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General concepts for Data Assimilation

Introduction to Data Assimilation for NWF

Data Assimilation is widely used for Numerical Weather Forecasting
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General concepts for Data Assimilation

Introduction to Data Assimilation for NWF

Numerical Weather Forecasting models are constantly improving but
remain imperfect.
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General concepts for Data Assimilation

Introduction to Data Assimilation for NWF

A large amount of various types of observations are available thus not
providing a complete and perfect description of the system
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General concepts for Data Assimilation

Data Assimilation framework (1)

The model provides a forecast from which the observation operator
extracts quantities which are compared to actual data observation.
The analysis is a field that combines these observations with the model
forecast. It is then used as an initial condition for the next forecast.
This adjustment is repeated at fixed time intervals.

analyse
mesures

prévision

modèle

réalité temps (time)

temps (weather)

The analysis minimizes a combination of distance taking into account
background, observations and respective error covariance matrices
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General concepts for Data Assimilation

Data Assimilation framework (2)

The analysis minimizes the cost function:

The equivalent of the observation are extracted from the vector through the
observation operator G also denoted by H.

The cost function associates a real number to any vector x of the control space,

given a background state xb and a vector of the observation space y.
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General concepts for Data Assimilation

Control of model state

The model state is corrected at a given time, it corresponds to the initial
condition for further integration
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General concepts for Data Assimilation

Control of model parameters

The model parameters are corrected and used for a new model integration
for forecast
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General concepts for Data Assimilation

Two century of data assimilation

End of the XVIIIth century:

Planet orbit computations by Gauss

Least square method by Legendre

Begining of the XXth century:

Concept of maximum likelyhood by Fisher

Mid of the XXth century:

Kalman filter for the APOLLO program

Objective analysis of meteorological fields

End of the XXth century:

3D-var data assimilation method for weather forecast model

Gain of 20% forecast quality at Météo-France going to 4D-var
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General concepts for Data Assimilation

Examples of application (1) - Meteorology

Control vector

3D fields: temperature, pressure, humidity, winds

Several millions of grid points

Observation vector

Satellite data: surface temperature and winds, cloudiness, chemical
concentrations...

In-situ data: temperature, pressure, humidity, winds...

A million of observations

Weather forecast is a significant example for data assimilation. Most of the time, the

analysis is the initial condition of the meteorological model.
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General concepts for Data Assimilation

Examples of application (2) - Oceanography
Bouées TAO z 4D-var altimétrie

Control vector

3D fields : temperature, salinity, currents

2D fields : altimetry

One million of grid points

Observation vector

Satellite data: sea surface temperature,

In-situ data: temperature, salinity, currents

Several thousands of observations

Operational oceanography is more recent than operational meteorology. It share

common data assimilation methods.
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General concepts for Data Assimilation

Examples of application (3) - Hydrology

1020 m3 /s

observations

analyse

1025 m3 /s

810 m3 /s

Control vector

1D or 2D fields : water level, velocities, ground water content, soil humidity,

Parameters : drag coefficients, hydraulic conductivity

A thousand of grid points

Observation vector

Satellite data: ground water content, altimetry,

In-situ data: river water level, piezometers, precipitations

A hundred of observations

Hydrogology deals with much less data than meteorology or oceanography. Nevertheless,

data assimilation is used to predict floods as well as scarcity of water resources.
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Classical algorithms for Data Assimilation
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Classical algorithms for Data Assimilation

A short summary

This lecture focusses on variational algorithms that imply the minimization
of a cost function.
Kalman filter algorithms (Vivien Mallet’s lecture) imply linear algebra
computation and lead to equivalent results under similar assumptions.

Variational data assimilation methods lead to the minimization of a
cost function involving quadratic forms based on the both the
background and observation covariance matrices.

When the observation operator is linear, this formulation of the cost
function leads to the Best Linear Unbiased Estimation (BLUE)
method and the analyis is the sum of the background plus a gain
matrice times the ”innovation”. This algebra can be used in the
nonlinear case with an incremental approximation of the cost function.

The 4D-Var and Kalman Filter methods deals with a time evolution
model and measurement spread on a time interval.
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Classical algorithms for Data Assimilation

Minimum Variance Approach

We can find the analysis, xa, as a linear combination of an
observation vector y and a priori (background) vector xb.

Single observation: Find the analysis at observation point
An example: Estimation of a scalar quantity at a point in space

Assume that we have a single observation

Assume also that we have model forecast of the variable

xa = xb + k(y − xb)

How to define k?

