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Small Kolomogorov manifolo

Let F' be a compact subset of a functional Banach space X

An example can be a set of parametric functions
F = {u(.,p),pn € D}

This talk deals with linear constructive approximation methods specifically
tailored to approximate the functions in F' (or in a set close to F' see PBDW).

For this, we consider approximations on “appropriate” n-dimensional spaces
X,, of relatively small dimension under the hypothesis that the Kolmogorov
n-width of F'is small.






The Kolmogorov n-width of F' in X, is defined as

dn(F, X) = inf sup Jnf flu— vl
dim(Xnp)<n

And the assumption is that d,,(F, X) is small.



The Kolmogorov n-width of F' in X, is defined as

dp(F,X)= _inf  sup inf |u—ov|x,
X, CX yeF vEXn
dim(Xnp)<n

And the assumption is that d,,(F, X) is small.

In order to satisty the constraint on the computing time, we consider con-
tinuous linear approximations 7, : X — X,, on “appropriate” n-dimensional
spaces X,, of relatively small dimension. A first bound on the approximation
error is then

supl|u — Jnlul|lx < (1+ Ap)sup inf [ju— v, (1)
ue F ue F veEXy
where
A — sup | Tl 2 (2)

cex llollx

is the norm of the operator 7,, : X — X,, and is known as the Lebesgue constant.
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EIM/GEIM

In 2004 with M. Barrault, N. C. Nguyen, and A. T. Patera, we proposed
an generic approach : the ‘Empirical Interpolation’ Method: Application to
Efficient Reduced-Basis Discretization Of Partial Differential Equations, that
has proven successtul

This approach allows to determine an “empirical” optimal set of interpola-
tion points and/or set of interpolating functions.

In 2013, with Olga Mula, we have generalized it (GEIM) to include more
general output from the functions we want to interpolate : not only pointwize
values but also some moments.



The first generating function is ¢ = argmaxg cr ||@( - )| L= (),
the associated interpolation point satisfies

L1 = argmax ‘901(56)|,
xel
we then set ¢ = p1(+)/¢1(x1) and Bj; = 1.

Then the construction proceeds by induction : assume the nested sets of
interpolation points =y 1 = {z1,..., 21}, M < Mpax, and the associated
nested sets of basis functions {qi,...,qm—1} are given!. We first solve the
interpolation problem : Find

-1l E an—1,519q ,

such that
IM_l[QO()](CEZ) :SO('T’L)? 22177M_1 )

that allows to define the anr—1 j|p],1 <7 < M —1, as it can be proven indeed
that the (M —1) x (M — 1) matrix of running entry ¢,(z;) is invertible, actually
it is lower triangular with unity diagonal.

1) where Mmax <7/ is some given upper bound fixed a priori



We then set

Vo e F, epm-1(9) =l —Zn—1lelllr=(@) ;
and define

M = arg I;lggsM—l(sa) :

and

T = argmax jorr () — Tr—1lem]()]
xT &

we finally set 7y (x) = oy (x) — Tv—1lenm ()], g = rar/ra(xpr) and

B =qj(x:),1<i,j <M

The Lagrangian functions — that can be used to build the interpolation
operator Ly, in

Xy =span {p;, 1 <i < M} =span {q;,1 <1< M}

over the set of points Zj; = {z;,1 < i < M} — verify for any given M,

where

(note indeed that hM (z;) = §;;).



