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Small Kolomogorov manifold
Let F be a compact subset of a functional Banach space X

For this, we consider approximations on “appropriate” n-dimensional spaces

Xn of relatively small dimension under the hypothesis that the Kolmogorov

n-width of F is small.

An example can be a set of parametric functions

F = {u(., µ), µ 2 D}

This talk deals with linear constructive approximation methods specifically

tailored to approximate the functions in F (or in a set close to F see PBDW).
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What is the proper definition of Xn



EIM/GEIM
In 2004 with M. Barrault, N. C. Nguyen, and A. T. Patera, we proposed

an generic approach : the ‘Empirical Interpolation’ Method: Application to
E�cient Reduced-Basis Discretization Of Partial Di↵erential Equations, that
has proven successful

This approach allows to determine an “empirical” optimal set of interpola-

tion points and/or set of interpolating functions.

In 2013, with Olga Mula, we have generalized it (GEIM) to include more
general output from the functions we want to interpolate : not only pointwize
values but also some moments.
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For GEIM, we assume now that we do not have access to the values of ' 2 F
at points in ⌦ easily, but, on the contrary, that we have a dictionary of linear
forms � 2 ⌃ — assumed to be continuous in some sense, e.g. in L2(⌦) with
norm 1 — the application of which over each ' 2 F is easy. Our extension
consists in defining '̃1, '̃2,. . . , '̃M and a family of associated linear forms �1,
�2,. . . , �M such that the following generalized interpolation process (our GEIM)
is well defined :

JM ['] =
MX

j=1

�j'̃j , such that 8i = 1, . . . ,M, �i(JM [']) = �i(') (1)

Note that the GEIM reduces to the EIM when the dictionary is composed
of dirac masses, defined in the dual space of C0(⌦).





Note that — obviously — everything has to be implemented on a computer

and thus discretized !!



Note that — obviously — everything has to be implemented on a computer

and thus discretized !!

Note also that — for some reasons — you may want to use your proper set
of basis/interpolating function in your preferredspace XN that may come from
intuition, previous knowledge, or POD/SVD.



Note that — obviously — everything has to be implemented on a computer

and thus discretized !!

Note also that — for some reasons — you may want to use your proper set
of basis/interpolating function in your preferredspace XN that may come from
intuition, previous knowledge, or POD/SVD.



Note that — obviously — everything has to be implemented on a computer

and thus discretized !!

Note also that — for some reasons — you may want to use your proper set
of basis/interpolating function in your preferredspace XN that may come from
intuition, previous knowledge, or POD/SVD.

Journal: Communications on Pure and Applied Analysis - 
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The important thing is to measure to which extent the EIM/GEIM misses

the optimality of the best approximation in the best optimal discrete space

suggested by the definition of the Kolmogorov n-width.



Formula

suggests that ⇤n plays an important role in the result and it is therefore impor-

tant to discuss its behavior as n increases. First of all, ⇤n depends both on the
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GEIM interpreted as an oblic projection …









We are now working on the justification of this nice behavior.



The next point is to justify the choice of the interpolating functions. It can

be proven that

Lemma
For any n � 1, the nth interpolating function 'n verifies

k'n � Pn('n)kX � ⌘

1 + ⇤n
max

f2F
kf � Pn(f)kX .

Which allows to use the frame “weak greedy” of the papers by

• P. Binev, A. Cohen, W. Dahmen, R.A. DeVore, G. Petrova, and P. Woj-

taszczyk,

• and R. A. DeVore, G. Petrova, and P. Wojtaszczyk,

to analyse the convergence properties of our algorithm

Work done with O. Mula and G. Turinici (SINUM (2016)



In a nutshell, in the case where we have a Hilbert framework, our result states
that

Theorem

If (⇤n)
1
n=1 is a monotonically increasing sequence then

i) if dn  C0n�↵ for any n � 1, then ⌧n  C0�̃nn�↵, with

�̃n := 23↵+1⇤2
n, if n � 2.

ii) if dn  C0e�c1n
↵

for n � 1 and C0 � 1, then ⌧n  C0�̃ne�c2n
�↵

, with

�̃n :=
p
2⇤n, if n � 2.

Work done with O. Mula and G. Turinici (SINUM (2016)
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Application of EIM for Reduced Basis Methods 
for non affine and nonlinear PDE:

see

Efficient reduced-basis treatment of nonaffine and nonlinear partial differential 
equations MA Grepl, Y Maday, NC Nguyen, AT Patera ESAIM (2007)

or the two recent books

Certified Reduced Basis Methods for Parametrized Partial Differential 
Equations  Authors: Hesthaven, Jan S, Rozza, Gianluigi, Stamm, Benjamin

Reduced Basis Methods for Partial Differential Equations  An Introduction  
Authors: Quarteroni, Alfio, Manzoni, Andrea, Negri, Federico



More about (G)EIM



In a recent paper, with J.P. Argaud, B. Bouriquet, H. Gong and O. Mula,
we have introduced the GEIM to monitor nuclear reactor.