Let’s now consider the errors involved in this problem.
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Classical algorithms for Data Assimilation

Let’s denote the truth by xt

xa = xb + k(y − xb)

xa − xt = xb − xt + k(y − xt − xb + xt)

Let’s define the errors

εa = xa − xt

εb = xb − xt

εy = y − xt

Then we have εa = εb + k(εy − εb)
If we have many realizations of these errors, then we have the
ensemble average of

< εa >=< εb > +k(< εy > − < εb >)

How to find k?
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Classical algorithms for Data Assimilation

< εa >=< εb > +k(< εy > − < εb >)

Let’s us look at the variances of errors:

< (εa)2 > =< (εb)2 > +k2 < (εy − εb)2 > +2k < εb(εy − εb) >

We want to have the analysis error variance as low as possible
→ Minimize < (εa)2 > with respect to k and solve for k

2k < (εy )2 + (εb)2 > −2 < (εb)2 >= 0

where we assumed that the errors in the background and observation
are uncorrelated. (< εbεy >= 0 )

k =
< (εb)2 >

< (εb)2 > + < (εy )2 >
⇒ k =

(σb)2

(σb)2 + (σy )2

where (σy )2 is the observation error variance and (σb)2 is the
background error variance.
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Classical algorithms for Data Assimilation
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Classical algorithms for Data Assimilation

Minimum Variance Approach

xa = xb + k(y − xb) where k =
(σb)2

(σb)2 + (σy )2

We have just derived a weight k such that it produces a minimum
analysis error variance.

This weight depends on the relative accuracies of the observations
and the background.

If the observation is perfect, (σy )2 = 0 and k = 1. Then xa = y

If the background is perfect, (σb)2 = 0 and k = 0. Then xa = xb

(The observation is ignored)

Two descriptions of the system are linearly combined according to their
accuracies.
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Classical algorithms for Data Assimilation

Minimum Variance Approach

Multiple observations: Find the analysis at different locations

We can find the analysis, xa, as a linear combination of an
observation vector y and a priori (background) vector xb.

xa = xb + K(y − xb)

where the weight (gain matrix) is defined as

K = B(B + R)−1

where B is the background error covariance matrix, R is the
observation error covariance matrix.

This weight is determined such that it gives a minimum variance of
the estimate.
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Classical algorithms for Data Assimilation

Minimum Variance Approach

An example: Find analysis at two different locations by assimilating two
observations

xa =

(
xa1
xa2

)
, xb =

(
xb1
xb2

)
, y =

(
y1

y2

)

B =

(
(σb1 )2 ρσb1σ

b
2

ρσb2σ
b
1 (σb2 )2

)
where ρ is the correlation coefficient

R =

(
(σy )2 0

0 (σy )2

)
K = B(B + R)−1 = 1

(1+α1)(1+α2)+ρ2

(
(1 + α2)− ρ2 ρ

√
α1
√
α2

ρ
√
α1
√
α2 (1 + α1)− ρ2

)
with α1 = (σy )2/(σb1 )2 and α2 = (σy )2/(σb2 )2
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Classical algorithms for Data Assimilation

Minimum Variance Approach

An example: Find analysis at two different locations by assimilating two
observations

If ρ = 0 → K = B(B + R)−1 =

(
(1 + α1)−1 0

0 (1 + α2)−1

)

As in the scalar case the observation and background are combined
according to their relative accuracies.

when the correlation increases then the weight of an observation at
the first(second) point on the analysis at the second(first) point
increases.
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Classical algorithms for Data Assimilation

Minimum Variance Approach

General formulation:

We can find the analysis, xa, as a linear combination of an
observation vector y and a priori (background) vector xb.

xa = xb + K(y −H(xb))

where the weight (gain matrix) is defined as

K = BHT(HBHT + R)−1

where B is the background error covariance matrix, R is the
observation error covariance matrix and H is the linear model of the
observation operator.

This weight is determined such that it gives a minimum variance of
the estimate.
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Classical algorithms for Data Assimilation

The BLUE equation

Statistical interpolation with least square estimation or Best Linear
Unbiaised Estimator (BLUE).

Linearized observation operator : the variations of the observation
operator in the vicinity of the background state are linear for any
close enough to xb

Non trivial errors: B and R are positive definite matrices

Unbiased errors

Uncorrelated errors

Linear analysis: we look for a an analysis defined by corrections to the
background which depend linearly on background observation
departures.