For GEIM, we assume now that we do not have access to the values of ¢ € F
at points in () easily, but, on the contrary, that we have a dictionary of linear
forms 0 € ¥ — assumed to be continuous in some sense, e.g. in L?(Q) with
norm 1 — the application of which over each ¢ € F' is easy. Our extension
consists in defining ©1, ©s,..., O and a family of associated linear forms o1,
03,. .., oy such that the following generalized interpolation process (our GEIM)
is well defined :

M
jM[gO] :Zﬁjgﬁj, such that Vi = 1,,M, O'Z(jM[gO]) :O'Z(QO) (1)

g=1

Note that the GEIM reduces to the EIM when the dictionary is composed
of dirac masses, defined in the dual space of C°(9).
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to a set of interpolation points that have similar properties as above. The rational for the greedy approach is
that it allows us to get a better sense of the interpolation properties since Vu,

lu( ) = I fu()]llze() < llum+1(-) — Imfusr41( - )lllo= @) = em(zrr41) (13)

and this last quantity is one of the outputs of the construction process.
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The important thing is to measure to which extent the EIM/GEIM misses
the optimality of the best approximation in the best optimal discrete space
suggested by the definition of the Kolmogorov n-width.



Formula

sup||lu — Tnlull|lx < (1 + Ap)sup inf ||ju—v|x,

suggests that A,, plays an important role in the result and it is therefore impor-
tant to discuss its behavior as n increases. First of all, A,, depends both on the

choices of the interpolating functions and interpolation points.
We have proven (YM-Mula-Patera-Yano) that A,, = 1/05,,, where

(@, 0)x,x
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B, = Int sup
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suggests that A,, plays an important role in the result and it is therefore impor-
tant to discuss its behavior as n increases. First of all, A,, depends both on the

choices of the interpolating functions and interpolation points.
We have proven (YM-Mula-Patera-Yano) that A,, = 1/05,,, where

(@, 0)x,x

X

B, = Int sup
PEXAn ;eSpan{oo,...,on_1} ol xllo

GEIM interpreted as an oblic projection ...
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Figure 3: (a) Variation of Lebesgue constant, Ays with n where M = %(n + 1)(n + 2), and (b) distribution
of magic points, for Q.
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Figure 4: Results for a “lunar croissant” domain ()..,: (a) variation of the Lebesgue constant A, with n,
and (b) distribution of magic points for n = 12.
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We are now working on the justification of this nice behavior.



The next point is to justify the choice of the interpolating functions. It can
be proven that
Lemma
For any n > 1, the nth interpolating function ¢,, verifies

Ui
[in = Palin)l = 755 max | = Pa(f) 2

Which allows to use the frame “weak greedy” of the papers by

e P. Binev, A. Cohen, W. Dahmen, R.A. DeVore, G. Petrova, and P. Woj-
taszczyk,

e and R. A. DeVore, G. Petrova, and P. Wojtaszczyk,

to analyse the convergence properties of our algorithm

Work done with O. Mula and G. Turinici (SINUM (2016)



In a nutshell, in the case where we have a Hilbert framework, our result states
that

Theorem

If (A,)52 is a monotonically increasing sequence then

i) if d,, < Con~< for any n > 1, then 7, < Cann_O‘, with

~

By = 23TIAZ ifn > 2.

ii) if d,, < Coe—1"" for n > 1 and Cp > 1, then 7, < C’Oéne_@”_a, with

B, :=V2A,, ifn>2.

Work done with O. Mula and G. Turinici (SINUM (2016)



Another application : fluid flow 2 =[0:1] x [0;1] c R

2
Find the solution (u,, p,) € (H'(Q)) X L%(Q) of :

—Au, +grad(p,) =1,, ae. in{?
div(u,) =0, ae.in {2

x(1 —x)
u, = , a.e.onl/’
7 ( 0 ) - ] 100 sin(gey ITy)
u“ — 0’ a.e. on ag \ Fl 'fﬂ — (—l()Osin (qu — ))

7

—




Another application : fluid flow Q = [0:1] x [0;1] ¢ R2.

