ns (x1.25) 208 ns (x1.46) libNUMA or hwloc

48

Allocating Memory on First Touch

On most UNIX-like operating systems, when allocating some memory
using malloc and friends, the corresponding memory pages are physically
allocated :

= when they are accessed for the first time (lazy allocation)

= next to the thread that performs this first access

In other words, it’s crucial to make sure a data is first touched by
the thread that will access it during the computation phase.

49

Case Study #2: the STREAM Benchmark

| void STREAM_Triad(double *a, = STREAM is a memory

’ double *b, benchmark written in

3 double *c, . .

4 double scalar) C+OpenMP performing simple

5 {) . operations on vectors.

6 int j;

7 #pragma omp parallel for = It was designed to evaluate the

8 for (j=0; j<N; j++)

9 aljl = bl[jl+scalarxc[j]; aggregated memory

10} bandwidth of a shared memory
platform.

= Vectors are large enough not to
fit into cache memory.

How to initialize vectors a, b and ¢ to make sure the corresponding
memory pages will be accessed locally when executing STREAM_Triad?

50

REAM: Initializing Data the

#pragma omp parallel for
for (j=0; j<N; j++) {

aljl = 1.0;
b[jl = 2.0;
cljl = 0.0;

void STREAM_Triad(double *a,
double *b,
double *c,
double scalar)
{
int j;
#pragma omp parallel for
for (j=0; j<N; j++)
aljl = bl[jl+scalar*c[jl;

Here, we perform a parallel
initialization of the data being
accessed by STREAM_Triad.

The OpenMP spec guarantees
that the same iterations will be
executed by the same threads
as long as both parallel loops :
= involve the same number of
threads and iterations
= involve the static loop
scheduler with the same
parameters (chunk_size)

We then only need to make
sure a thread will be
assigned to the same core in

both regions.
51

Thread Affinity in OpenMP

The proper way to bind OpenMP threads is as follows:

1. The programmer first defines a list of places on which the threads
will be pinned. A place can be seen as a set of processing units
(hardware threads, most of the time).

= |t can be explicit, refering to the processing unit OS numbering:
OMP_PLACES="0,1,2,3"

= Or you can use one of the predefined abstractions (threads, cores,
sockets): OMP_PLACES=cores to refer to physical cores

2. The programmer then specifies the way threads will be distributed
over the list of places.

= Ex: OMP_PROC_BIND=close to perform a compact distribution over
the places list (default behavior).

52

STREAM: Evaluation

We ran the STREAM benchmark 20 times and experimented with
different strategies for thread and data placement :

= serial init: STREAM vectors are initialized sequentially and no
thread binding is applied

= serial init 4+ binding: same, except we bind the threads using
OMP_PLACES=cores

= randomized memory + binding: we allocate the memory pages in
a round robin fashion over the NUMA nodes using the hwloc-bind

--mempolicy interleave tool

= parallel init + binding: we initialize the vectors in parallel and we
make sure they don't move between initialization and computation
phase

53

STREAM: Performance on Intel192 (1/4)

M serial init

12000

— 10000
<
)
2

= 8000
r=}
T
3
°

£ 6000
©
-]
>
S
o

£ 4000
o
=

2000

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Execution ID

54

STREAM: Performance on Intel192 (2/4)

M serial init M serial init + binding
30000

25000
20000

15000

10000

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Execution ID

Memory bandwidth (MB/s)

55

STREAM: Performance on Intel192 (3/4)

B serial init MWserial init + binding ™ randomized memory + binding
350000

300000
250000
200000

150000

Memory bandwidth (MB/s)

100000

50000

o sl all ol S0 o0 oS00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Execution ID

56

STREAM: Performance on Intel192 (4/4)

M serial init M serial init + binding ™ parallel init + binding ® randomized memory + binding
800000

700000
600000
500000
400000

300000

Memory bandwidth (MB/s)

200000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Execution ID
57

Part Ill: Parallelism Grain and
Runtime-related Overheads

58

The OpenMP runtime
system is responsible for
the low-level
implementation of the
OpenMP constructs, like
managing the threads or
executing the tasks for
example.