Optimal analysis: we look for an analysis state which is as close as
possible to the true state in an r.m.s. sense (i.e. it is a minimum
variance estimate)
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Classical algorithms for Data Assimilation

Observation operator at a glance

The observation operator describes the equivalent of the control x in the
observation space y = H(x).

It can be non linear, especially when controling model parameters.

The linear model of the observation operator is a p × n matrix.

Its formulation may requires the linear code for the physical model either
formulated analytically, with an automatic auodifferentiation software or as a local
approximation for instance with finite differences.
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Classical algorithms for Data Assimilation

Maximum a posteriori probability approach

The analysis xa can be alternatively defined as the maximum of the a
posteriori p.d.f of the state given the observations and the
background:

xa = arg max
x

p(x|y and xb)

Using Bayesian approach we have:

p(x|y and xb) =
p(y and xb|x)p(x)

p(y and xb)

Using the fact that p(y and xb) is not a function of x and under the
assumptions that observation and background errors are uncorrelated
we have

p(x|y and xb) ∝ p(y|x)p(xb|x)
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Classical algorithms for Data Assimilation

Maximum a posteriori probability approach

Let us define a cost function

J (x) = −log(p(y|x)p(xb|x)) + const

= −log(p(y|x))− log(p(xb|x)) + const

The analysis xa can then be calculated also by solving a minimization
problem:

xa = arg min
x
J (x)
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Classical algorithms for Data Assimilation

Maximum a posteriori probability approach (Special Case)

Gaussian assumption on the errors leads to

p(xb|x) = (2π)−n/2|B|−1/2 exp

(
−1

2
(x− xb)TB−1(x− xb)

)
p(y|x) = (2π)−m/2|R|−1/2 exp

(
−1

2
(y −H(x))TR−1(y −H(x))

)

from which the cost function can be written as

J (x) =
1

2
(xb − x)TB−1(xb − x) +

1

2
(y −H(x))TR−1(y −H(x))

This is the cost function of 3D-Variational Approach!
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(x− xb)TB−1(x− xb)

)
p(y|x) = (2π)−m/2|R|−1/2 exp

(
−1

2
(y −H(x))TR−1(y −H(x))

)

from which the cost function can be written as

J (x) =
1

2
(xb − x)TB−1(xb − x) +

1

2
(y −H(x))TR−1(y −H(x))

This is the cost function of 3D-Variational Approach!
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Classical algorithms for Data Assimilation

Minimizing the cost function

If H is linear, the optimal x is such that

This is the same solution at the minimum variance !
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Classical algorithms for Data Assimilation

Limits of matrix formulation

Formulating the background and observation error covariances
matrices is not straightforward

When the dimension of the problem is large, either the control vector
or the observation vectors are large (or both)

When the dimension of the problem is large, these matrix can not
easily be stored and used for algebra

The inversion of B and R is a key challenge whether it is formulated
as a function or as an operator.

The Matrix formulation is well adapted to small dimension problems!

Defining what a small/large problem is vague: it depends on
computational resources and on the definition of the control vector!
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Variational algorithms - Minimization algorithms

Outline

1 General concepts for Data Assimilation

2 Classical algorithms for Data Assimilation

3 Variational algorithms - Minimization algorithms

4 Error covariance matrices estimation and modeling

5 More on Data Assimilation
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Variational algorithms - Minimization algorithms

Variational approach: formulation of the cost function

3D-Var: (Observations are distributed in space but at a single point time)

min
x
∈ Rn =

1

2
‖x− xb‖2

B−1 +
1

2
‖Hj(x)− yj‖2

R−1
j

4D-Var: Extension to 3D-Var (Observations are distributed in time)

min
x
∈ Rn =

1

2
‖x− xb‖2

B−1 +
1

2

N∑
j=0

∥∥Hj

(
Mj(x)

)
− yj

∥∥2

R−1
j

For large size problem, the minimization is achieved iteratively.
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Variational algorithms - Minimization algorithms

Cycling of the variational analysis (3D-Var case)

The analysis is achieved at a given time t.