)
Find the solution (u,, p,) € (HI(Q)) X L%(Q) of :

—Au, +grad(p,) =1,, ae in{?
div(u,) =0, ae.in (2

x(lo—x))’ a.e.on [
0, ae.ond2\/[]
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Application of EIM for Reduced Basis Methods
for non affine and nonlinear PDE:

SCC

Efficient reduced-basis treatment of nonaffine and nonlinear partial differential
equations MA Grepl, Y Maday, NC Nguyen, AT Patera ESAIM (2007)

or the two recent books

Certified Reduced Basis Methods for Parametrized Partial Differential
Equations Authors: Hesthaven, Jan S, Rozza, Gianluigi, Stamm, Benjamin

Reduced Basis Methods for Partial Differential Equations An Introduction
Authors: Quarteroni, Alfio, Manzoni, Andrea, Negri, Federico



More about (G)EIM



In a recent paper, with J.P. Argaud, B. Bouriquet, H. Gong and O. Mula,
we have introduced the GEIM to monitor nuclear reactor.

The challenge here is that we do not have access inside the core of the reactor
and thus have only the possibility to place the captors inside the surrounding
region.



The two group diffusion equation in matrix notation reads

Ap)p = k:ff F(p)e

Where p is the parameters set, e.g. D, >, vXr. A and F' are 2x2 matrix and
@ 1s a 2-element column vector:

—V D'V + (2] + 2.7%) 0
X7 —V - D*V + 3

Ap) =

_ Xle}v xluZ?
Flw) = ( X2V X2vX:

(%)

Where D, ¢ = 1,2 is called the diffusion coefficient of each group; X%, i =
1, 2 is the absorption cross section of each group; ¢;, © = 1, 2 is the neutron flux
of each group; X172 is called the removal cross section from group 1 to group 2;
VZ}:, 1 = 1,2 1s the fission source term of each group; v;, ¢ = 1,2 is called the
fission spectrum of each group; finally k. ¢ is the effective multiplication factor,

also the eigenvalue of equation.



In 1D, this looks like
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Figure 1: Flux and power distribution in the Core for the benchmark problem



In order you are convinced that the Kolmogorov dimension 1s small
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First classical EIM
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EIM dimension (Noise Free). The function used by EIM is the flux of group 2, the magic
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and the power use the same coefficients solved by EIM for the flux of group 2.



Then with a restriction on the position of the points

EIM,Magic-Point choosed in [25,30]cm, Flux, Group 2
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Similar results in two dimensions
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The first twenty interpolation points distribution (constrained in fuel region)



Relative Error

Similar results in two dimensions
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Similar results in two dimensions

Relative Error
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What about noisy data
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We clearly see the effect of the Lebesgue constant



What about noisy data :
how to minimize the effect of the Lebesgue constant
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Application of GEIM 1n data assimilation and monitoring
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Incorporating the model error :
Parametrized-Background Data-Weak (PBDW) formulation
with A.T. Patera, J. D. Penn and M. Yano

The PBDW formulation integrates a parametrized mathematical model and
M experimental observations associated with the configuration C to estimate

the true field «*"*¢[C] as well as any desired output (°“*(u'"“¢[C]) € C for given
output functional [°%t.

We first introduce a sequence of background spaces that reflect our (prior)
best knowledge,

Z1C - C 2N C U;

ma

here the second ellipsis indicates that we may consider the sequence of length
Nyaz as resulting from a truncation of an infinite sequence. Our goal is to
choose the background spaces such that

lim inf |[u"™¢[C]—w| <ez VCE€S,

N—ocoweZ N

In words, we choose the background spaces such that the most dominant physics that
we anticipate to encounter for various system configurations is well represented for a
relatively small N.



Incorporating the model error :
Parametrized-Background Data-Weak (PBDW) formulation
with A.T. Patera, J. D. Penn and M. Yano

We now characterize our data acquisition procedure. Given a system in configuration C € &, we assume
our observed data y°*[C] € CM is of the form,

Vm=1,....,M, y33[C] = £2,(u"[C]) + em;

here y°Ps[C] is the value of the m-th observation, £2, € U’ is the linear (and not antilinear) functional

of the functional depends on the specific transducer used to acquire data.