Remember that nothing
comes for free and it's up
to you to keep these

overheads under control.

Some Raw Performance of OpenMP Implementations

Construct | GNU OMP | Intel OMP
parallel 372 26
for 121 19
parallel for 370 26
barrier 121 19
single 227 35
critical 6 1.5
lock/unlock 25 5
atomic 0.5 0.3
reduction 435 47

Figure 14: Overheads, in us, of various
OpenMP constructs (EPCC microbenchmark)
on the Intel192 machine

Case Study #3: A Task-Based Cholesky Decomposition

The algorithm works on tiles (also called blocks) and involves the
following BLAS kernels:

= potrf: Cholesky decomposition

= trsm: solving triangular matrix with multiple right hand sides
= syrk: symmetric rank-k update to a matrix

= gemm: matrix matrix multiply

1. execute potrf on tile (1,1).

potrf

This unlocks some trsm tasks

trsm syrk
y to be executed ;

trsm | gemm | syrk

2. each trsm unlocks one syrk
trsm | gemm | gemm | syrk

and some gemm tasks

Figure 15: Cholesky workflow on a 4x4 3. repeat these steps on the lower
tiled matrix 3x3 matrix starting with tile
(2.2)

60

Cholesky Implementation using OpenMP 4.0 Dependent Tasks

1
2
3
4
5
6
7
8

for (int k = 0; k < NB; ++k) {
#pragma omp task shared(A) depend(inout: A[k][k])
dpotrf (NB, &A[k][k]);
for (int m = k; m < NB; ++m) {
#pragma omp task shared(A) \
depend (in: A[k][k]) \
depend (inout: A[m][k])
dtrsm(NB, &A[k][k], &A[m][k]);
}
for (int m = k; m < NB; ++m) {
#pragma omp task shared(A) \
depend (in: A[m][k]) \
depend (inout: A[m][m])
dsyrk (NB, &A[m][k], &A[m][ml);
for (int n = k; n < m; ++n)
#pragma omp task shared(A) \
depend (in: A[m][k],A[n][k]) \
depend (inout: A[m][n])
dgemm (NB, &A[m][k], &A[n]l[k], &A[m][nl);
}
}

NB is the
number of
tiles of the
matrix

A is a matrix
of pointers,
each element
of A points
to a different
tile of the
matrix

61

holesky Performance Depending on the Block Size

2500 .
eal Matrix size :
size app a :
Best plock 320_512‘ 32k x 32k
to be \\‘\S\de\ —
2000 /
NOte
—_ nought N
M) asks (load ;
3 (ad:mbalance)
& 1500
r 1™
(%}
c
(']
E 1000
€
(7]
a
50900 many ta
(runtime overhpady
1
N
0wONQQWONQLDNONQ'\DG)ONQKDOOQRDOOONngm
ﬁtﬁﬂmﬁﬁr‘?‘,ﬁ%;‘3@3%58%622.‘5,95&%%8m8§
Block size

Conclusion

63

Conclusion

OpenMP provides some high-level constructs to :

= run loops in parallel (OpenMP 2.5)

= express task-based parallelism (OpenMP 3.0)

= express task dependencies (OpenMP 4.0)

= offload computations on accelerators (OpenMP 4+)
Getting parallel applications up to speed still require a good
understanding of both software and hardware layers, in order to

= make your code cache-friendly, when possible

= control data placement to avoid NUMA-related penalties

= keep the runtime-related overheads at bay

64

Thank youl!

65

	Introduction to OpenMP: Basic Concepts and Syntax
	Getting OpenMP Up to Speed
	Part I: Benefit from Cache Memory
	Part II: Control Data Placement on NUMA Systems
	Part III: Parallelism Grain and Runtime-related Overheads
	Conclusion
	Thank you!