The observations are gathered at a single time step for each cycle
covering several observation times.
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Variational algorithms - Minimization algorithms

From 3D-Var to 4D-Var : temporal dimension

The observations are used at their correct time, over an assimilation
window.
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Variational algorithms - Minimization algorithms

From 3D-Var to 4D-Var : temporal dimension

x is the optimal initial condition for each cyle, such that the analysed
trajectory is in better agreement with the obs. than the background
trajectory.
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Variational algorithms - Minimization algorithms

Weak constraint 4D-Var

So far we assume that the model is perfect. Weak constraint 4D-Var
relaxes this assumption.

Weak-constraint 4D-Var:

min
x∈Rn

1

2
‖x0−xb‖2

B−1 +
1

2

N∑
j=0

∥∥Hj

(
Mj

(
xj
))
− yj

∥∥2

R−1
j

+
1

2

N∑
j=1

‖xj −Mj(xj−1)︸ ︷︷ ︸
qj

−q̄‖2
Q−1

j

x =


x0

x1

...
xN

 ∈ Rn is the control variable (with xj = x(tj))

Qj is the model error covariance matrix

qj accounts for the model error
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Variational algorithms - Minimization algorithms

Strong constraint 4D-Var

Solve a large-scale non-linear weighted least-squares problem:

arg min
x∈Rn

=
1

2
‖x− xb‖2

B−1 +
1

2

N∑
j=0

∥∥Hj

(
Mj(x)

)
− yj

∥∥2

R−1
j

where

x ≡ x(t0) is the control variable (e.g. the model initial conditions)

Mj are model operators: x(tj) =Mj(x(t0))

Hj are observation operators: yj ≈ Hj(x(tj))

the obervations yj and the background xb are noisy

B and Rj are error covariance matrices
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Variational algorithms - Minimization algorithms

Strong constraint 4D-Var: Linearized sub-problem

Solve a large-scale non-linear weighted least-squares problem:

min
x∈Rn

=
1

2
‖x− xb‖2

B−1 +
1

2

N∑
j=0

∥∥Hj

(
Mj(x)

)
− yj

∥∥2

R−1
j

Typically solved using a truncated Gauss-Newton algorithm
(known as incremental 4D-Var in the DA community).

−→ linearize

Hj

(
Mj(x(k) + δx(k))

)
≈ Gj(x(k) + δx(k))

≈ Gj
(
x(k))+ Gjδx(k)

−→ solve the linearized subproblem at iteration k

min
δx(k)
∈ Rn 1

2
‖x(k) + δx(k) − xb‖2

B−1 +
1

2

N∑
j=0

∥∥∥Gj(x(k))+ Gjδx(k) − yj

∥∥∥2

R−1
j
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Variational algorithms - Minimization algorithms

Variational Approach: Linearized sub-problem

−→ solve the linearized subproblem at iteration k

min
δx(k)∈Rn

1

2
‖δx(k) − (xb − x(k))‖2

B−1 +
1

2

N∑
j=0

∥∥∥Gjδx(k) + Gj(x(k))− yj

∥∥∥2

R−1
j

Let’s define: d(k)
j = yj − Gj(x(k))

d(k) =



d(k)
0

...

d(k)
j

...

d(k)
N


, G =



G0

...
G1

...
GN

 , R−1 =



R−1
0

. . .

R−1
j

. . .

R−1
N


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Variational algorithms - Minimization algorithms

Variational Approach: Linearized sub-problem

Iterative resolution of a linearized sub-problem:

1 k = 0

2 Choose an initial vector x(0), for instance, x(0) = xb

3 Solve the linearized subproblem

min
δx(k)∈Rn

1

2
‖δx(k) − (xb − x(k))‖2

B−1 +
1

2

∥∥∥G(k)δx(k) − d(k)
∥∥∥2

R−1

Sequence of quadratic minimization problems

4 update x(k+1) = x(k) + δx(k)

5 k = k + 1 and goto step 3 till convergence
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Variational algorithms - Minimization algorithms

Incremental 4D-Var

→ Nonlinear problem

min
x∈Rn

f (x) =
1

2
||x− xb||2B−1 +

1

2

N∑
j=0

||Hj(Mj(x))− yj ||2R−1
j

→ Quadratic problem

min
δx(k)∈Rn

J(δx) =
1

2
‖δx(k) − (xb − x(k))‖2

B−1 +
1

2

∥∥∥Gδx(k) − d(k)
∥∥∥2

R−1
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Variational algorithms - Minimization algorithms

Implementation for Incremental 4D-Var resolution

Solve a large-scale non-linear weighted least-squares problem:

min
x∈Rn

=
1

2
‖x− xb‖2

B−1 +
1

2

N∑
j=0

∥∥Hj

(
Mj(x)