The challenge here is that we do not have access inside the core of the reactor
and thus have only the possibility to place the captors inside the surrounding
region.



The two group di↵usion equation in matrix notation reads

A(µ)' =

1

keff
F (µ)'

Where µ is the parameters set, e.g. D, ⌃, ⌫⌃f . A and F are 2⇥2 matrix and

' is a 2-element column vector:
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Where Di, i = 1, 2 is called the di↵usion coe�cient of each group; ⌃

i
a, i =

1, 2 is the absorption cross section of each group; 'i, i = 1, 2 is the neutron flux

of each group; ⌃

1!2
s is called the removal cross section from group 1 to group 2;

⌫⌃1
f , i = 1, 2 is the fission source term of each group; �i, i = 1, 2 is called the

fission spectrum of each group; finally keff is the e↵ective multiplication factor,

also the eigenvalue of equation.



In 1D, this looks like



In order you are convinced that the Kolmogorov dimension is small



First classical EIM





Then with a restriction on the position of the points





Similar results in two dimensions

The first twenty interpolation points distribution (constrained in fuel region)
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What about noisy data

We clearly see the effect of the Lebesgue constant



What about noisy data : 
how to minimize the effect of the Lebesgue constant
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Incorporating the model error : 
Parametrized-Background Data-Weak (PBDW) formulation 
with A.T. Patera, J. D. Penn and M. Yano

The PBDW formulation integrates a parametrized mathematical model and

M experimental observations associated with the configuration C to estimate

the true field utrue

[C] as well as any desired output lout(utrue

[C]) 2 C for given

output functional lout.

We first introduce a sequence of background spaces that reflect our (prior)
best knowledge,

Z1 ⇢ · · · ⇢ Z
N

max

⇢ U ;

here the second ellipsis indicates that we may consider the sequence of length
N

max

as resulting from a truncation of an infinite sequence. Our goal is to
choose the background spaces such that

In words, we choose the background spaces such that the most dominant physics that 
we anticipate to encounter for various system configurations is well represented for a 
relatively small N.



Incorporating the model error : 
Parametrized-Background Data-Weak (PBDW) formulation 
with A.T. Patera, J. D. Penn and M. Yano

Concerning the form of the noises (em)m, we make the following three as-

sumptions:



We first associate with each observation functional `o
m

2 U 0
an observable

function,





Analysis



Analysis



Experimental settings







Data-Driven Empirical Enrichment of the Background Space







Conclusion



Conclusion



Conclusion
• EIM and GEIM have been used now extensively in order to implement 

easily the reduced basis method 



Conclusion
• EIM and GEIM have been used now extensively in order to implement 

easily the reduced basis method 
• From its initial “magic point” statement to “empirical interpolation” we 

have been now able (thanks to the work initiated by deVore on greedy 
algorithms) to state it on more firm ground



Conclusion
• EIM and GEIM have been used now extensively in order to implement 

easily the reduced basis method 
• From its initial “magic point” statement to “empirical interpolation” we 

have been now able (thanks to the work initiated by deVore on greedy 
algorithms) to state it on more firm ground

• There has been some nice generalizations like the matrix form in the group 
of A. Quartering and G. Rozza or operator interpolation M. Drohmann, 
B. Haasdonk, M. Ohlberger



Conclusion
• EIM and GEIM have been used now extensively in order to implement 

easily the reduced basis method 
• From its initial “magic point” statement to “empirical interpolation” we 

have been now able (thanks to the work initiated by deVore on greedy 
algorithms) to state it on more firm ground

• There has been some nice generalizations like the matrix form in the group 
of A. Quartering and G. Rozza or operator interpolation M. Drohmann, 
B. Haasdonk, M. Ohlberger

• There is still some missing point on the Lebesgue constant behavior .. on 
which we are passive but it works… still empirically (see however the 
interpretation of the greedy algorithm in this respect)



Conclusion
• EIM and GEIM have been used now extensively in order to implement 

easily the reduced basis method 
• From its initial “magic point” statement to “empirical interpolation” we 

have been now able (thanks to the work initiated by deVore on greedy 
algorithms) to state it on more firm ground

• There has been some nice generalizations like the matrix form in the group 
of A. Quartering and G. Rozza or operator interpolation M. Drohmann, 
B. Haasdonk, M. Ohlberger

• There is still some missing point on the Lebesgue constant behavior .. on 
which we are passive but it works… still empirically (see however the 
interpretation of the greedy algorithm in this respect)

• The pure interpolation process can be enriched by more data as in the 
PBDW method with A.T. Patera, J. Penn and M. Yano



Conclusion
• EIM and GEIM have been used now extensively in order to implement 

easily the reduced basis method 
• From its initial “magic point” statement to “empirical interpolation” we 

have been now able (thanks to the work initiated by deVore on greedy 
algorithms) to state it on more firm ground

• There has been some nice generalizations like the matrix form in the group 
of A. Quartering and G. Rozza or operator interpolation M. Drohmann, 
B. Haasdonk, M. Ohlberger

• There is still some missing point on the Lebesgue constant behavior .. on 
which we are passive but it works… still empirically (see however the 
interpretation of the greedy algorithm in this respect)