Concerning the form of the noises (e, )., we make the following three as-
sumptions:

(A1) zero mean: Ele,,| =0, m=1,..., M;

(A2) homoscedastic: Ele2]|=0% m=1,...,M;
(A3) uncorrelated: Elene,] =0, m # n.



We first associate with each observation functional ¢ € U’ an observable
tunction,

Vm=1,...,.M, qm = Ryf,,,
the Riesz representation of the functional [1]. We then introduce hierarchical observable spaces,

VM =1,...,Muax,-.., Un = span{gm}M_;;

We may now state the PBDW estimation statement: éiven a physical system in configuration C € S, find
(uy m[Cl €U, 25 [C] € Zn,nN 1 [C] € U) such that

(i, m[C, 28, m[Cls i M [C)) = arginf |7, ml|® (2)
un,MEU
ZNMEZN
nN,MEU

subject to

(un,p,v) = (N, ) + (28,Mm,v) YV EU,
(un,m; @) = (u$P[Cl, 0) Vo € Uy

We may readily derive the associated (reduced) Euler-Lagrange equations as a saddle problem [16]: given a
physical system in configuration C € S, find (9} 5/[C] € Unr, 2x 1/[C] € Zn) such that

(v, m[Cls @) + (25, m[C), @) = (u$z°[Cl,q) Vg € Un,
(nn,m[Cl,p) =0 Vpe Zy, (3)

and set

un,m(Cl = nn,m(Cl + 25, m[C]- (4)



Algebraic Form: Offline-Online Computational Procedure

(v o) (e )-("0).

A=Q'UQ=LQeC"M
B=Q'UZ =LZ e CM*N,

where



Analysis

Lemma 1. The expectation of the norm of the state error may be decomposed into deterministic and sto-
chastic components and is bounded by

E([[u*™*[C] — ujy,m[CIl] < [[u*™[C] = ul m[C]l + Elllul, ar[C] — ulv, e [CI];

here u'™°[C] is the true deterministic state, uy ,,[C] is the PBDW estimate given by (3), uly /[C] is the
noise-free estimate given by (6), and E refers to expectation.

Proposition 2. The deterministic component of the error is bounded by

rue 1 rue
[utre(c] — ulf [l < (1+— T ut e lc] — g,

,BN M ) qeblM ZJ‘
where By v is the inf-sup constant given by

Bnm = inf  sup (w, v) ;
wEZN VEU M “’LU””'U”

here u*™¢(C] is the true deterministic state, and uyj \,[C] is the noise-free estimate given by (6).



Analysis

Lemma 1. The expectation of the norm of the state error may be decomposed into deterministic and sto-
chastic components and is bounded by

E([[u*™*[C] — ujy,m[CIl] < [[u*™[C] = ul m[C]l + Elllul, ar[C] — ulv, e [CI];

here u'™°[C] is the true deterministic state, uy ,,[C] is the PBDW estimate given by (3), uly /[C] is the
noise-free estimate given by (6), and E refers to expectation.

Proposition 3. Suppose the observation error e satisfies the assumptions (A1), (A2), and (A3). Then, the
mean of the stochastic error is zero:

E [UN m(C] — uj, M[C]] (9)

here u}y y[C] is the noise-free estimate given by (6), and uy y[C] is the PBDW estimate given by (3).
Moreover, the variance of the stochastic error is bounded by

\/E g (€] — uep[CII12] < 0 (

where A = QTUQ € CM*M | By 1\ is the inf-sup constant defined in (8), and o2 is the variance of the
measurement noise.

) Vtrace(A-1), (10)

'BN,M
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Data-Driven Empirical Enrichment of the Background Space

We now devise a strategy to systematically incorporate the unmodeled physics identified by the update
space Ups to augment the background space Zy for subsequent data assimilation. The goal is to reduce the
number of observations for future configurations. We consider the following algorithm:

(1) Find the configuration that maximizes the relative error (indicator):

-y E v C~ — ) —
F* = argsup avg[Cr) (UN=N,ar, M=12)

k€[0.3,0.7] Eavg[Cé](uN=o,M=o)

(2) Compute the update state associated with the configuration C;.,

n}kV=Nmux =8,M=M,ax=48 [c;:° ].