)
− yj

∥∥2

R−1
j

Solution algorithm: Incremental 4D-VAR

1 k = 0

2 Choose an initial vector x(0)

3 Solve the linearized subproblem

(B−1 + GTR−1G)︸ ︷︷ ︸
A

δx = B−1(xb − x) + GTR−1d︸ ︷︷ ︸
b

4 update x(k+1) = x(k) + δx (k)

5 k = k + 1 and goto step 3 till convergence
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Variational algorithms - Minimization algorithms

Evaluation of the right hand side b

∇J (x0) = B−1(x0 − xb)︸ ︷︷ ︸
∇Jb

+
N∑
i=0

MT
i,0HT

i R−1(H(Mi,0(x0))− yi )︸ ︷︷ ︸
∇Jo

∇Jo = −{HT
0 R−1d0 + MT

0 HT
1 R−1d1 + ...+ MT

0 ...M
T
Nt−1HT

NtR
−1dNt}

= −{HT
0 d0 + MT

0 [HT
1 d1 + MT

1 [HT
2 d2 + ...+ MT

Nt−1HT
NtdNt ]]...]}

Algorithm:Compute ∇J (x0)

1 Forward integration of the dynamical model from x0

2 Backward integration of the adjoint model

λN = 0 (Initialize adjoint variable)
λk−1 = MT

k−1(HT
k dk + λk)

λ0 = MT
0 (HT

1 d1 + λ1)

3 ∇Jo = −λ0 + B−1(x0 − xb)

−→ This algorithm requires only 1 integration of the adjoint model for each k
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Variational algorithms - Minimization algorithms

Computational cost for 4D-Var (Incremental)

→ Computation of the cost function at each iteration of the minimization:

Integration of the non linear model from x(t0) to x(tN) in order to express each
x(ti )

Compute and store the difference between the model state and the observation :
yo
i − Hi (xi ), cumulate in Jo

→ Computation of the gradient of the cost function:

Integrate the adjoint model MT
ti ,ti−1

(at least 4 times more expensive than the
direct model)

The last value of the adjoint variable x∗(t0) is the gradient of Jo

Get a new optimal from the minimizer
do loop.... until minimizer has converged

Assumption: the tangent linear and the adjoint codes are available.
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Variational algorithms - Minimization algorithms

Incremental formulation 3D-FGAT

Strong assumption on the tangent linear model M0,i = I

→ The increment δx is not propagated by the T.L physics.
→ It is constant over the assimilation cycle and can be applied at any time over cycle i .

The 3D-FGAT cost function and its gradient read:

J (δx) =
1

2
δxTB−1δx +

1

2

N∑
i=0

(di + Hiδx)T R−1
i (di + Hiδx)

The generalized obs. op. sums up to a selection, interpolation H, potentially linear.

∇J (δx) = B−1δx +
N∑
i=0

HT
i R−1

i (di + Hiδx)

The comp. cost for the estimation of J and ∇J is significantly reduced.
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Variational algorithms - Minimization algorithms

Pros and cons of the incremental formulation

The 4D-Inc algorithm implies

a single integration of the non linear model to compute the innovation

as many integrations of the T.L and adjoint as needed for the minimization

The 3D-FGAT algorithm implies

no need for T.L and adjoint codes

reduction of the computational cost for the optimization

approximation of the linear physics around the background
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Variational algorithms - Minimization algorithms

Solution with primal approach

From optimality conditions (∇J(δx) = 0), at Gauss-Newton iteration k we have

(B−1 + GTR−1G)︸ ︷︷ ︸
A

δx = B−1(xb − x) + GTR−1d︸ ︷︷ ︸
b

where A is a large, symmetric and positive definite matrix.(The superscript k has been
dropped.)

Algorithmic considerations:

very large problem size: m ∼ 107 observations, n ∼ 108 unknowns

very few iterations performed

→ use iterative methods for spd systems (Krylov subspace methods)?

→ numerical efficiency ?