• The pure interpolation process can be enriched by more data as in the 
PBDW method with A.T. Patera, J. Penn and M. Yano



The PBDW formulation is endowed with the following characteristics:

• Weak formulation. 
• Actionable a priori theory. The weak formulation facilitates the construction of a priori 

error estimates
• Background space that best reflects our (prior) best knowledge of the phenomenon under 

consideration
• Design of quasi-optimal set of observations from a library of experimentally 

realizable observations in order to maximize the stability of the data assimilation.
• Correction of unmodeled physics with uncertainty.
• Online computational cost is O(M). We may realize real-time state estimation
• Simple non-intrusive implementation and generality. The mathematical model appears 

only in the offline stage.

• Recently a work of P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova, P.  
Wojtaszczyk has analyzed this approach in terms of optimal recovery and our algorithm is 
optimal in this frame. They have extended it to the Multi-Space Case.



Reduced Basis method for a bifurcation study of a 
thermal convection problem

Henar Herrero, Yvon Maday, Francisco Pla



RB-4-RB : Formulation of the problem

A sketch of the domain and the physical situation is shown here

The domain is a rectangle of depth d and width L. The domain contains 
a fluid that is heated from below, so that on the bottom plate a 
temperature T0 is imposed and on the upper plate the  temperature is

where      is the vertical temperature gradient. 
T1 = T0 ��T = T0 � �d

�



Formulation of the problem

The equations governing the system are the incompressible 
Navier-Stokes equations with the Boussinesq 
approximation coupled with a heat equation



 Bifurcation diagram



Stationary equations : Legendre collocation method



Greedy procedure

In this calculations we have considered expansions of order n=35 in the x-direction and  m=13 
in the z-direction.
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A new concept of reduced basis approximation for 
convection dominated problems

Nicolas Cagniart, Yvon Maday, Benjamin Stamm 



And if the Kolmogorov n-width is not small ?

Try to better look at the set of solutions 



A case where the dimension is not small
1D viscous Burger equation

Snapshots of the solution to the unsteady viscous burger equation with

u0 = sin(x), ⌫ = 4, ✏ = 0.04



A case where the dimension is not small
1D viscous Burger equation

Snapshots of the solution to the unsteady viscous burger equation with

u0 = �+ sin(x), ⌫ = 4, ✏ = 0.04



Nevertheless … all solutions look alike

what we have done above is to “center” the solutions
these are the u(x� �n, tn)



and the dimension diminishes largely !!

Eigenvalues of the POD decomposition of the original set of snapshots (in red) 
and of the centered set of snapshots (in green)



and the dimension diminishes largely !!

Reconstruction of a snapshot (blue) using 3 POD modes. Left figure is 
in the centered case. Right figure is the uncentered case



un+1(·, µ) = un(·, µ)� dt⌫un(·, µ)un

x

(·, µ) + dt✏un

xx

(·, µ) (1)

leads to

At each time step, we are looking for a set of reduced coordinates {↵n

i

} and

a translation parameter �n

such that our ”true” solution uN
(·, µ, tn) is well

apprxoximated by :
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We replace the search of the real � and ↵s as in the usual galerkin method.

That is, we are trying to minimize the residual.

min

�

n+12⌦
min

↵

n+12R

�����
X

i

↵n+1
i

�

i

(·� �n+1
)� un � dt⌫unun

x

+ dt✏un

xx

�����
2

(2)

The discrete scheme we want to mimic

Complexity .. how to compute and solve ??



For a su�ciently small time step, we expect �� to be of order �t ⇤ c where

c is some local characteristic velocity. We have chosen the following method:

• precompute the scalar products for a predefined small set of discrete values

of �� in [��t ⇤ c
max

, �t ⇤ c
max

], where c
max

is the maximum expected

shock speed during the simulation.

• using the regularity of the scalar product, we use spline interpolation to

get and approximate value for any �� in [��t ⇤ c
max

, �t ⇤ c
max

]

We have assumed periodic boundary conditions (for the sake of simplicity)

thus we need to compute online the following terms :

8
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(·)

for unknown value (to be optimized) of ��



The RB discrete scheme thus iterates between the 
evaluation of the proper best translation         and the proper 
definition of the coefficient

X

i

↵n+1
i �i(·� �n+1)

↵n+1
i

�n+1

Mean reconstruction error w.r.t number of POD 
basis used



extensions .. what needs to be done

- non periodic (superposition of basic space and convection 
space)

- higher dimensions (POD representation of the 
“translations”) see 1)

- better fitting (add the derivatives of the POD functions)
- better fitting (replace least square with L1 ,  see 2) 

approximation)

1) Iollo, A., Lombardi, D.: Advection modes by optimal mass transfer. Physical Review E 89(2), 022923 (2014)

2) Technical paper: Roxana Crisovan, Rémi Abgrall, David Amsallem
Robust Model Reduction by L1-norm Minimization and Approximation via Dictionaries:
Application to Linear and Nonlinear Hyperbolic Problems