(3) Construct the “augmented” best-knowledge space

Zi}:ngax +1 = Span{ZN'"“x ? nyv:Nmax =8aM=Mmax=48 [c’:?‘ ]};

note that 3, [Ci.] € 2§ NUy

max max max

and hence 3, 5, [C;.] is orthogonal to Zy

mase max "
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FIGURE 12. The relative error in the PBDW estimate for the original background space

aug

Zn-g and the augmented background space Z,; =, both using M = 12 observations.
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The PBDW formulation 1s endowed with the following characteristics:

e Weak formulation.

Actionable a priori theory. The weak formulation facilitates the construction of a priori
error estimates

Background space that best reflects our (prior) best knowledge of the phenomenon under
consideration

Design of quasi-optimal set of observations from a library of experimentally
realizable observations in order to maximize the stability of the data assimilation.
Correction of unmodeled physics with uncertainty.

Online computational cost is O(M). We may realize real-time state estimation

Simple non-intrusive implementation and generality. The mathematical model appears
only in the offline stage.

Recently a work of P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova, P.
Wojtaszczyk has analyzed this approach in terms of optimal recovery and our algorithm is
optimal in this frame. They have extended it to the Multi-Space Case.



Reduced Basis method for a bifurcation study of a
thermal convection problem
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RB-4-RB : Formulation of the problem

A sketch of the domain and the physical situation 1s shown here

A TI

-
~

\ t’-“ T,

- L

L

The domain is a rectangle of depth d and width L. The domain contains
a fluid that 1s heated from below, so that on the bottom plate a
temperature To 1s imposed and on the upper plate the temperature 1s

Ty =Ty — AT = Ty — 3d
where [ 1is the vertical temperature gradient.



Formulation of the problem

The equations governing the system are the incompressible
Navier-Stokes equations with the Boussinesq
approximation coupled with a heat equation
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Stationary equations : Legendre collocation method

The Navier Stokes system with proper boundary conditions has a simple conductive solution
u® =0, 6°= (1-2)/2, P¢ = R(z—2%/2)/2. The stationary problem with the change of variables
' =6 — 0°, P = P — P and dropping the primes to simplify notation, is the following,

V-u = 0, in €2,
Rfe, — VP +Au = 0, in €2,
u-Vé —u, = A6, in ).

with the boundary conditions,

u=0,=00nz=0; 0=0up =u,=0onz=1,

0,0 =0zu, =u; =0, onz =0, andonz =1T.

The “standard” numerical method used here to solve it provided for different values of the
Rayleigh number R is a Legendre spectral collocation method . The fields are expanded into
Legendre polynomials, U = » ;" o 37" aijLi(x)L;(z), where L; is the Legendre polynomial of
degree 1.



Greedy procedure

We choose a value of the Rayleigh number that we name R;, with its corresponding solution
®(R;), i.e. in this work it is the smallest value of R in the interval we consider. We
normalize this stationary solution according to the L? scalar product:

u; 6 61 P P
\I’ = ,{pu: 9¢ — ’w — )9
' ( L ez’ 7 N6allze” 7 (1Pl

then we consider a first space X; = span{¥)}'} x span{y?} x span{{}.

In this calculations we have considered expansions of order n=35 in the x-direction and m=13
in the z-direction.

We then choose Ry where the Galerkin error when approaximated on

X1 = span{¢y}'} x span{{} x span{y{ }

and the corresponding stationary solution is ®(Rs). We orthonormalize both functions by
Gram-Schmidt procedure in order to obtain a new W, and we consider the second space

X, = span{y}, Y3} x span{+)y, ¥§} x span{v!, ¥L'}.