→ reduce the computational cost and memory (dual approach, preconditioning?)

noisy data: need reliable error estimates
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Variational algorithms - Minimization algorithms

Conjugate Gradient method

CG method generates the sequences δxk , k = 1, ..., l

δxk+1 = δxk + αkpk

where pk is the search direction and conjugate w.r.t A, i.e.

pT
i Apk = 0, for all i 6= k

and αk is the step length minimizing the cost function along xk + αpk ,

αk =
rTk pk

pT
k Apk
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Variational algorithms - Minimization algorithms

Alternative Methods: Dual Approach

Exact solution writes

xb − x +
(
B−1 + GTR−1G

)−1
GTR−1

(
d− G(xb − x)

)︸ ︷︷ ︸
requires solving a linear system iteratively in Rn

Alternatively, the exact solution can be rewritten from duality theory or
using Sherman-Morrison-Woodbury formula

xb − x + BGT (GBGT + R)−1(d− G(xb − x))︸ ︷︷ ︸
requires solving a linear system iteratively in Rm

If m << n, then performing the minimization in Rm can reduce memory and
computational cost.

This situation is typical in ocean data assimilation systems where n ≈ 107

and m ≈ 105
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Error covariance matrices estimation and modeling

Outline

1 General concepts for Data Assimilation

2 Classical algorithms for Data Assimilation

3 Variational algorithms - Minimization algorithms

4 Error covariance matrices estimation and modeling

5 More on Data Assimilation
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Error covariance matrices estimation and modeling

Role of B
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Error covariance matrices estimation and modeling

Role of B
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Error covariance matrices estimation and modeling

Example: 3D-Var with a single observation
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Error covariance matrices estimation and modeling

Example: 3D-Var with a single observation
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Error covariance matrices estimation and modeling

Example: 4D-Var with a single observation
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Error covariance matrices estimation and modeling

Example: 4D-Var with a single observation
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Error covariance matrices estimation and modeling

Schematic illustration of GBGT in4D − Var

S. Ricci (CERFACS) Data Assimilation @ CEMRACS 22 July 2016 58 / 81



Error covariance matrices estimation and modeling

Schematic illustration of GBGT in4D − Var

S. Ricci (CERFACS) Data Assimilation @ CEMRACS 22 July 2016 59 / 81



Error covariance matrices estimation and modeling

Schematic illustration of GBGT in4D − Var

S. Ricci (CERFACS) Data Assimilation @ CEMRACS 22 July 2016 60 / 81



Error covariance matrices estimation and modeling
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Error covariance matrices estimation and modeling

Schematic illustration of GBGT in4D − Var
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Error covariance matrices estimation and modeling

Specifying B in practice

Fundamental role of B in determining the solution of the data assimilation
problem.

Recall the expression for the analysis increment

δxa = B GT
(
G B GT + R

)−1
d

d = yo − G (xb) is the P-dimensional innovation vector.
yo is the P-dimensional observation vector.
xb is the N-dimensional background state.
G ( · ) is the (generalized) observation operator.
G is the (generalized) observation operator linearized about xb.
R is the specified observation error covariance matrix.

The analysis increment can be expressed as a linear combination of the
column vectors bi of B:

δxa =
N∑
i=1

αi bi
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Error covariance matrices estimation and modeling

Specifying B in practice

B is a symmetric N × N matrix, so the number of independent elements
that need to be specified is:

N∑
i=1

i =
1

2
(N2 + N)

For large problems, of the order of N ∼ 106 or greater, we need to define a
matrix with more than 1012 elements! It is simply not possible to store and
manipulate a matrix this big.

Even for medium size problems (N ∼ 103), full matrix representations of B
are hardly practical.

Even if we could store B as a matrix, we usually don’t have enough reliable
information to specify all elements correctly. This is especially true in ocean
and atmospheric data assimilation.
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Error covariance matrices estimation and modeling

Covariance estimation using innovations

The innovation vector contains valuable information about observation and
background errors:

db = yo − G (xb)

= yo − yt + yt − G (xt) + G (xt)− G (xb)

= εm + εr + G (xt)− G (xt + εb)

≈ εo + G (xt)− G (xt)− G εb

= εo − G εb

The innovation covariance matrix is then

E [ d̃b(d̃b)T] ≈ E [ (ε̃ o − G ε̃ b)(ε̃ o − G ε̃ b)T]

= E [ ε̃ o(ε̃ o)T] + GE [ ε̃ b(ε̃ b)T] GT

= Rt + G Bt GT,

assuming εo and εb are uncorrelated: E [ ε̃ o(ε̃ b)T] = 0.
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Error covariance matrices estimation and modeling

Covariance estimation using innovations

In practice, we invoke the ergodicity assumption and replace E [ · ] by a

sample average ( · ) = 1
Ns

∑Ns

1 ( · ) over an appropriately chosen space
and/or time domain Ω.

The fundamental problem is how to deduce information about Rt and Bt

given information about their sum.

The trick is to select observations with approximately uncorrelated errors
and then attribute any correlated signal in the innovation covariance to B:

var(di )Ω
= var(εoi )

Ω
+ var(εbi )

Ω

cov(di , dj)Ω
= cov(εbi , ε

b
j )

Ω
, i 6= j
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Error covariance matrices estimation and modeling

Covariance estimation using innovations

From Bouttier and Courtier (1999)

S. Ricci (CERFACS) Data Assimilation @ CEMRACS 22 July 2016 67 / 81



Error covariance matrices estimation and modeling

Covariance estimation using innovations

This is arguably the purest method for estimating error covariances ,,
but . . .

Requires a dense observation network.

If not available then considerable spatial and temporal averaging is
required.

Requires observations with uncorrelated errors.

Even though we often specify R to be diagonal, this assumption is
known to be suspect for important data sets (e.g., satellite data).
Densely distributed observations will likely contain a substantial
amount of correlated representativeness error.

Requires observations of background variables.

Generates estimates of G B GT (i.e., in observation space) but what we
want is an estimate of B (i.e., in model control space).

The last three points are serious limitations in practice. /
This method is most useful for checking covariances generated by other
methods. ,
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Error covariance matrices estimation and modeling

Covariance estimation using Desroziers diagnostics

The analysis increment is

δxa = B GT
(
G B GT + R

)−1
db

The covariance of G δxa = db − da and db is then

E [(d̃b − d̃a)(d̃b)T] = GE [ δx̃ a(d̃b)T]

= G B GT
(
G B GT + R

)−1
E [ d̃b(d̃b)T]

= G B GT
(
G B GT + R

)−1 (
Rt + G Bt GT

)
Assuming that B and R are good approximations to Bt and Rt then

E [(d̃b − d̃a)(d̃b)T] ≈ G BtGT

E [ d̃a(d̃b)T] ≈ E [ d̃b(d̃b)T] − GBtGT

= Rt + GBtGT − GBtGT

= Rt
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Error covariance matrices estimation and modeling

Covariance estimation using Desroziers diagnostics

E [(d̃b − d̃a) (d̃b)T] ≈ G BtGT

E [(d̃a) (d̃b)T] ≈ Rt

The covariance matrices on the left hand side can be estimated from sample
averages of standard output from data assimilation. ,
They can be compared with the specified covariance matrices G B GT and R
to assess their consistency. ,
Unlike the innovation covariance matrix, they provide separate estimates of
Bt (in observation space) and Rt, and thus can also be used to recalibrate
the specified covariance matrices ,, but . . .

The relationship between the left and right hand sides is somewhat
incestuous since the derivation is based on the assumption that B and R are
correct in the first place! /
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Error covariance matrices estimation and modeling

Covariance estimation using the Kalman filter

Propagate the background-error covariance matrix as in the (Extended)
Kalman filter:

Pf(ti ) = M(ti , ti−1) Pa(ti ) M(ti , ti−1)T + Q(ti ) (1)

and then set B = Pf(ti ) at the assimilation time.

In 4D-Var, the covariances are propagated implicitly via (1) ,, but only
within the assimilation window on a given assimilation cycle. /
In strong-constraint 4D-Var, Q(ti ) = 0, whereas in weak-constraint 4D-Var,
Q(ti ) 6= 0.

This procedure will naturally produce flow-dependent and dynamically
balanced background error covariances ,, but . . .

Equation (1) is only approximate for nonlinear problems. /
Direct use of equation (1) is only practical for very small problems /, and
Pa and Q are difficult to specify. /
For large problems, reduced-rank methods can be used ,, but are of
questionable relevance when there are no dominant error modes. /
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Covariance estimation using model-generated errors

Define a model proxy for background error.
1 Generate differences between pairs of model forecasts valid at the same

time (called the NMC method in meteorology).
2 Generate an ensemble of model forecast perturbations by perturbing

input parameters to the model and data assimilation system.

The advantage of these methods is that they provide statistical information
of all model variables at all model grid points (even in data-sparse regions).
,
Method 1 is straightforward to implement , but has a dubious link to
actual background error. /

It produces artificially small variances in data-sparse regions.