An so on, until we reach a value 7 = N < card(Z;iq) for which the stopping criterium
EEN) <1077, 4 = 1,2 is satisfied.



Greedy procedure

Therefore, we obtain the reduced basis {¥,, ¥s,..., Ux} and a corresponding discrete space
Xy = X3 x X8 x XL For each branch we have constructed the reduced basis with solutions on
that branch. We have constructed a reduced basis for each stable branche, i.e. for ®; and v®;.
The branch for ®, needs two reduced basis, one for the unstable part and another for the stable
part. The same situation for ®3. The totally unstable branches need more care, and the interval
has been divided in three parts, so that a reduced basis has been calculated in each part, i.e.
[1,539; 1,600], [1,600;2,000] and [2,000;3,000]. Table 1 shows the number of snapshots used to
calculate the reduced basis and the number of elements of the reduced basis in each branch of
solutions.

Table 1: Number of snapshots in the trial set for the different reduced basis (RB) in each branch
of solutions.

®, | Oy | Py (two sets) | Py | Py (three sets)
#Zia | 23 | 22 29, 19 19 22, 26, 51
# RB 9 8 6, 6 10 6,7, 7




Greedy procedure

Table 2: egj ), egj ) , J = 1,..., N and the respective Rayleigh number R in which the maximum
takes place for different dimensions j of the reduced basis space. R is in the interval [1, 102; 3, 000]
on the stable branch of solutions ®;.

j ng) 6gJ) R

1 0.809 0.236 1,102
2 0.085 0.0.009 3,000
3 0.008 0.001 1,500
4 0.003 4.7-10~4 2,200
5 3.3-10~4 6.7-10~° 1,110
6 1.1-1074 1.7-107° 2,700
7 1.7-1075 2.7-10~° 1,900
8 2.8:1076 4.1 1077 1,800
9 1.81077 1.7 -10~8 1,300




Greedy procedure

Table 3: egj ), egj ), 7 = 1,..., N and the respective Rayleigh number R in which the maximum
takes place for different dimensions j of the reduced basis space. R is in the interval [1,253; 3, 000]
on the branch of solutions ®,.

f egj) egj) R

1 0.748 0.588 1,253
2 0.056 0.015 3,000
3 0.007 0.001 1,600
4 0.002 2.5-10~4 2,200
5 1.1-10~4 3.5-1075 1,300
6 2.6:107° 7.4-106 2,700
7 4.6-10~6 7.5-1077 1,400
8 7.0-1077 9.6 -1078 1,260




Galerkin procedure for each branch
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Figure 6: Norm of the difference between the stationary solution obtained with Legendre collo-

cation and with a post-processed reduced basis method based on Legendre collocation for the
stable branch ®, in the interval of R [1,101;3,000].




Galerkin procedure for each branch
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cation and with a post-processed reduced basis method based on Legendre collocation for the
first part of the unstable branch of ®4 in the interval of R [1,539; 1,600].




Galerkin procedure for each branch

The reduced basis method is supported by standard discretizations. The off-line work for
the calculation of the solutions to construct the reduced basis needs these standard methods.
But, once the work of the standard method is done, the use of the reduced basis has several
advantages.

The size of the matrices after the discretization is very small. For a single value of the
Rayleigh number R the size of the matrices that appear after the discretizations are 2,016 in
Legendre collocation with expansions of order 13 x 35, whereas in the case of the reduced basis
with 8 elements the size of matrices are 16. A factor of 126 in the size of the matrices for each
value of R.

The behavior of the Newton method for the nonlinearity is improved with respect to standard
methods. In the Legendre collocation method, for instance, we obtain the first solution in the
branch in the interval [1,101; 3,000] near R = 1,101. To obtain the solution at R = 3,000 we
need to calculate the solution at R = 1, 102, take this solution as initial guess for R = 1,110 and
calculate the solutions increasing the value of R in steps of 10 till R = 3,000. Sometimes the
steps of increase on R can be larger. So, it is not possible to jump from R = 1,101 till R = 3,000
with Legendre collocation.

In the reduced basis this is not the case, the solution can be directly calculated for any value
of R. The reason for this behavior must be that nothing drive the solutions to be attracted by
a different branch since there is not unexpected elements in the basis set.

This is reflected in the computational cost in time, it is 122 s for Legendre collocation and it
is 6 s for reduced basis. Therefore the reduction is of a factor of 20 in time.



A new concept of reduced basis approximation for
convection dominated problems
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And 1f the Kolmogorov n-width 1s not small ?

Try to better look at the set of solutions



A case where the dimension 1s not small
1D viscous Burger equation

Uy + vuy — €EUpy = U
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Snapshots of the solution to the unsteady viscous burger equation with

ug = sin(x), v =4,¢ = 0.04



t small

1mension 1S no

A case where the d

1D viscous Burger equation

Ut + VUU

%ﬂ// T,

e L NN,

2.5

Snapshots of the solution to the unsteady viscous burger equation with

up = A+ sin(z), v =4,¢ = 0.04



Nevertheless ... all solutions look alike

2.5

2.0+

1.5F

1.0+

0.5F

o.o 1 1 1
-1.0 -0.5 0.0 0.5 1.0

what we have done above 1s to “center” the solutions

these are the u(x — vy, tn)



and the dimension diminishes largely !!
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Eigenvalues of the POD decomposition of the original set of snapshots (in red)
and of the centered set of snapshots (in green)



and the dimension diminishes largely !!
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Reconstruction of a snapshot (blue) using 3 POD modes. Left figure is

in the centered case. Right figure is the uncentered case



The discrete scheme we want to mimic

W ) = () — dbvu™ ()l (- ) + dteu, (-, )

leads to

At each time step, we are looking for a set of reduced coordinates {a'} and
a translation parameter " such that our "true” solution u™N (+, b, t"™) is well
apprxoximated by :

(v, t") Zoz ") (1)

We replace the search of the real v and as as in the usual galerkin method.
That is, we are trying to minimize the residual.

min min E a1 P (- — A" —u™ — dtvuu? + dteu”, (2)
fyn—l—l Eﬂan—l—l ER :

2

Complexity .. how to compute and solve ??



We have assumed periodic boundary conditions (for the sake of simplicity)
thus we need to compute online the following terms :

YAy, Vi, i, [, ® D;(-)
VA, Vi, 5,0 Jo @il ) i ()(@p)a()
YA~, Vi, ], fﬂ(qn) AY)(P;)z(")

for unknown value (to be optimized) of Avy

For a sufficiently small time step, we expect Ay to be of order dt x ¢ where
c is some local characteristic velocity. We have chosen the following method:

e precompute the scalar products for a predefined small set of discrete values
of Ay in [—0t * ez, Ot * Cras], Where g, is the maximum expected
shock speed during the simulation.

e using the regularity of the scalar product, we use spline interpolation to
get and approximate value for any A~y in [—0t * ¢naz, O * Craz]



The RB discrete scheme thus iterates between the
evaluation of the proper best translationy™ ! and the proper

definition of the coefficient oz?’“

St (- — 4t
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extensions .. what needs to be done

- non periodic (superposition of basic space and convection
space)

- higher dimensions (POD representation of the
“translations’) see !

- better fitting (add the derivatives of the POD functions)

- better fitting (replace least square with L1, see?

approximation)

1) lollo, A., Lombardi, D.: Advection modes by optimal mass transfer. Physical Review E 89(2), 022923 (2014)

2) Technical paper: Roxana Crisovan, Rémi Abgrall, David Amsallem
Robust Model Reduction by L1-norm Minimization and Approximation via Dictionaries:
Application to Linear and Nonlinear Hyperbolic Problems