Method 2 produces the correct cycling mechanism of errors in the data
assimilation/forecast system , but is expensive and requires good prior
knowledge of the error statistics of the input parameters to produce sensible
perturbations (these can be difficult to obtain). /

Perturbed input fields include the observations, model parameters,
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Covariance estimation using ensemble perturbations

An estimate of the background error covariance matrix from a sample of
k = 1, . . . ,Ne perturbed background states, xbk = xb0 + εbk , is

B =
1

Ne − 1

Ne∑
k=1

(
εbk
′)(

εbk
′)T

where

εbk
′

= εbk −
1

Ne

Ne∑
k=1

εbk =
((
εbk
′)

1
, . . . ,

(
εbk
′)

N

)T
In compact notation

B = X′X′
T

where

X′ =
1√

Ne − 1

(
εb1
′
, . . . , εbNe

′)
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Covariance estimation using ensemble perturbations

B = X′X′
T

X′ =
1√

Ne − 1

(
εb1
′
, . . . , εbNe

′)

If εbk are random samples from the true background error pdf then B will

converge to Bt for large Ne ,, but . . .

For large problems, Ne � N so sampling error will be large. /
In practice, εbk will not be a perfect sample from the true pdf. /
Covariance localization, filtering and inflation are needed to rectify these
problems in practical implementations of the Ensemble Kalman filter (EnKF)
or Ensemble Variational assimilation (EnVar).
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Covariance localization

Removal of spurious covariances at large separation distances can be done
using a Schur product with a space-limited correlation function:

B = X′X′
T ◦ Cloc

A = B ◦ C implies element-by-element multiplication: Aij = BijCij

“covariance localization...is the secret ingredient that makes it all possible”
Whitaker (2011), ECMWF Seminar on DA for atmosphere and ocean.
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Modeling B in practice

With reduced-rank methods, B is formulated as B = XXT where X is an
N × L matrix with L� N.

The resulting B matrix has rank at most equal to L.

The L columns of X can be EOFs, singular vectors, ensemble perturbations,
or some other basis functions.

Reduced-rank methods are commonly used with Kalman filters since the KF
equations require direct matrix-matrix multiplications.
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Specifying B in practice

An alternative approach is to specify B as a covariance operator: Bα→ δx.

Multiplication of the different components of the B matrix produces a
full-rank matrix in model state space:

B = K̂ Σ̂ Ĉ Σ̂ K̂T
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Illustrations in R2

1 Homogeneous and isotropic

2 Homogeneous and anisotropic

3 Inhomogeneous and anisotropic
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More on Data Assimilation

Outline

1 General concepts for Data Assimilation

2 Classical algorithms for Data Assimilation

3 Variational algorithms - Minimization algorithms

4 Error covariance matrices estimation and modeling

5 More on Data Assimilation
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References on variational Data Assimilation

R. Daley, Atmospheric data analysis, Cambridge University Press,
1991.
Advanced Data Assimilation for Geosciences, Lecture Notes of the
Les Houches School of Physics: Special Issue, June 2012, edited by
Eric Blayo, Marc Bocquet, Emmanuel Cosme, and Leticia F.
Cugliandolo, 2015
Albert Tarantola, Inverse Problem Theory and Methods for Model
Parameter Estimation, SIAM, 2005
ECMWF Technical Memoranda
Bouttier, F. and P. Courtier, 1999: Data assimilation concepts and
methods, ECMWF Training Course Notes. Available on line.
Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and
Predictability, Cambridge Uni. Press.
Gaspari, G. and S. E. Cohn, 1999: Construction of correlation
functions in two and three dimensions. Q. J. R. Meteorol. Soc., 125,
723757.
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Data Assimilation Training courses

Data Assimilation Training course @CERFACS (Toulouse June 2017 -
Contact Selime Gurol gurol@cerfacs.fr + Anthony Weaver
weaver@cerfacs.fr - http://cerfacs.fr/en/event/?category=training)

Data Assimilation Training course @Grenoble (Dec 2016- Jan.2017 -
Contact Emmanuel Cosme emmanuel.cosme@ujf-grenoble.fr)

Data Assimilation Training Course @ECMWF (March 2017 -
http://www.ecmwf.int/en/learning/training)

Data Assimilation @LesHouches (2017 ?)

Data Assimilation and Uncertainty Quantification @CERFACS (May
2017 - Contact Sophie Ricci ricci@cerfacs.fr + Mlanie Rochoux
rochoux@cerfacs.fr - http://cerfacs.fr/en/event/?category=training)
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